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Abstract. We introduce and tackle the problem of zero-shot object detection

(ZSD), which aims to detect object classes which are not observed during train-

ing. We work with a challenging set of object classes, not restricting ourselves

to similar and/or fine-grained categories as in prior works on zero-shot classifica-

tion. We present a principled approach by first adapting visual-semantic embed-

dings for ZSD. We then discuss the problems associated with selecting a back-

ground class and motivate two background-aware approaches for learning robust

detectors. One of these models uses a fixed background class and the other is

based on iterative latent assignments. We also outline the challenge associated

with using a limited number of training classes and propose a solution based

on dense sampling of the semantic label space using auxiliary data with a large

number of categories. We propose novel splits of two standard detection datasets

– MSCOCO and VisualGenome, and present extensive empirical results in both

the traditional and generalized zero-shot settings to highlight the benefits of the

proposed methods. We provide useful insights into the algorithm and conclude

by posing some open questions to encourage further research.

1 Introduction

Humans can effortlessly make a mental model of an object using only textual descrip-

tion, while machine recognition systems, until not very long ago, needed to be shown

visual examples of every category of interest. Recently, some work has been done on

zero-shot classification using textual descriptions [53], leveraging progress made on

both visual representations [51] and semantic text embeddings [21,34,39]. In zero-shot

classification, at training time visual examples are provided for some visual classes but

during testing the model is expected to recognize instances of classes which were not

seen, with the constraint that the new classes are semantically related to the training

classes.

This problem is solved within the framework of transfer learning [13, 40], where

visual models for seen classes are transferred to the unknown classes by exploiting se-

mantic relationships between the two. For example, as shown in figure 1, the semantic

similarities between classes “hand” and “arm” are used to detect an instance of a related

(unseen) class “shoulder”. While such a setting has been used for object classification,
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Fig. 1: We highlight the task of zero-shot object detection where objects “arm”, “hand”,

and “shirt” are observed (seen) during training, but “skirt”, and “shoulder” are not.

These unseen classes are localized by our approach that leverages semantic relation-

ships between seen and unseen classes along with the proposed zero-shot detection

framework. The example has been generated by our model.

object detection has remained mostly in the fully supervised setting as it is much more

challenging. In comparison to object classification, which aims to predict the class label

of an object in an image, object detection aims at predicting bounding box locations for

multiple objects in an image. While classification can rely heavily on contextual cues,

e.g. airplane co-occurring with clouds, detection needs to exactly localize the object of

interest and can potentially be degraded by contextual correlations [56]. Furthermore,

object detection requires learning additional invariance to appearance, occlusion, view-

point, aspect ratio etc. in order to precisely delineate a bounding box [19].

In the past few years, several CNN-based object detection methods have been pro-

posed. Early methods [16, 17] started with an object proposal generation step and clas-

sified each object proposal as belonging to a class from a fixed set of categories. More

recent methods either generate proposals inside a CNN [46], or have implicit regions

directly in the image or feature maps [32, 44]. These methods achieved significant per-

formance improvements on small datasets which contain tens to a few hundreds of ob-

ject categories [8, 30]. However, the problem of detecting a large number of classes of

objects has not received sufficient attention. This is mainly due to the lack of available

annotated data as getting bounding box annotations for thousands of categories of ob-

jects is an expensive process. Scaling supervised detection to the level of classification

(tens to hundreds of thousands of classes) is infeasible due to prohibitively large anno-

tations costs. Recent works have tried to avoid such annotations, e.g. [45] proposed an

object detection method that can detect several thousand object classes by using avail-

able (image-level) class annotations as weak supervision for object detection. Zero-shot

learning has been shown to be effective in situations where there is a lack of annotated

data [12,14,31,38,53,54,59,60]. Most prior works on zero-shot learning have addressed

the classification problem [5–7,11,20,23,26,27,37,41,43,50,52], using semantic word-

embeddings [11, 23] or attributes [12, 27, 28, 59] as a bridge between seen and unseen

classes.
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In the present work, we introduce and study the challenging problem of zero-shot

detection for diverse and general object categories. This problem is difficult owing to

the multiple challenges involved with detection, as well as those with operating in a

zero-shot setting. Compared to fully supervised object detection, zero-shot detection

has many differences, notably the following. While in the fully supervised case a back-

ground class is added to better discriminate between objects (e.g. car, person) and back-

ground (e.g. sky, wall, road), the meaning of “background” is not clear for zero-shot

detection, as it could involve both background “stuff” as well as objects from unanno-

tated/unseen classes. This leads to non-trivial practical problems for zero-shot detection.

We propose two ways to address this problem: one using a fixed background class and

the other using a large open vocabulary for differentiating different background regions.

We start with a standard zero-shot classification architecture [13] and adapt it for zero-

shot object detection. This architecture is based on embedding both images and class

labels into a common vector space. In order to include information from background

regions, following supervised object detection, we first try to associate the background

image regions into a single background class embedding. However, this method can be

improved by using a latent assignment based alternating algorithm which associates the

background boxes to potentially different classes belonging to a large open vocabulary.

Since most object detection benchmark datasets usually have a few hundred classes, the

label space can be sparsely populated. We show that dense sampling of the class label

space by using additional data improves zero-shot detection. Along with these two en-

hancements, we provide qualitative and quantitative results to provide insights into the

success as well as failure cases of the zero-shot detection algorithms, that point us to

novel directions towards solving this challenging problem.

To summarize, the main contributions of this paper are: (i) we introduce the problem

of zero-shot object detection (ZSD) in real world settings and present a baseline method

for ZSD that follows existing work on zero-shot image classification using multimodal

semantic embeddings and fully supervised object detection; (ii) we discuss some chal-

lenges associated with incorporating information from background regions and propose

two methods for training background-aware detectors; (iii) we examine the problem

with sparse sampling of classes during training and propose a solution which densely

samples training classes using additional data; and (iv) we provide extensive experimen-

tal and ablation studies in traditional and generalized zero-shot settings to highlight the

benefits and shortcomings of the proposed methods and provide useful insights which

point to future research directions.

2 Related Work

Word embeddings. Word embeddings map words to a continuous vector representa-

tion by encoding semantic similarity between words. Such representations are trained

by exploiting co-occurrences in words in large text corpuses [21,34,35,39]. These word

vectors perform well on tasks such as measuring semantic and syntactic similarities be-

tween words. In this work we use the word embeddings as the common vector space

for both images and class labels and thus enable detection of objects from unseen cate-

gories.
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Zero-shot image classification. Previous methods for tackling zero-shot classifica-

tion used attributes, like shape, color, pose or geographical information as additional

sources of information [10, 26, 27]. More recent approaches have used multimodal em-

beddings to learn a compatibility function between an image vector and class label em-

beddings [1,2]. In [52], the authors augment the bilinear compatibility model by adding

latent variables. The deep visual-semantic embedding model [11] used labeled image

data and semantic information from unannotated text data to classify previously unseen

image categories. We follow a similar methodology of using labeled object bounding

boxes and semantic information in the form of unsupervised word embeddings to detect

novel object categories. For a more compehensive overview of zero-shot classification,

we refer the reader to the detailed survey by Fu et al. [13].

Object detection. Early object detection approaches involved getting object propos-

als for each image and classifying those object proposals using an image classification

CNN [16, 17, 46, 55]. More recent approaches use a single pass through a deep convo-

lution network without the need for object region proposals [32,44]. Recently, Redmon

et al. [45] introduced an object detector which can scale upto 9000 object categories

using both bounding box and image-level annotations. Unlike this setting, we work in a

more challenging setting and do not observe any labels for the test object classes during

training. We build our detection framework on an approach similar to the proposal-

based approaches mentioned above.

Multi-modal learning. Using multiple modalities as additional sources of informa-

tion has been shown to improve performance on several computer vision and machine

learning tasks. These methods can be used for cross-modal retrieval tasks [9], or for

transferring classifiers between modalities. Recently, [4] used images, text, and sound

for generating deep discriminative representations which are shared across the three

modalities. Similarly, [58] used images and text descriptions for better natural language

based visual entity localization. In [18], the authors used a shared vision and language

representation space to obtain image-region and word descriptors that can be shared

across multiple vision and language domains. Our work also uses multi-modal learning

for building a robust object detector for unseen classes. Another related work is by Li

et al. [28], which learns object-specific attributes to classify, segment, and predict novel

objects. The problem proposed here differs considerably from this in detecting a large

set of objects in unconstrained settings and does not rely on using attributes.

Comparison with recent works on ZSD: After completion of this work, we found two

parallel works by Zhu et al. [61] and Rahman et al. [42] that target a similar problem.

Zhu et al. focus on a different problem of generating object proposals for unseen objects.

Rahman et al. [42] propose a loss formulation that combines max-margin learning and a

semantic clustering loss. Their aim is to separate individual classes and reduce the noise

in semantic vectors. A key difference between our work and Rahman et al. is the choice

of evaluation datasets. Rahman et al. use the ILSVRC-2017 detection dataset [47] for

training and evaluation. This dataset is more constrained in comparison to the ones used

in our work (MSCOCO and VisualGenome) because it contains only about one object

per image on an average. We would also like to note that due to a relatively simpler

test setting, Rahman et al. does not consider the corrruption of the background class by

unseen classes as done in this work and by Zhu et al.
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3 Approach

We first outline our baseline zero-shot detection framework that adapts prior work on

zero-shot learning for the current task. Since this approach does not consider the diver-

sity of the background objects during training, we then present an approach for training

a background-aware detector with a fixed background class. We highlight some possible

limitations of this approach and propose a latent assignment based background-aware

model. Finally, we describe our method for densely sampling labels using additional

data, which improves generalization.

3.1 Baseline Zero-Shot Detection (ZSD)

We denote the set of all classes as C = S∪U∪O, where S denotes the set of seen (train)

classes, U the set of unseen (test) classes, and O the set of classes that are neither part

of seen or unseen classes. Note that our methods do not require a pre-defined test set.

We fix the unseen classes here just for quantitative evaluation. We work in a zero-shot

setting for object detection where, during training we are provided with labeled bound-

ing boxes that belong to the seen classes only, while during testing we detect objects

from unseen classes. We denote an image as I ∈ R
M×N×3, provided bounding boxes

as bi ∈ N
4, and their associated labels as yi ∈ S . We extract deep features from a given

bounding box obtained from an arbitrary region proposal method. We denote extracted

deep features for each box bi as φ(bi) ∈ R
D1 . We use semantic embeddings to capture

the relationships between seen and unseen classes and thus transfer a model trained on

the seen classes to the unseen classes as described later. We denote the semantic embed-

dings for different class labels as wj ∈ R
D2 , which can be obtained from pre-trained

word embedding models such as Glove [39] or fastText [21]. Our approach is based on

visual-semantic embeddings where both image and text features are embedded in the

same metric space [11, 50]. We project features from the bounding box to the semantic

embedding space itself via a linear projection,

ψi =Wpφ(bi) (1)

where, Wp ∈ R
D2×D1 is a projection matrix and ψi is the projected feature. We use

the common embedding space to compute a similarity measure between a projected

bounding box feature ψi and a class embedding wj for class label yj as the cosine

similarity Sij between the two vectors. We train the projection by using a max-margin

loss which enforces the constraint that the matching score of a bounding box with its

true class should be higher than that with other classes. We define loss for a training

sample bi with class label yi as,

L(bi, yi, θ) =
∑

j∈S,j 6=i

max(0,m− Sii + Sij) (2)

where θ refers to the parameters of the deep CNN and the projection matrix, and m is

the margin. We also add an additional reconstruction loss to L, as suggested by Kodirov

et al. [23], to regularize the semantic embeddings. In particular, we use the projected

box features to reconstruct the original deep features and calculate the reconstruction
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loss as the squared L2-distance between the reconstructed feature and the original deep

feature. During test we predict the label (ŷi) for a bounding box (bi) by finding its

nearest class based on the similarity scores with different class embeddings, i.e.

ŷi = argmax
j∈U

Sij (3)

It is common for object detection approaches to include a background class to learn

a robust detector that can effectively discriminate between foreground objects and back-

ground objects. This helps in eliminating bounding box proposals which clearly do not

contain any object of interest. We refer to these models as background-aware detectors.

However, selecting a background for zero-shot detection is a non-trivial problem as we

do not know if a given background box includes background “stuff” in the classical

sense e.g. sky, ground etc. or an instance of an unseen object class. We thus train our

first (baseline) model only on bounding boxes that contain seen classes.

3.2 Background-Aware Zero-Shot Detection

While background boxes usually lead to improvements in detection performance for

current object detection methods, for ZSD to decide which background bounding boxes

to use is not straight-forward. We outline two approaches for extending the baseline

ZSD model by incorporating information from background boxes during training.

Statically Assigned Background (SB) Based Zero-Shot Detection. Our first background-

aware model follows as a natural extension of using a fixed background class in stan-

dard object detectors to our embedding framework. We accomplish this by adding a

fixed vector for the background class in our embedding space. Such ‘statically-assigned’

background modeling in ZSD, while providing a way to incorporate background infor-

mation, has some limitations. First, we are working with the structure imposed by the

semantic text embeddings that represent each class by a vector relative to other semanti-

cally related classes. In such a case it is difficult to learn a projection that can map all the

diverse background appearances, which surely belong to semantically varied classes,

to a single embedding vector representing one monolithic background class. Second,

even if we are able to learn such a projection function, the model might not work well

during testing. It can map any unseen class to the single vector corresponding to the

background, as it has learned to map everything, which is not from seen classes, to the

singleton background class.

Latent Assignment Based (LAB) Zero-Shot Detection. We solve the problems above

by spreading the background boxes over the embedding space by using an Expecta-

tion Maximization (EM)-like algorithm. We do so by assigning multiple (latent) classes

to the background objects and thus covering a wider range of visual concepts. This is

reminiscent of semi-supervised learning algorithms [48]; we have annotated objects for

seen classes and unlabeled boxes for the rest of the image regions. At a higher level

we encode the knowledge that a background box does not belong to the set of seen

classes (S), and could potentially belong to a number of different classes from a large

vocabulary set, referred to as background set and denoted as O.

We first train a baseline ZSD model on boxes that belong to the seen classes. We

then follow an iterative EM-like training procedure (Algorithm 1), where, in the first of
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Algorithm 1 LAB algorithm

Given: annoData (annotated data), bgData (background/unannotated data), C (set of all

classes), S (seen classes), U (unseen classes), O (background set), initModel (pre-trained

network)

currModel← train(initModel, annoData)

for i = 1 to niters do

currBgData← φ

for b in bgData do

// distribute background boxes over open vocabulary minus seen classes

bnew ←predict(b, currModel, O)

// O = C \ (S ∪ U)
currBgData← currBgData ∪{bnew}

currAnnoData← annoData ∪ currBgData
currModel←train(currModel,currAnnoData)

return currModel

two alternating steps, we assign labels to some randomly sampled background boxes in

the training set as classes in O using our trained model with equation 3. In the second

step, we re-train our detection model with the boxes, labeled as above, included. In the

next iteration, we repeat the first step for another part of background boxes and retrain

our model with the new training data. This proposed approach is also related to open-

vocabulary learning where we are not restricted by a fixed set of classes [20,57], and to

latent-variable based classification models e.g. [49].

3.3 Densely Sampled Embedding Space (DSES)

The ZSD method, described above, relies on learning a common embedding space that

aligns object features with label embeddings. A practical problem in learning such a

model with small datasets is that there are only a small number of seen classes, which

results in a sparse sampling of the embedding space during training. This is problematic

particularly for recognizing unseen classes which, by definition, lie in parts of the em-

bedding space that do not have training examples. As a result the method may not con-

verge towards the right alignment between visual and text modalities. To alleviate this

issue, we propose to augment the training procedure with additional data from external

sources that contain boxes belonging to classes other than unseen classes, yi ∈ C − U .

In other words, we aim to have a dense sampling of the space of object classes during

training to improve the alignment of the embedding spaces. We show empirically that,

because the extra data being used is from diverse external sources and is distinct from

seen and unseen classes, it improves the baseline method.

4 Experiments

We first describe the challenging public datasets we use to validate the proposed ap-

proaches, and give the procedure for creating the novel training and test splits4. We

4 Visit http://ankan.umiacs.io/zsd.html

http://ankan.umiacs.io/zsd.html
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then discuss the implementation details and the evaluation protocol. Thereafter, we give

the empirical performance for different models followed by some ablation studies and

qualitative results to provide insights into the methods.

MSCOCO [30] We use training images from the 2014 training set and randomly sam-

ple images for testing from the validation set.

VisualGenome (VG) [25] We remove non-visual classes from the dataset; use images

from part-1 of the dataset for training, and randomly sample images from part-2 for

testing.

OpenImages (OI) [24] We use this dataset for densely sampling the label space as

described in section 3.3. It contains about 1.5 million images containing 3.7 million

bounding boxes that span 545 object categories.

Procedure for Creating Train and Test Splits: For dividing the classes into seen

(train) and unseen (test) classes, we use a procedure similar to [3]. We begin with word-

vector embeddings for all classes and cluster them into K clusters using cosine simi-

larity between the word-vectors as the metric. We randomly select 80% classes from

each cluster and assign these to the set of seen classes. We assign the remaining 20%
classes from each cluster to the test set. We set the number of clusters to 10 and 20 for

MSCOCO and VisualGenome respectively. Out of all the available classes, we consider

only those which have a synset associated with them in the WordNet hierarchy [36]

and also have a word vector available. This gives us 48 training classes and 17 test

classes for MSCOCO and 478 training classes and 130 test classes for VisualGenome.

For MSCOCO, to avoid taking unseen categories as background boxes, we remove all

images from the training set which contain any object from unseen categories. How-

ever, we can not do this for VG because the large number of test categories and dense

labeling results in most images being eliminated from the training set. After creating

the splits we have 73, 774 training and 6, 608 test images for MSCOCO, and 54, 913
training and 7, 788 test images for VG.

4.1 Implementation Details

Preparing Datasets for Training: We first obtain bounding box proposals for each im-

age in the training set. We construct the training datasets by assigning each proposal

a class label from seen classes or the “background” class based on its IoU (Intersec-

tion over Union) with a ground truth bounding box. Since, majority of the proposals

belong to background, we only include a part of the background boxes. Any proposal

with 0 < IoU < 0.2 with a ground truth bounding box is included as a background box

in the training set. Apart from these, we also include a few randomly selected back-

ground boxes with IoU = 0 with any ground truth bounding boxes. Any proposal with

an IoU > 0.5 with a ground-truth box is assigned to the class of the ground-truth box.

Finally, we get 1.4 million training boxes for MSCOCO and 5.8 million training boxes

for VG. We use these boxes for training the two background aware models. As previ-

ously mentioned, we only use boxes belonging to seen classes for training the baseline

ZSD model. In this case, we have 0.67 million training boxes for MSCOCO and about

2.6 million training boxes for VG. We train our model on these training sets and test

them on the test sets as described above.
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Baseline ZSD Model: We build our ZSD model on the RCNN framework that first ex-

tracts region proposals, warps them, and then classifies them. We use the Edge-Boxes

method [62] with its default parameters for generating region proposals and then warp

them to an image of size 224 × 224. We use the (pre-trained) Inception-ResNet v2

model [51] as our base CNN for computing deep features. We project image features

from a proposal box to the 300 dimensional semantic text space by adding a fully-

connected layer on the last layer of the CNN. We use the Adam optimizer [22] with

a starting learning rate of 10−3 for the projection matrix and 10−5 for the lower lay-

ers. The complete network, including the projection layer, is first pre-trained on the

MSCOCO dataset with the test classes removed for different models and datasets. For

each algorithm, we perform end-to-end training while keeping the word embeddings

fixed. The margin for ranking loss was set to 1 and the reconstruction loss was added to

max-margin loss after multiplying it by a factor of 10−3. We provide algorithm specific

details below.

Static Background based ZSD: In this case, we include the background boxes ob-

tained as described above in the training set. The single background class is assigned

a fixed label vector [1, . . . , 0] (this fixed background vector was chosen so as to have

norm one similar to the other class embeddings).

LAB: We first create a vocabulary (C) which contains all the words for which we have

word-vectors and synsets in the WordNet hierarchy [36]. We then remove any label

from seen and unseen classes from this set. The size of the vocabulary was about 82K
for VG and about 180K for MSCOCO. In the first iteration, we use our baseline ZSD

model to obtain labels from the vocabulary set for some of the background boxes. We

add these boxes with the newly assigned labels to the training set for the next iteration

(see algorithm 1). We fine-tune the model from the previous iteration using this new

training set for about one epoch. During our experiments we iterate over this process

five times. Our starting learning rates were the same as above and we decreased them

by a factor of 10 after every 2 iterations.

Dense Sampling of the Semantic Space: To increase the label density, we use addi-

tional data from OI to augment the training sets for both VG and MSCOCO. We remove

all our test classes from OI and add the boxes from remaining classes to the training sets.

This led to an addition of 238 classes to VG and 330 classes to MSCOCO during train-

ing. This increases the number of training bounding boxes for VG to 3.3 million and to

1 million for MSCOCO.

4.2 Evaluation Protocol

During evaluation we use Edge-Boxes for extracting proposals for each image and se-

lect only those proposals that have a proposal score (given by Edge-Boxes) greater than

0.07. This threshold was set based on trade-offs between performance and evaluation

time. We pass these proposals through the base CNN and obtain a score for each test

class as outlined in section 3.1. We apply greedy non-maximal suppression [17] on all

the scored boxes for each test class independently and reject boxes that have an IoU

greater than 0.4 with a higher scoring box. We use recall as the main evaluation met-

ric for detection instead of the commonly used mean average precision (mAP). This is
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MSCOCO Visual Genome

ZSD Method BG- #classes IoU #classes IoU

aware |S| |U| |O| 0.4 0.5 0.6 |S| |U| |O| 0.4 0.5 0.6

Baseline 48 17 0 34.36 22.14 (0.32) 11.31 478 130 0 8.19 5.19 2.63

SB X 48 17 1 34.46 24.39 (0.70) 12.55 478 130 1 6.06 4.09 2.43

DSES 378 17 0 40.23 27.19 (0.54) 13.63 716 130 0 7.78 4.75 2.34

LAB X 48 17 343 31.86 20.52 (0.27) 9.98 478 130 1673 8.43 5.40 2.74

Table 1: |S|, |U|, and |O| refer to the number of seen, unseen and the average number

of active background classes considered during training respectively. BG-aware means

background-aware representations. This table shows Recall@100 performance for the

proposed zero-shot detection approaches (see section 3) on the two datasets at differ-

ent IoU overlap thresholds with the ground-truth boxes. The numbers in parentheses

are mean average precision (mAP) values for MSCOCO. The number of test (unseen)

classes for MSCOCO and VisualGenome are 17 and 130 respectively.

because, for large-scale crowd-sourced datasets such as VG, it is often difficult to ex-

haustively label bounding box annotations for all instances of an object. Recall has also

been used in prior work on detecting visual relationships [33] where it is infeasible to

annotate all possible instances. The traditional mAP metric is sensitive to missing an-

notations and will count such detections as false positives. We define Recall@K as the

recall when only the top K detections (based on prediction score) are selected from an

image. A predicted bounding box is marked as true positive only if it has an IoU overlap

greater than a certain threshold t with a ground truth bounding box and no other higher

confidence predicted bounding box has been assigned to the same ground truth box.

Otherwise it is marked as a false positive. For MSCOCO we also report the mAP since

all object instances in MSCOCO are annotated.

4.3 Quantitative Results

We present extensive results (Recall@100) for different algorithms on MSCOCO and

VG datasets in table 1 for three different IoU overlap thresholds. We also show the

number of seen, unseen, and background classes for each case. During our discussion

we report Recall@100 at a threshold of IoU ≥ 0.5 unless specified otherwise.

On the VG dataset the baseline model achieves 5.19% recall and the static back-

ground (SB) model achieves a recall of 4.09%. This marked decline in performance is

because all the background boxes are being mapped to a single vector. In VG some of

these background boxes might actually belong to the seen (train) or unseen (test) cate-

gories. This leads to the SB model learning sub-optimal visual embeddings. However,

for MSCOCO we observe that the SB model increases the recall to 24.39% from the

22.14% achieved by the baseline model. This is because we remove all images that

contain any object from unseen classes from the training set for MSCOCO. This pre-

cludes the possibility of having any background boxes belonging to the test classes in

the training set. As a result, the SB model is not corrupted by non-background objects

and is thus more robust than the baseline.
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When we densely sample the embedding space and augment the training classes

with additional data, the recall for MSCOCO increases significantly from 22.14% (for

baseline) to 27.19%. This shows that dense sampling is beneficial for predicting unseen

classes that lie in sparsely sampled parts of the embedding space. With dense sampling,

the number of train classes in MSCOCO are expanded by a factor of 7.8 to 378. In

contrast, VG a priori has a large set of seen classes (478 versus 48 in MSCOCO),

and the classes expand only by a factor of 1.5 (716) when using DSES. As a result

dense sampling is not able to improve the embedding space obtained by the initial

set of categories. In such scenarios it might be beneficial to use more sophisticated

methods for sampling additional classes that are not represented well in the training

set [15, 29, 40].

The latent assignment based (LAB) method outperforms the baseline, SB, and DSES

on VG. It achieves a recall of 5.40% compared to 5.19%, 4.09% and 4.75% achieved

by baseline, SB, and DSES respectively. The consistent improvement across all IoUs

compared to SB, that uses a static background, confirms the benefits of spreading back-

ground objects over the embedding space. However, LAB gives a lower performance

compared to the baseline for MSCOCO (20.52% by LAB versus 22.14% by baseline).

This is not surprising since the iterations for LAB initialize with a larger set of seen

classes for VG as compared to MSCOCO, resulting in an embedding that covers a

wider spectrum of visual space. As a result, LAB is able to effectively spread the back-

ground boxes over a larger set of classes for VG leading to better detections. On the

other hand, for MSCOCO a sparsely sampled embedding space restricts the coverage

of visual concepts leading to the background boxes being mapped to a few visual cat-

egories. We also see this empirically in the average number of background classes (set

O) assigned to the background boxes during iterations for LAB, which were 1673 for

VG versus 343 for MSCOCO. In the remainder of the paper we focus on LAB method

for VG and SB for MSCOCO due to their appropriateness for the respective datasets.

We observe that the relative class-wise performance trends are similar to object de-

tection methods, such as Faster RCNN5 trained on fully supervised data. For example,

classes such as “bus” and “elephant” are amongst the best performing while “scissors”

and “umbrella” rank amongst the worst in performance. In addition to these general

trends, we also discover some interesting findings due to the zero-shot nature of the

problem. For example, the class “cat”, which generally performs well with standard

object detectors, did not perform well with SB. This results from having an insufficient

number of semantically related categories for this class in the training set which does

not allow the model to effectively capture the appearance of class “cat” during testing.

For such cases we find dense sampling to be useful during training. The class “cat” is

one of the top performing categories with DSES. Based on such cases we infer that for

ZSD the performance is both a function of appearance characteristics of the class as

well as its relationship to the seen classes. For VG, the best performing classes, such

as “laptop”, “car”, “building”, “chair”, seem to have well defined appearance charac-

teristics compared to bad performing classes, such as “gravel”, “vent”, “garden”, which

seem to be more of “stuff” than “things”. We also observe that the model is unable to

capture any true positive for the class “zebra” and is instead detecting instances of “ze-

5
http://cocodataset.org/#detections-leaderboard

http://cocodataset.org/#detections-leaderboard


12 Bansal et al.

MSCOCO

Baseline SB

K↓ IoU→ 0.3 0.4 0.5 0.3 0.4 0.5

All 47.91 37.86 24.47 (0.22) 43.79 35.58 25.12 (0.64)

100 43.62 34.36 22.14 (0.32) 42.22 34.46 24.39 (0.70)

80 41.69 32.64 21.01 (0.38) 41.47 33.98 24.01 (0.72)

50 36.19 27.37 17.05 (0.50) 39.82 32.6 23.16 (0.81)

VisualGenome

Baseline LAB

0.3 0.4 0.5 0.3 0.4 0.5

13.88 9.98 6.45 12.75 9.61 6.22

11.34 8.19 5.19 11.20 8.43 5.40

10.41 7.55 4.75 10.45 7.86 5.06

7.98 5.79 3.68 8.54 6.44 4.14

Table 2: Ablation studies on background-aware approaches for ZSD. We highlight re-

sults where the performance is higher for background-aware approaches compared to

the corresponding baseline. For MSCOCO, the values in parentheses are mAP values.

bra” as either “cattle” or “horse”. This is because the model associates a “zebra” with a

“giraffe”, which is close in the semantic space. The model is able to adapt the detector

for the class “giraffe” to the class “zebra” but fails to infer additional knowledge needed

for a successful detector that a zebra differs from a giraffe in having white stripes, lower

height, and has a body structure similar to a horse. Finally, we also observe that com-

pared to the baseline, LAB achieves similar or better performance on 104 of 130 classes

on VG. While for MSCOCO, SB and DSES achieve better or similar performance on

12 and 13 classes respectively out of 17 classes, highlighting the advantages of the

proposed models.

4.4 Generalized Zero-Shot Detection (GZSD)

The generalized zero-shot learning setting is more realistic than the previously dis-

cussed zero-shot setting [53] because both seen and unseen classes are present during

evaluation. This is more challenging than ZSD because it removes the prior knowledge

that the objects at test time belong to unseen classes only. We use a simple novelty

detection step which does not need extra supervision. Given a test bounding box, bi,

we first find the most probable train and test classes (see (3)) (ŷsi and ŷui respectively)

and the corresponding similarity scores (si and ui). As the novelty detection step, we

check if ui is greater than some threshold nt. We assign the given bounding box to

class ŷui if ui ≥ nt, otherwise to ŷsi . For MSCOCO, DSES gives the best performance

in the GZSD setting too. At nt = 0.2, DSES achieves a Recall@100 of 15.02% for

seen classes and 15.32% for unseen classes (harmonic mean (HM) 15.17% [53]) at

IoU ≥ 0.5 compared to 14.54% and 10.57% (HM 12.24%) for the LAB model and

16.93% and 8.91% (HM 11.67%) for baseline.

4.5 Ablation Studies

We compare results when considering different number, K, of high-confidence detec-

tions. We define K = All as the scenario where we consider all boxes returned by the

detector with a confidence score greater than the threshold for evaluation. We compare

LAB and the SB models for VG and MSCOCO respectively, with the corresponding

baseline models in table 2.
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The difference in performance between the cases K = All and K = 100 is small,

in general, for the background-aware algorithms unlike the baseline. For example, on

MSCOCO the recall for SB falls by an average (across IoUs) of 1.14% points, compared

to a fall of 3.37% for the baseline. This trend continues further down to K = 80 and

K = 50 with a gradual decline in performance as K decreases. This shows that the

high confidence detections produced by our model are of high quality.

We observe that the background-aware models give better quality detections com-

pared to baselines. The Recall@K for the corresponding background-aware models are

better than the baseline at lower K and higher IoU threshold values for both datasets.

This region represents higher quality detections. This shows that incorporating knowl-

edge from background regions is an important factor for improving detection quality

and performance for ZSD.

4.6 Qualitative Results

Figure 2 shows output detections by the background aware models, i.e. LAB on Visu-

alGenome (first two rows) and SB on MSCOCO (last row). Blue boxes show correct

detections and red boxes show false positives. These examples confirm that the pro-

posed models are able to detect unseen classes without observing any samples during

training. Further, the models are able to successfully detect multiple objects in real-

world images with background clutter. For example, in the image taken in an office (1st

row 3rd column), the model is able to detect object classes such as “writing”, “chair”,

“cars”. It is also interesting to note that our approach understands and detects “stuff”

classes such as “vegetation”, and “floor”. As discussed in section 4.3, we have shown

a failure case “zebra”, that results from having limited information regarding the fine-

grained differences between seen and unseen classes.

5 Discussion and Conclusion

We used visual-semantic embeddings for ZSD and addressed the problems associated

with the framework which are specific for ZSD. We proposed two background-aware

approaches; the first one uses a fixed background class while the second iteratively

assigns background boxes to classes in a latent variable framework. We also proposed

to improve the sampling density of the semantic label space using auxiliary data. We

proposed novel splits of two challenging public datasets, MSCOCO and VisualGenome,

and gave extensive quantitative and qualitative results to validate the methods proposed.

Some of the limitations of the presented work, and areas for future work, are as

follows. It is important to incorporate some lexical ontology information (“is a” and

“is part of” relationships) during training and testing for learning models on large vo-

cabularies. Most current object detection frameworks ignore the hierarchical nature of

object classes. For example, a “cat” object should incur a lower loss when predicted as

“animal” vs. when predicted as “vehicle”. Although a few works have tried to address

this issue [18,44], we believe further work in this direction would be beneficial for zero-

shot detection. We also feel that additional work is needed to generalize bounding-box

regression and hard-negative mining for new objects.
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Fig. 2: This figure shows some detections made by the background-aware methods. We

have used Latent Assignment Based model for VisualGenome (rows 1 − 2) and the

Static Background model (row 3) for MSCOCO. Reasonable detections are shown in

blue and two failure cases in red.
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