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Abstract. Efficient CNN designs like ResNets and DenseNet were pro-
posed to improve accuracy vs efficiency trade-offs. They essentially in-
creased the connectivity, allowing efficient information flow across layers.
Inspired by these techniques, we propose to model connections between
filters of a CNN using graphs which are simultaneously sparse and well
connected. Sparsity results in efficiency while well connectedness can pre-
serve the expressive power of the CNNs. We use a well-studied class of
graphs from theoretical computer science that satisfies these properties
known as Expander graphs. Expander graphs are used to model con-
nections between filters in CNNs to design networks called X-Nets. We
present two guarantees on the connectivity of X-Nets: Each node influ-
ences every node in a layer in logarithmic steps, and the number of paths
between two sets of nodes is proportional to the product of their sizes.
We also propose efficient training and inference algorithms, making it
possible to train deeper and wider X-Nets effectively.

Expander based models give a 4% improvement in accuracy on Mo-
bileNet over grouped convolutions, a popular technique, which has the
same sparsity but worse connectivity. X-Nets give better performance
trade-offs than the original ResNet and DenseNet-BC architectures. We
achieve model sizes comparable to state-of-the-art pruning techniques us-
ing our simple architecture design, without any pruning. We hope that
this work motivates other approaches to utilize results from graph theory
to develop efficient network architectures.

1 Introduction

Convolutional Neural Networks (CNNs) achieve state-of-the-art results in a va-
riety of machine learning applications[1,2,3,4]. However, they are also computa-
tionally intensive and consume a large amount of computing power and runtime
memory. After the success of VGG Networks [5], there has been significant in-
terest in designing compact neural network architectures due to the wide range
of applications valuing mobile and embedded devices based use cases.

⋆ indicates these authors contributed equally to this work.
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Fig. 1. Popular sparse approximations are agnostic to the global information flow in
a network, possibly creating disconnected components. In contrast, expander graph-
based models produce sparse yet highly connected networks.

ResNet[6] and DenseNet-BC[3] directed the focus of efficient designs of convo-
lutional layers on increasing connectivity. Additional connectivity with residual
connections to previous layers provided efficient information flow through the
network, enabling them to achieve an order of magnitude reduction in storage
and computational requirements. We take inspiration from these approaches, to
focus on designing highly connected networks. We explore making networks effi-
cient by designing sparse networks that preserve connectivity properties. Recent
architectures like MobileNet[7] improves the efficiency by an order of magnitude
over a ResNet. However, in order to achieve this, they sparsify a network by
removing several connections from a trained network, reducing their accuracies
in the process. We ask a basic question: If we try to maximize the connectivity
properties and information flow, can we achieve the same efficiency gains with
minimal loss in accuracy? It is essential that the connections allow information
to flow through the network easily. That is, each output node must at least have
the capacity to be sensitive to features of previous layers. As we can see from
Fig.1, traditional model compression techniques such as pruning can aggravate
the problem, since they can prune the neuron connections of a layer, while being
agnostic of global connectivity of the network. A necessary condition for having
good representational power is efficient information flow through the network,
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which is particularly suited to be modeled by graphs. We propose to make the
connections between neurons (filters in the case of CNNs) according to specific
graph constructions known as expander graphs. They have been widely stud-
ied in spectral graph theory [8] and pseudorandomness [9], and are known to
be sparse but highly connected graphs. Expander graphs have a long history in
theoretical computer science, also being used in practice in computer networks,
constructing error correcting codes, and in cryptography (for a survey, see [10]).

Main Contributions: i.) We propose to represent neuronal connections in
deep networks using expander graphs (see Section 3). We further prove that
X-Nets have strong connectivity properties (see Theorem 1). ii.) We provide
memory-efficient implementations of Convolutional (X-Conv) layers using sparse
matrices and propose a fast expander-specific algorithm (see Section 4). iii.)
We empirically compare X-Conv layers with grouped convolutions that have
the same level of sparsity but worse connectivity. X-Conv layers obtain a 4%
improvement in accuracy when both the techniques are applied to the MobileNet
architecture trained on Imagenet (see Section 5.1). iv.) We also demonstrate the
robustness of our approach by applying the technique to some of the state of the
art models like DenseNet-BC and ResNet, obtaining better performance trade-
offs (see Section 5.2). v.) Additionally, our simple design achieves comparable
compression rates to even the state-of-the-art trained pruning techniques. (see
Section 5.3). vi.) Since we enforce the sparsity before the training phase itself,
our models are inherently compact and faster to train compared to pruning
techniques. We leverage this and showcase the performance of wider and deeper
X-Nets (see Section 5.5).

2 Related Work

Our approach lies at the intersection of trained pruning techniques and effi-
cient layer design techniques. We present a literature survey regarding both the
directions in detail.

2.1 Efficient Layer Designs

Currently there is extensive interest in developing novel convolutional layers/blocks
and effectively leveraging them to improve architectures like [11,7,12]. Such
micro-architecture design is in a similar direction as our work. In contrast, ap-
proaches like [4] try to design the macro-architectures by connecting pre-existing
blocks. Recent concurrent work has been on performing architecture searches
effectively [13,14,15,16]. Our work is complementary to architecture search tech-
niques as we can leverage their optimized macro-architectures.

Another line of efficient architecture design is Grouped Convolutions: which
was first proposed in AlexNet[1], recently popularized by MobileNets[7] and
XCeption[17] architectures . This is currently a very active area of current re-
search, with a lot of new concurrent work being proposed [18,19,20].

It is interesting to note that recent breakthroughs in designing accurate deep
networks [6,3,21] were mainly by introducing additional connectivity to enable
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the efficient flow of information through deep networks. This enables the training
of compact, accurate deep networks. These approaches, along with Grouped
Convolutions are closely related to our approach.

2.2 Network Compression

Several methods have been introduced to compress pre-trained networks as well
as train-time compression. Models typically range from low-rank decomposition
[22,23,24] to network pruning [25,26,27,28].

There is also a major body of work that quantizes the networks at train-
time to achieve efficiency [29,30,31,32,33,34,35]. The problem of pruning weights
in train-time have been extensively explored [36,37] primarily from weight-level
[38,39,40,41] to channel-level pruning [42,37,36]. Weight-level pruning has the
highest compression rate while channel-level pruning is easier to practically ex-
ploit and has compression rates almost on par with the former. Hence, channel-
level pruning is currently considered superior [42]. Channel-level pruning ap-
proaches started out with no guidance for sparsity [43] and eventually added
constraints [44,45,46], tending towards more structured pruning.

However, to the best of our knowledge, this is the first attempt at constrain-
ing neural network connections by graph-theoretic approaches to improve deep
network architecture designs. Note that we do not prune weights during training.

3 Approach

Recent breakthroughs in CNN architectures like ResNet[47] and DenseNet-BC[3]
are ideas based on increasing connectivity, which resulted in better performance
trade-offs. These works suggest that connectivity is an important property for
improving the performance of deep CNNs. In that vein, we investigate ways
of preserving connectivity between neurons while significantly sparsifying the
connections between them. Such networks are expected to preserve accuracy
(due to connectivity) while being runtime efficient (due to the sparsity). We
empirically demonstrate this in the later sections.

3.1 Graphs and Deep CNNs

We model the connections between neurons as graphs. This enables us to lever-
age well-studied concepts from Graph Theory like Expander Graphs. Now, we
proceed to formally describe the connection between graphs and Deep CNNs.

Linear Layer defined by a Graph:Given a bipartite graphG with vertices
U, V , the Linear layer defined by G, is a layer with |U | input neurons, |V | output
neurons and each output neuron v ∈ V is only connected to the neighbors given
by G. Let the graph G be sparse, having only M edges. Then this layer has only
M parameters as compared to |V |× |U |, which is the size of typical linear layers.

Convolutional Layer defined by a Graph: Let a Convolutional layer be
defined as a bipartite graph G with vertices U, V and a window size of c × c.
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This layer takes a 3D input with |U | channels and produces a 3D output with
|V | channels. The output channel corresponding to a vertex v ∈ V is computed
only using the input channels corresponding the the neighbors of v. Let G be
sparse, having only M edges. Hence the kernel of this convolutional layer has
M × c× c parameters as compared to |V | × |U | × c× c, which is the number of
parameters in a vanilla CNN layer.

3.2 Sparse Random Graphs

We want to constrain our convolutional layers to form a sparse graph G. With-
out any prior knowledge of the data distribution, we take inspiration from ran-
domized algorithms and propose choosing the neighbours of every output neu-
ron/channel uniformly and independently at random from the set of all its input
channels. It is known that a graph G obtained in this way belongs to a well-
studied category of graphs called Expander Graphs, known to be sparse but well
connected.

Expander Graph: A bipartite expander with degree D and spectral gap γ,
is a bipartite graph G = (U, V,E) (E is the set of edges, E ⊆ U × V ) in which:

1.) Sparsity: Every vertex in V has only D neighbors in U . We will be
using constructions with D << |U |. Hence the number of edges is only D × |V |
as compared to |U | × |V | in a dense graph.

2.) Spectral Gap: The eigenvalue with the second largest absolute value
λ of the adjacency matrix is bounded away from D (the largest eigenvalue).
Formally 1− λ/D ≥ γ.

Random expanders: A random bipartite expander of degree D on the two
vertex sets U, V , is a graph in which for every vertex v ∈ V , the D neighbors
are chosen independently and uniformly from U . It is a well-known result in
graph theory that such graphs have a large spectral gap ([9]). Similar to ran-
dom expanders, there exist several explicit expander constructions. More details
about explicit expanders can be found in the supplementary section. We now
proceed to give constructions of deep networks that have connections defined by
an expander graph.

Expander Linear Layer (X-Linear): The Expander Linear (X-Linear)
layer is a layer defined by a random bipartite expander G with degree D. The
expander graphs that we use have values ofD << |U |, while having an expansion
factor of K ≈ D, which ensures that the layer still has good expressive power.

Expander Convolutional Layer (X-Conv): The Expander Convolutional
(X-Conv) layer is a convolutional layer defined by a random bipartite expander
graph G with degree D, where D << |U |.

Deep Expander Networks (X-Nets): Given expander graphs

G1 = (V0, V1, E1), G2 = (V1, V2, E2), · · · , Gt = (Vt−1, Vt, Et)

, we define the Deep Expander Convolutional Network (Convolutional X-Net
or simply X-Net) as a t layer deep network in which the convolutional layers
are replaced by X-Conv layers and linear layers are replaced by X-Linear layers
defined by the corresponding graphs.
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Fig. 2. The proposed fast convolution algorithm for X-Conv layer. We represent all
the non-zero filters in the weight matrix of the X-Conv layer as a compressed dense
matrix of D channels. The algorithm starts by selecting D channels from input (with
replacement) using a mask created while initializing the model. The output is computed
by convolving these selected channels with the compressed weight matrices.

3.3 Measures of Connectivity

In this subsection, we describe some connectivity properties of Expander graphs
(see [9], for the proofs). These will be used to prove the properties of sensitivity
and mixing of random walks in X-Nets .

Expansion: For every subset S ⊆ V of size ≤ α|V | (α ∈ (0, 1) depends on
the construction), let N(S) be the set of neighbors. Then |N(S)| ≥ K|S| for
K ≈ D. That is, the neighbors of the vertices in S are almost distinct. It is
known that random expanders have expansion factor K ≈ D (see Theorem 4.4
in [9]).

Small Diameter: The diameter of a graph is the length of the longest path
among all shortest paths. If G(U, V,E) is a D-regular expander with expansion
factor K > 1 and diameter d, then d ≤ O(log n). This bound on the diameter
implies that for any pair of vertices, there is a path of length O(log n) in the
graph.

Mixing of Random Walks: Random walks in the graph quickly converge
to the uniform distribution over nodes of the graph. If we start from any vertex
and keep moving to a random neighbor, in O(log n) steps the distribution will
be close to uniform over the set of vertices.

3.4 Sensitivity of X-Nets

X-Nets have multiple layers, each of which have connections derived from an
expander graph. We can guarantee that the output nodes in such a network are
sensitive to all the input nodes.
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Theorem 1 (Sensitivity of X-Nets). Let n be the number of input as well as

output nodes in the network and G1, G2, · · · , Gt be D regular bipartite expander

graphs with n nodes on both sides. Then every output neuron is sensitive to every

input in a Deep X-Net defined by Gi’s with depth t = O(log n).

Proof. For every pair of input and output (u, v), we show that there is a path in
the X-Net. The proof is essentially related to the the fact that expander graphs
have diameter O(log n). A detailed proof can be found in the supplementary
material.

Next, we show a much stronger connectivity property known as mixing for
the X-Nets. The theorem essentially says that the number of edges between
subsets of input and output nodes is proportional to the product of their sizes.
This result implies that the connectivity properties are uniform and rich across
all nodes as well as subsets of nodes of the same size. Simply put, all nodes tend
to have equally rich representational power.

Theorem 2 (Mixing in X-Nets). Let n be the number of input as well as

output nodes in the network and G be D regular bipartite expander graph with n
nodes on both sides. Let S, T be subsets of input and output nodes in the X-Net

layer defined by G. The number of edges between S and T is ≈ D|S||T |/n

Proof. A detailed proof is provided in the supplementary material.

4 Efficient Algorithms

In this section, we present efficient algorithms of X-Conv layers. Our algorithms
achieve speedups and save memory in the training as well as the inference phase.
This enables one to experiment with significantly wider and deeper networks
given memory and runtime constraints. We exploit the structured sparsity of
expander graphs to design fast algorithms. We propose two methods of training
X-Nets, both requiring substantially less memory and computational cost than
their vanilla counterparts:
1) Using Sparse Representations
2) Expander-Specific Fast Algorithms.

4.1 Using Sparse Representation

The adjacency matrices of expander graphs are highly sparse forD << n. Hence,
we can initialize a sparse matrix with non-zero entries corresponding to the edges
of the expander graphs. Unlike most pruning techniques, the sparse connections
are determined before training phase, and stay fixed. Dense-Sparse convolutions
are easy to implement, and are supported by most deep learning libraries. CNN
libraries like Cuda-convnet[48] support such random sparse convolution algo-
rithms.
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Algorithm 1: Fast Algorithm for Convolutions in X-Conv Layer

1: For every vertex v ∈ {1, · · · , n}, let N(v, i) denote the ith neighbor of v (i ∈
{1, · · · , D}).

2: Let Kv be the c× c×D × 1 sized kernel associated with the vth output channel.
3: Let Ov[x, y] be the output value of the vth channel at the position x, y.
4: for v= 1 to n do
5: Ov[x, y] = Kv ∗MaskN(v,1),···N(v,D)(I)[x, y].

4.2 X-Net based Fast Dense Convolution

Next, we present fast algorithms that exploit the sparsity of expander graphs.

X-Conv: In an X-Conv layer, every output channel is only sensitive to out
rom input channels. We propose to use a mask to select D channels of the input,
and then convolve with a c × c × D × 1 kernel, obtaining a single channel per
filter in the output. The mask is obtained by choosing D samples uniformly
(without replacement) from the set {1, · · ·N}, where N is the number of input
channels. The mask value is 1 for each of the selected D channels and 0 for others
(see Algorithm 4.1). This is illustrated in Figure 2. There has been recent work
about fast CUDA implementations called Block-Sparse GPU Kernels[49], which
can implement this algorithm efficiently.

5 Experiments and Results

Fig. 3. Comparison between Grouped convolutions and X-Conv using MobileNet archi-
tecture trained on ImageNet. X-d or G-d represents the 1x1 conv layers are compressed
by d times using X-Conv or Groups. We observe X-MobileNets beat Group-MobileNet
by 4% in accuracy on increasing sparsity.
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(a) CIFAR10 (b) CIFAR100

Fig. 4. We show the error as a function of #FLOPs during test-time (below) for
DenseNet-BC with X-DenseNet-BCs on CIFAR10 and CIFAR100 datasets. We observe
X-DenseNet-BCs achieve better performance tradeoffs over DenseNet-BC models. For
each datapoint, we mention the X-C-D-G notation (see Section 5.2) along with the
accuracy.

In this section, we benchmark and empirically demonstrate the effectiveness
of X-Nets on a variety of CNN architectures. Our code is available at: https:
//github.com/DrImpossible/Deep-Expander-Networks.

5.1 Comparison with Grouped Convolution

First, we compare our Expander Convolutions (X-Conv) against Grouped Con-
volutions (G-Conv). We choose G-Conv as it is a popular approach, on which a
lot of concurrent works [18] have developed their ideas. G-Conv networks have
the same sparsity as X-Conv networks but lack only the connectivity property.
This will test whether increasing connectivity increases accuracy, i.e does a graph
without good connectivity properties provides worse accuracy? We choose Mo-
bileNet as the base model for this experiment, since it is the state-of-the-art in
efficient CNN architectures. We compare X-Conv against grouped convolutions
using MobileNet-0.5 on the ImageNet classification task. We replace the 1 × 1
convolutional layers in MobileNet-0.5 with X-Conv layers forming X-MobileNet-
0.5. Similarly, we replace them with G-Conv layers to form Group-MobileNet-0.5.
Note that we perform this only in layers with most number of parameters (after
the 8th layer as given in Table 1 of [7]). We present our results in Figure 3.
The reference original MobileNet-0.5 has an error of 36.6% with a cost of 150M
FLOPs. Additional implementation details are given in the supplementary ma-
terial.

We can observe that X-MobileNets beat Group-MobileNets by over 4% in
terms of accuracy when we increase sparsity. This also demonstrates that X-

https://github.com/DrImpossible/Deep-Expander-Networks
https://github.com/DrImpossible/Deep-Expander-Networks
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Conv can be used to further improve the efficiency of even the most efficient
architectures like MobileNet.

5.2 Comparison with Efficient CNN Architectures

In this section, we test whether Expander Graphs can improve the performance
trade-offs even in state-of-the-art architectures such as DenseNet-BCs [3] and
ResNets[47] on the ImageNet [50] dataset. We additionally train DenseNet-BCs
on CIFAR-10 and CIFAR-100 [51] datasets to demonstrate the robustness of our
approach across datasets.

Our X-ResNet-C-D is a D layered ResNet that has every layer except the
first and last replaced by an X-Conv layer that compresses connections between
it and the previous layer by a factor of C. We compare across various models
like ResNets-34,50,101. Similarly, our X-DenseNet-BC-C-D-G architecture has
depth D, and growth rate G. We use DenseNet-BC-121-32,169-32,161-48,201-32
as base models. These networks have every layer except the first and last replaced
by an X-Conv layer that compresses connections between it and the previous
layer by a factor of C. More details are provided in the supplementary material.

Fig. 5. We show the error as a func-
tion of #FLOPs to compare between
ResNet and X-ResNet on the ImageNet
dataset. We observe X-ResNets achieve
better performance tradeoffs over orig-
inal ResNet models.

Model Accuracy #FLOPs
ResNet (in 100M)
X-ResNet-2-34 69.23% 35
X-ResNet-2-50 72.85% 40
ResNet-34 71.66% 70
X-ResNet-2-101 74.87% 80
ResNet-50 74.46% 80
ResNet-101 75.87% 160
DenseNet-BC
X-DenseNet-BC-2-121 70.5% 28
X-DenseNet-BC-2-169 71.7% 33
X-DenseNet-BC-2-201 72.5% 43
X-DenseNet-BC-2-161 74.3% 55
DenseNet-BC-121 73.3% 55
DenseNet-BC-169 74.8% 65
DenseNet-BC-201 75.6% 85
DenseNet-BC-161 76.3% 110

Table 1. Results obtained by ResNet and
DenseNet-BC models on ImageNet dataset,
ordered by #FLOPs. or each datapoint, we
use the X-C-D-G notation (see Section 5.2)
along with the accuracy.

5.3 Comparison with Pruning Techniques

We plot the performance tradeoff of X-ResNets against ResNets in Figure 5 .
We achieve significantly better performance tradeoffs compared to the original
model. More specifically, we can reduce the #FLOPs in ResNets by half while
incurring only 1-1.5% decrease in accuracy. Also, we can compare models with
similar #FLOPs or accuracy with the help of Table 1. We observe that X-ResNet-
2-50 has 43% fewer FLOPs than ResNet-34, but achieves a 1% improvement in
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Method Accuracy #Params Training

Li et al. [37] 93.4% 5.4M ✗

Liu et al. [42] 93.8% 2.3M ✗

X-VGG16-1 93.4% 1.65M (9x) ✓

X-VGG16-2 93.0% 1.15M (13x) ✓

VGG16-Orig 94.0% 15.0M -
Table 2. Comparison with other methods on CIFAR-10 dataset using VGG16 as the
base model. We significantly outperform popular compression techniques, achieving
similar accuracies with upto 13x compression rate.

accuracy against it. Similarly, X-DenseNet-BC-2-161 has similar #FLOPs as
DenseNet-BC-121, but achieves a 1% improvement in accuracy.

To further prove the robustness of our approach on DenseNet-BC, we test the
same on CIFAR10 and CIFAR100, and plot the tradeoff curve in Figure 4. We
observe that we can achieve upto 33% compression keeping accuracy constant
on CIFAR-10 and CIFAR-100 datasets.

We compare our approach with methods which prune the weights during or
after training. Our method can be thought of as constraining the weight matrices
with a well studied sparse connectivity pattern even before the training starts.
This results in fast training for the compact X-Conv models, while the trained
pruning techniques face the following challenges:

1) Slow initial training due to full dense model.
2) Several additional phases of pruning and retraining.

Hence they achieve the compactness and runtime efficiency only in test time.
Nevertheless we show similar sparsity can be achieved by our approach without
explicitly pruning. We benchmark on VGG16 and AlexNet architectures since
most previous results in the pruning literature have been reported on these
architectures. In Table 2, we compare two X-VGG-16 models against existing
pruning techniques. We achieve comparable accuracies to the previous state-of-
the-art model with 50% fewer parameters and #FLOPs. Similarly, in Table 3 we
compare X-AlexNet with trained pruning techniques on the Imagenet dataset.
Despite having poor connectivity due to parameters being concentrated only
in the last three fully connected layers, we achieve similar accuracy to AlexNet
model using only 7.6M-9.7M parameters out of 61M, comparable to the state-of-
the-art pruning techniques which have upto 3.4M-5.9M parameters. Addition-
ally, it is possible to improve compression by applying pruning methods on our
compact architectures, but pruning X-Nets is out of the scope of our current
work.
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Method Accuracy #Params Training
Speedup?

Network Pruning

Collins et al.[52] 55.1% 15.2M ✗

Zhou et al. [45] 54.4% 14.1M ✗

Han et al. [31] 57.2% 6.7M ✗

Han et al. [31] 57.2% 6.7M ✗

Srinivas et al. [44] 56.9% 5.9M ✗

Guo et al. [41] 56.9% 3.4M ✗

X-AlexNet-1 55.2% 7.6M ✓

X-AlexNet-2 56.2% 9.7M ✓

AlexNet-Orig 57.2% 61M -
Table 3. Comparison with other methods on ImageNet-2012 using AlexNet as the base
model. We are able to achieve comparable accuracies using only 9.7M parameters.

5.4 Stability of Models

We give empirical evidence as well as a theoretical argument regarding the sta-
bility of our method. For the vanilla DNN training, the weights are randomly
initialized, and randomized techniques like dropouts, augmentation are used.
Hence there is some randomness present and is well accepted in DNN literature
prior to our method. We repeat experiments on different datasets (Imagenet and
CIFAR10) and architectures (VGG, DenseNet and MobileNet0.5) to empirically
show that the accuracy of expander based models has variance similar to vanilla
DNN training over multiple runs.

We repeated the experiments with independent sampling of random ex-
panders on the VGG and DenseNet baselines on the CIFAR10 dataset. The
results can be seen in Table 4. It is noted that the accuracy values changes only
by less than 0.3% across runs and the standard deviation of expander method
is also comparable to the vanilla DNN training.

We also repeated experiments of our main result, which is the comparison
with grouped convolutions on ImageNet dataset. We rerun the experiment with
MobileNet0.5 feature extractor twice with Groups and the expander method. As
can be seen from Table 5, the accuracy variations are comparable between the
two models, and it is less than 1%.

A theoretical argument also concludes that choosing random graphs doesn’t
degrade stability. It is a well known result (See Theorem 4.4 in [9]) in random
graph theory, that graphs chosen randomly are well connected with overwhelm-
ingly high probability (with only inverse exponentially small error, due to the
Chernoff’s Tail bounds) and satisfies the Expander properties. Hence the chance
that for a specific run, the accuracy gets affected due to the selection of a par-
ticularly badly connected graph is insignificant.
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Model Accuracy% Max% Min%

VGG 93.96±0.12 94.17 93.67

X-VGG-1 93.31±0.18 93.66 93.06
X-VGG-2 92.91±0.19 93.26 92.69

XDNetBC-40-24 94.41±0.19 94.63 94.18
XDNetBC-40-36 94.98±0.14 95.21 94.84
XDNetBC-40-48 95.49±0.15 95.65 95.28
XDNetBC-40-60 95.75±0.07 95.81 95.68

Table 4. The accuracies (mean ± stddev)
of various models over 10 training runs on
CIFAR-10 dataset.

MobileNet Mean Range
Variant Accuracy (Max-Min)

Base 63.39% 0.11%

G2 57.45 % 0.06 %
X2 58.22 % 0.14 %

G4 49.41 % 0.55 %
X4 54.00 % 0.53 %

G8 45.13 % 0.03 %
X8 49.23 % 0.60 %

G16 39.03 % 0.64 %
X16 44.63 % 0.18 %

Table 5. The mean accuracy and range
of variation over 2 runs of MobileNet0.5
variants on ImageNet dataset.

5.5 Training Wider and Deeper networks

Since X-Nets involve constraining the weight matrices to sparse connectivity pat-
terns before training, the fast algorithms can make it possible to utilize memory
and runtime efficiently in training phase. This makes it possible to train signif-
icantly deeper and wider networks. Note the contrast with pruning techniques,
where it is necessary to train the full, bulky model, inherently limiting the range
of models that can be compressed.

Wide-DenseNets1 offered a better accuracy-memory-time trade-off. We in-
crease the width and depth of these networks to train significantly wider and
deeper networks. The aim is to study whether leveraging the effectiveness of
X-Nets in this fashion can lead to better accuracies. We widen and deepen the
DenseNet-BC-40-60 architecture, increasing the growth rate from 60 to 100 and
200 respectively and compare the effect of increasing width on these new models.
Similarly, we increase the depth from 40 to 58 and 70 to obtain deeper networks.
We benchmark these approaches using CIFAR-100 dataset and present the re-
sults in Figure 6.

We have two interesting observations. First, the deeper X-DenseNet-BC-70-
60 significantly outperforms X-DenseNet-BC-58-60 and wider X-DenseNet-40-
200 outperforms X-DenseNet-BC-40-100 with fewer parameters for a wide range
of C values (Expander degree).

The second interesting observation is the decreasing slope of the curves. This
indicates that expander graph modeling seems to be effective on wider and deeper
X-Nets i.e X-DenseNet-BC models suffer lesser penalty with increasing depth
and width compression. This enables X-Nets to work at high compression rates of
30x, compressing DenseNet-BC-40-200 model from 19.9B FLOPs to 0.6B FLOPs
with only 4.3% drop in accuracy. We hope this preliminary investigation holds
significant value in alleviating the constraint of GPU memory and resources.

1 https://github.com/liuzhuang13/DenseNet#wide-densenet-for-better-
timeaccuracy-and-memoryaccuracy-tradeoff
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(a) Effect of Width (b) Effect of Depth

Fig. 6. We show the performance tradeoff obtained on training significantly wider and
deeper networks on CIFAR-100 dataset. Every datapoint is X-C specified along with
the number of parameters, C being the compression factor. We show that training
wider or deeper networks along with more compression using X-Nets achieve better
accuracies with upto two-thirds of the total parameter and FLOPs on CIFAR-100
dataset.

6 Conclusion

We proposed a new network layer architecture for deep networks using expander
graphs that give strong theoretical guarantees on connectivity. The resulting ar-
chitecture (X-Net) is shown to be highly efficient in terms of both computational
requirements and model size. In addition to being compact and computationally
efficient, the connectivity properties of the network allow us to achieve signif-
icant improvements over the state-of-the-art architectures in performance on a
parameter or run-time budget. In short, we show that the use of principled ap-
proaches that sparsify a model while maintaining global information flows can
help in developing efficient deep networks.

To the best of our knowledge, this is the first attempt at using theoretical
results from graph theory in modeling connectivity to improve deep network
architectures. We believe that the field of deep networks can gain significantly
from other similar explorations.
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