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Abstract. In recent deep online and near-online multi-object tracking
approaches, a difficulty has been to incorporate long-term appearance
models to efficiently score object tracks under severe occlusion and mul-
tiple missing detections. In this paper, we propose a novel recurrent
network model, the Bilinear LSTM, in order to improve the learning of
long-term appearance models via a recurrent network. Based on intu-
itions drawn from recursive least squares, Bilinear LSTM stores building
blocks of a linear predictor in its memory, which is then coupled with
the input in a multiplicative manner, instead of the additive coupling
in conventional LSTM approaches. Such coupling resembles an online
learned classifier/regressor at each time step, which we have found to
improve performances in using LSTM for appearance modeling. We also
propose novel data augmentation approaches to efficiently train recur-
rent models that score object tracks on both appearance and motion. We
train an LSTM that can score object tracks based on both appearance
and motion and utilize it in a multiple hypothesis tracking framework.
In experiments, we show that with our novel LSTM model, we achieved
state-of-the-art performance on near-online multiple object tracking on
the MOT 2016 and MOT 2017 benchmarks.

1 Introduction

With the improvement in deep learning based detectors [16, 35] and the stimu-
lation of the MOT challenges [32], tracking-by-detection approaches for multi-
object tracking have improved significantly in the past few years. Multi-object
tracking approaches can be classified into three types depending on the number
of lookahead frames: online methods that generate tracking results immediately
after processing an input frame [33, 1, 22], near-online methods that look ahead
a fixed number of frames before consolidating the decisions [24, 7], and batch
methods that consider the entire sequence before generating the decisions [39,
38]. For tracking multiple people, a recent state-of-the-art batch approach [38]
relies upon person re-identification techniques which leverage a deep CNN net-
work that can recognize a person that has left the scene and re-entered. Such
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an approach is able to thread together long tracks in which a person is not vis-
ible for dozens of frames, whereas the margin for missing frames in online and
near-online approaches is usually much shorter.

A key challenge in online and near-online tracking is the development of
deep appearance models that can automatically adapt to the diverse appear-
ance changes of targets over multiple video frames. A few approaches based on
Recurrent Neural Networks (RNNs) [33, 1] have been proposed in the context of
multi-object tracking. [33] focuses on building a non-linear motion model and a
data association solver using RNNs. [1] successfully adopted Long Short-Term
Memory (LSTM) [21] to integrate appearance, motion, and interaction cues,
but Figure 7. (b) in [1] reports results for sequences (tracks) of maximum length
10. In practice, object tracks are much longer than 10 frames, and it is unclear
whether the method is equally effective for longer tracks.

Our own experience, coupled with the reported literature, suggests that it
is difficult to use LSTMs to model object appearance over long sequences. It is
therefore worthwhile to investigate the fundamental issues in utilizing LSTM for
tracking, such as what is being stored in their internal memory and what factors
result in them being either able or unable to learn good appearance models.
Leveraging intuition from classical recursive least squares regression, we propose
a new type of LSTM that is suitable for learning sequential appearance mod-
els. Whereas in a conventional LSTM, the memory and the input have a linear
relationship, in our Bilinear LSTM, the LSTM memory serves as the building
blocks of a predictor (classifier/regressor), which leads to the output being based
on a multiplicative relationship between the memory and the input appearance.
Based on this novel LSTM formulation, we are able to build a recurrent network
for scoring object tracks that combines long-term appearance and motion infor-
mation. This new track scorer is then utilized in conjunction with an established
near-online multi-object tracking approach, multiple hypothesis tracking, which
reasons over multiple track proposals (hypotheses). Our approach combines the
benefits of deep feature learning with the practical utility of a near-online tracker.

Our second contribution is a training methodology for generating sequential
training examples from multi-object tracking datasets that accounts for the cases
where detections could be noisy or missing for many frames. We have developed
systematic data augmentation methods that allow our near-online approach to
take advantage of long training sequences and survive scenarios with detection
noise and dozens of frames of consecutive missing detections.

With these two improvements, we are able to generate state-of-the-art multi-
target tracking results for near-online approaches in the MOT challenge. In the
future, our proposed Bilinear LSTM could be used in other scenarios where a
long-term online predictor is needed.

2 Related Work

There is a vast literature on multi-target tracking. Top-performing tracking al-
gorithms that do not train a deep network include [7, 29, 24]. These methods
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usually utilize long-term appearance models as well as structural cues and mo-
tion cues. A review of earlier tracking papers can be found in [27].

The prior work that is closest to ours uses RNNs as a track proposal classifier
in the Markov Decision Process (MDP) framework [1]. Three different RNNs that
handle appearance, motion, and social information are trained separately for
track proposal classification and then combined for joint reasoning over multiple
cues to achieve the best performance. Our method is different from this approach
both in terms of the network architecture and training sequence generation from
ground truth tracks. Also, we present the first incorporation of deep learned
track model into an MHT framework.

Other recent approaches [37, 28] adopt siamese networks that learn the match-
ing function for a pair of images. The network is trained for the binary classi-
fication problem where the binary output represents whether or not the image
pair comes from the same object. The matching function can be utilized in a
tracking framework to replace any previous matching function. Approaches in
this category are limited to only modeling the information between a pair of the
detections, whereas our approach can model the interaction between a track and
a detection, thereby exploiting long-term appearance and motion information.

Milan et al. [33] presented a deep learning framework that solves the multi-
object tracking problem in an end-to-end trainable network. Unlike our ap-
proach, they attempted to solve state estimation and data association jointly
in one framework. While this was highly innovative, an advantage of MHT is
the ability to use highly optimized combinatoric solvers.

RNN has been applied in single-object tracking [42, 18], however multi-target
tracking is a more challenging problem due to the amount of occlusion and
problem of ID switches, which is much more likely to happen in a multi-object
setting.

3 Overview of MHT

In tracking-by-detection, multi-object tracking is solved through data associa-
tion, which generates a set of tracks by assigning a track label to each detec-
tion. MHT solves the data association problem by explicitly generating mul-
tiple track proposals and then selecting the most promising ones. Let Tl(t) =
{dl1, d

l
2, ... , d

l
t−1, d

l
t} denote the lth track proposal at frame t and let dlt be a

detection selected by the lth track proposal at frame t. The selected detection dlt
can be either an actual detection generated by an object detector or a dummy
detection that represents a missing detection.

The track proposals for each object are stored in a track tree in which each
tree node corresponds to one detection. For example, the root node represents
the first detection of the object and the child nodes represent the detections in
subsequent frames (i.e. tree nodes at the same depth represent detections in the
same frame). Thus, multiple paths from the root to the leaf nodes correspond
to multiple track proposals for a single object. The proposals are scored, and
the task of finding the best set of proposals can be formulated as a Maximum
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Weighted Independent Set (MWIS) problem [34], with the score for each proposal
being the weight of it. Once the best set of proposals is found, proposal pruning
is performed. Only the surviving proposals are kept and updated in the next
frame. More details about MHT can be found in [24, 34].

3.1 Gating in MHT

In MHT, track proposals are updated by extending existing track proposals with
new detections. In order to keep the number of proposals manageable, exisiting
track proposals are not updated with all of the new detections, but rather with
a few selected detections. The selection process is called gating. Previous gating
approaches rely on hand-designed track score functions [24, 34, 5, 9]. Typically,
the proposal score S(Tl(t)) is defined recursively as:

S(Tl(t)) = S(Tl(t− 1)) +∆S(Tl(t)) (1)

Gating is done by thresholding the score increment ∆S(Tl(t)). New track
proposals with score increments below a certain threshold are pruned instantly.
Usually the proposal score includes an appearance term, which could be learned
by recursive least squares, as well as a motion term which could be learned with
Kalman filtering.

3.2 Recursive Least Squares as an Appearance Model

An important advantage of our previous MHT-DAM approach [24] is the use of
long-term appearance models that leverage all prior appearance samples from a
given track and train a discriminative model to predict whether each bounding
box belongs to each given track. Because we would like to be able to perform
a similar task in our LSTM framework, we briefly review the recursive least
squares appearance model used in [24]. Given all the nt detections at frame t,
one can extract appearance features (e.g. CNN fully-connected layer) for them
and store them in an nt × d matrix Xt, where d is the feature dimensionality.
Then, suppose that we are tracking k object tracks, an output vector can be
created for each track as, e.g. the spatial overlap between the bounding box of
each detection and each track (represented by one detection in the frame), with
the set of output vectors denoted as an nt × k matrix Yt. Then a regressor for
each target can be found by least squares regression:

min
W

T
∑

t=1

‖XtW −Yt‖
2
F + λ‖W‖2F (2)

where ‖ · ‖2F is a squared Frobenius norm and λ is the regularization parameter.
As is well-known, the solution can be written as:

W =

(

T
∑

t=1

X⊤

t Xt + λI

)−1(
T
∑

t=1

X⊤

t Yt

)

(3)
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where I is the identity matrix. Notably, one can store Qt =
∑t

i=1

(

X⊤

i Xi

)

and

Ct =
∑t

i=1

(

X⊤

i Yi

)

and update them online at frame t+1, by adding X⊤

t+1Xt+1

and X⊤

t+1Yt+1 to Qt and Ct respectively, while maintaining the optimality of
the solution for W. Moreover, the computation of W is only linear in the num-
ber of tracks k. The resulting model can train on all the positive examples (past
detections in each track) and negative examples (past detections in other tracks
not overlapping with a given track) and generate a regressor with good discrim-
inative power. The computational efficiency of this approach and its optimality
are the two keys to the success of the MHT-DAM framework.

4 RNN as a Gating Network

We use the term gating network to denote a neural network that performs gating.
We utilize recurrent neural networks (RNNs) for training gating networks since
track proposals constitute sequential data whose data size is not fixed. In this
work, we adopt Long Short-Term Memory (LSTM) as a recurrent layer due to
its success in modeling long sequences on various tasks [17].

We formulate the problem of gating as a sequence labeling problem. The
gating network takes track proposals as inputs and performs gating by gener-
ating a binary output for every detection in the track proposal. In this section,
we describe network inputs and outputs and its utilization within the MHT
framework. More details about the network architecture can be found in Sec.
4.2.

Input. Track proposals contain both motion and appearance information.
We use the bounding box coordinates (x, y, w, h) over time as motion inputs to
the network. The coordinates are normalized with respect to the frame reso-
lution ( x

image width
, y
image height

, w
image width

, h
image height

) to make the range of the
input values fixed regardless of the frame resolution. We also calculate sample
mean and standard deviation from track proposals (see Sec. 5 for more details
on how to generate track proposals from multi-object tracking datasets) and
perform another normalization in order to make the input data zero-centered
and normalized across different dimensions.

We use object images cropped to detection bounding boxes as appearance
inputs to the network. RGB cropped images are first converted to convolutional
features by Convolutional Neural Networks (CNN) before the gating networks
process them. We use the ImageNet pretrained ResNet-50 [19] as our CNN.

Output. Given a current detection, the network makes a binary decision
about whether or not it belongs to the proposal based on its compatibility with
the appearance and motion of the other detections assigned to the proposal.
Thus, the gating networks solve a binary classification task using cross-entropy
loss. Note that we have multiple binary labels for each track sequence since
gating is done on every frame.

Track Scorer in MHT. We use the softmax probability p of the positive
output (i.e. current detection belongs to the same object in the proposal) for
calculating the score increment ∆S(Tl(t)) as shown in Eq.(4). A higher score
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increment implies a higher matching quality between the track proposal Tl(t−1)
and the detection dlt.

∆S(Tl(t)) = p(dlt ∈ Tl(t− 1)|Tl(t− 1)) (4)

This is a simple aggregation scheme that combines the per-frame predictions
from the gating network in order to score tracks. Our assumption is that propos-
als that generate higher per-frame matching scores are more likely to be correct
than proposals with lower per-frame matching scores. New track proposals with
score increment below a threshold are pruned instantly by gating. In MHT, ev-
ery track proposal in the track trees has a unique detection sequence, which is
represented as a unique LSTM memory state in the gating network. The memory
state for surviving proposals is stored for further gating and scoring in the next
frame. The weights of the gating network are shared across all track proposals.

4.1 Bilinear LSTM

(b) (c)

LSTM

Track up to � − �

LSTM

Track up to � − �
ResNet 50

Detection at �

Reshape

Matrix-vector multiplication

(a)

ResNet 50 ResNet 50

Detection at �
ResNet 50

Concatenation

LSTM

Track up to �
ResNet 50

Fig. 1: Motion gating network and appearance gating network are trained separately
before training the full model. We evaluate multiple network architectures for each
module. (a) The Bilinear LSTM network with a multiplicative relationship between
the memory and the input CNN features. The LSTM memory is reshaped into a ma-
trix and multiplied with the input appearance feature vector; (b) Input appearance
is concatenated with the LSTM memory output before a fully-connected layer; (c) A
conventional LSTM architecture.

Our experience suggests that conventional LSTMs are far more effective at
modeling motion than appearance. This led us to ask, “what information about
object appearance is being stored in the internal memory of a standard LSTM,
and what would be an ideal memory representation for this task?”.

Conventional LSTMs utilizes the following update rule:

ct = ft ◦ ct−1 + it ◦ gt, ht = ot ◦ tanh(ct)

ft = σ(Wf [ht−1,xt]), it = σ(Wi[ht−1,xt]),

gt = σ(Wg[ht−1,xt]), ot = tanh(Wo[ht−1,xt]) (5)

where ◦ represents the Hadamard product. xt is the current input. ft, it, and ot

are the forget gate, the input gate, and the output gate. ct and ht are the cell
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state and the hidden state that are repeatedly updated throughout the sequence.
gt is the new update values for the cell state.

When building an appearance model for multi-object tracking (i.e. data asso-
ciation), xt represents the current appearance of an object candidate. For LSTM
to solve the tracking task, one intuition is that ht may represent some informa-
tion about the acceptance/rejection of an object candidate. ct can roughly be
thought of as representing a stored template of the object appearance, and then
the output gate ot compares the previous stored appearance ct−1 and the new
appearance xt in order to decide the current output ht. Experiments in [1] where
LSTM performance seems to saturate with a sequence length of 2 − 4 frames,
seems to suggest that the aforementioned intuition might be partially correct.

However, the main appeal of a long-term appearance model in previous work
is the capability of using a classifier/regressor that learns from all the previous
appearances of the object [24]. Such a model trained from multiple different
appearances could generalize better than one or a few stored templates and could
potentially interpolate and extrapolate among different previous appearances of
the model. An example would be the recursive least squares model in Eq. (2).
But if we imagine the W in Eq. (2) as the memory output ht, it seems that a
multiplicative form x⊤W as in Eq. (2) is difficult to obtain from the additive
forms in Eq. (5), no matter from ot, ct or ht.

Thus, we would like to propose a new LSTM that can realize the multi-
plicative between the memory ht and the input x. We note that the solution
of recursive least squares is dependent on the matrix Qt =

∑t

i=1 X
⊤

i Xi that is
updated at each time linearly. It is difficult for LSTM to store a positive-definite
matrix as memory, but a common approach to simplify such a positive-definite
matrix is to use a low-rank approximation, e.g. assuming Q−1

t =
∑r

i=1 qtiq
⊤

ti .
With this assumption and considering Eq. (3), the regressor output becomes:

w⊤x = C⊤

t Q
−1
t x =

r
∑

i=1

C⊤

t qtiq
⊤

tix (6)

Note that when there is only 1 track, Ct is of the dimensionality d× 1, and
hence µi = C⊤

t qi is a scalar. We have:

w⊤x =

r
∑

i=1

µiq
⊤

tix (7)

Here µi is dependent on both y and q, hence without loss of generality it could
be a standalone variable that is separately estimated. With this derivation, it
seems that the approach to emulate a linear regressor is to have several vectors
hti to be learnable and gradually changing with time (in other words, serve as
the memory in the LSTM), and a layer of learnable µi on top of a multiplicative
relationship between hti and x.

In this spirit, we propose the Bilinear LSTM (bLSTM) which utilizes the
following forward pass that enables the multiplicative interaction between the
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input and the memory:

ht−1 = [h⊤

t−1,1|h
⊤

t−1,2|...|h
⊤

t−1,r]
⊤ = ot−1 ◦ tanh(ct−1)

Hreshaped
t−1 = [ht−1,1|ht−1,2|...|ht−1,r]

⊤, mt = f(Hreshaped
t−1 xt) (8)

where f(·) is a non-linear activation function and mt is the new hidden state
for bLSTM. xt denotes the features from a box at frame t. Basically, we utilize
a long vector as the LSTM memory which contains the concatenation of all the
ht−1,is. When it comes to the time to multiply ht−1,i with xt, the rd dimensional

vector ht−1 is reshaped into the r × d matrix Hreshaped
t−1 so that we could utilize

matrix-vector multiplication between ht−1 and xt.
The new hidden state mt can then be used as input to other fully-connected

layers (resembling the µi in eq. (7)) to generate the final prediction. Note that
in online recursive least squares µi should be trained for each tracked object
separately, however in our network the fully-connected layers after bLSTM are
trained globally and fixed during testing time. Implementing a dynamic µi which
is dependent on each object track did not result in significant improvement in
performance. We believe that since the system is trained end-to-end, the LSTM
updates of h should be able to encompass the potential changes in µi, hence we
can keep the fully-connected layers fixed without additional issues.

Intuitively, by saving a matrix-valued memory that resembles a low-rank
decomposition of the matrix, at least r templates (as well as combinations of the
r templates) can be used for the prediction. Hence bLSTM can store longer-term
appearance models than traditional LSTMs and improve on maintaining track
identity over many frames.

4.2 Network Architecture

We have three types of gating networks based on the network input: Motion,
Appearance, and Motion + Appearance. We test three different architectures
in Fig. 1 for the motion gating and appearance gating networks. We select the
best architecture for each type of input among the three and combine them
for motion+appearance gating networks. Experimental results that we used for
selecting the architecture are included in Sec. 6.3.

Motion Gating. For motion gating, the vanila version of LSTM eq. (5)
works the best. Thus, we adopt LSTM as a sequence labeler where LSTM reads
motion input recursively and store the sequence information in its hidden state.
The FC layers are built on top of the hidden state to produce the final output.
Architectures that we used for the comparison are shown in Table 1.

Appearance Gating. We propose to use Bilinear LSTM as appearance
gating network where LSTM’s hidden state becomes a weight vector for the
appearance model of the current object. Details about the network architecture
and other two baseline architectures are shown in Table 2.

Motion + Appearance Gating. In order to enable a joint reasoning over
both motion and appearance for object tracking, we construct a motion+gating
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Soft-max

Matrix-vector Multiplication-tanh 4

Reshape 4× 64 Reshape 64× 1

LSTM 256

FC-relu 64 FC-relu 64

Input at t− 1 4 Input at t 4

(a)

Soft-max

FC-tanh 64

Concatenation 64 + 64

LSTM 64

FC-relu 64 FC-relu 64

Input at t− 1 4 Input at t 4

(b)

Soft-max

FC-tanh 8

LSTM 64

FC-relu 64

Input at t 4

(c)

Table 1: Different experimented architectures for motion gating. (a) Bilinear LSTM
(b) LSTM as a feature extractor for the previous track (c) Vanila LSTM (LSTM as a
sequence labeler)

Soft-max

Matrix-vector Multiplication-relu 8

Reshape 8× 256 Reshape 256× 1

LSTM 2048

FC-relu 256 FC-relu 256

ResNet-50 2048 ResNet50 2048

Input at t− 1 128× 64× 3 Input at t 128× 64× 3

(a)

Soft-max

FC-relu 512

Concatenation 2048 + 256

LSTM 2048

FC-relu 256 FC-relu 256

ResNet-50 2048 ResNet50 2048

Input at t− 1 128× 64× 3 Input at t 128× 64× 3

(b)

Soft-max

FC-relu 512

LSTM 2048

FC-relu 256

ResNet-50 2048

Input at t 128× 64× 3

(c)

Table 2: Different experimented architectures for appearance gating: (a) Bilinear LSTM
(b) LSTM as a feature extractor for the previous track (c) Vanila LSTM

network based on our analysis of different baseline architectures. We use Bilin-
ear LSTM to process appearance data and vanila LSTM to process motion data.
Then motion and appearance representations (i.e. outputs before soft-max) from
both gating networks are concatenated after L2 normalization is applied to each
representation separately. Prediction layers are built upon the concatenated fea-
tures. We first train motion gating and appearance gating networks separately.
Then we load all the pretrained layers before the concatenation layer from both
gating networks and fine-tune them jointly.

4.3 Handling Missing Detections

In tracking-by-detection, it is important to handle missing detections while keep-
ing the correct track identity over time. In traditional Kalman filter-based motion
tracking, the diagonal of the noise covariance matrix keeps increasing over time
in the case of missing detections, resulting in accepting more detections from
gating with a gradually larger gating area.

In the case of recurrent gating networks, the occurrences of missing detections
should also modulate the gating network. For instance, one can imagine a gating
network applying a stricter gating policy when all the detections are available for
the current object than the case where detections are missing in recent frames.
In order to encode such information inside the LSTM hidden states, we propose
to input to the recurrent network all-zero input vectors in the case of missing
detections. By doing so, the LSTM internal (both cell and hidden) states will be
updated solely based on its previous states, which is different from normal LSTM
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updates where both the input data and the previous state are utilized. The gating
network does not need to make any prediction for the missing detection but only
need to update the LSTM internal memory. In Sec. 6.3, we show the effectivenss
of such explicit missing detection handling for the motion gating networks.

5 Generating Training Sequences

Training Sequence Examples

T1 T2 T5T3 T4

T1 T2 T5

T1 T2 T5T3 T4

Ground Truth Track

T2 T5T3 T4 T1 T2 T3

T1 T5T4

T2 T3 T4 T5

T5T1

Fig. 2: Training sequences are generated from the public MOT dataset. Each training
sequence has detections from the same object throughout the track and one detection
from different object at the end. Training sequences are generated in the manner that
they reflect actual track proposals that MHT generates during tracking.

Artificial track proposals are generated from ground truth track annotations
as training data for training our LSTM network. First, we randomly pick one
ground truth track annotation from which we sample track proposals. The start-
ing frame and the ending frame are randomly selected. Due to the memory limit
of GPUs, we select them in a way that the length of the track proposal does not
exceed Nmax. Let N be the selected length (2 ≤ N ≤ Nmax) of the proposal.
Then we collect first N − 1 bounding boxes of the selected object and pick the
last N th detection from a different object. Positive labels are assigned for the
first N − 1 detections representing the correct object and a negative label is as-
signed for the N th detection representing a different object. Thus, each proposal
is associated with a binary label vector where only the last element is a negative
label as presented in Fig. 2. The maximum length Nmax needs to be large enough
so that the network learns the gating mechanism regardless of its input length.
We show experimental results with different Nmax values in Sec. 6.3.

Data Augmentation. If ground truth tracks are used without any augmen-
tation to generate track proposals, each track proposal will consist of bounding
boxes perfectly aligned with the object in consecutive frames, which may poorly
represent actual track proposals consisting of noisy detections. Thus, it is im-
portant to perform proper data augmentation so that the track proposals reflect
actual detection noise. There are two types of detection errors which need to be
considered: localization error and missing detections.

In order to reflect the localization noise, we jitter the bounding boxes in the
training track proposals using a noise model estimated from the training data.
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For estimating this noise model, given a set of detections and ground truth anno-
tations, we first assign each detection to its closest ground truth bounding box,
and then calculate localization error from each detection to its assigned ground
truth bounding box. We then fit a normal distribution to these localization er-
rors for all true positive detections. Since the MOT Challenge Benchmark [32]
provides three public detectors (DPM [13], FRCNN [41], SDP [35]) which have
different accuracy and noise levels, we estimate a different normal distribution
for each public detector. Thus, before the training data generator samples ran-
dom localization errors for the proposal, it first chooses a normal distribution
based on the detector. Then for each bounding box in each track proposal, a
different localization error is sampled from the estimated normal distribution.

In order to simulate missing detections, for 50% of the tracks, we randomly
pick a missing detection rate pmiss(0.0 ∼ 0.5) and drop the bounding boxes in
the track proposal according to the selected missing rate except for the first
bounding box (current object) and the last bounding box (differerent object).
Example track proposals with this missing detection augmentation are shown in
Fig. 1. The other 50% of the tracks are retained without missing detections.

6 Experiments

We report all our experimental results on the validation set except for the final
benchmark result which was evaluated on MOT 16/17 test sequences.

6.1 Training Data

In order to generate track proposals, we use MOT17 (MOT16) and MOT15
sequences [32, 26] and a few other tracking sequences [15, 10, 2] where pedestrian
annoatations are available. All the training, validation, and testing sequences
are shown in Table 3. In addition to the MOT sequences, we also use two public
person re-identification datasets, Market1501 [43] and CUHK03 [30], in order to
pre-train the appearance gating networks.

Training Set Validation Set Test Set

MOT17 - {02, 04, 05, 11, 13}, MOT17 - {09, 10} MOT17 - {01, 03, 06, 07, 08, 12, 14}
MOT15 - {01, 02, 03, 04, 05, 06, 07},

ETH - {Jelmoli, Seq01}, KITTI - {16, 19},
PETS09-S2L2, TUD-Crossing, AVG-TownCentre

Table 3: Training/Val/Test Splits

6.2 Pre-training on Person Re-identification

In the person re-identification task, a pair of images is given to the learner and
the learner decides whether two images come from the same person or not. One
can treat the pair of two images as a track proposal with a temporal length 2.
Such training examples can be also generated from multi-object tracking dataset.
Thus, we utilize a person re-identification dataset in addition to the training set
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LSTM MOTA IDF1 IDS

Bilinear 52.33 59.07 233
Baseline1 50.43 51.28 412
Baseline2 50.97 51.49 462

State dim. MOTA IDF1 IDS

512 52.14 56.66 283
1024 52.36 55.85 222
2048 52.33 59.07 233

Nmax MOTA IDF1 IDS

10 51.96 54.36 271
20 52.27 58.38 228
40 52.33 59.07 233
80 52.32 57.21 239
160 52.41 55.19 222

Table 4: Ablation Study for Appearance Gating Networks. Baseline1 and Baseline2
are the networks shown in Table 2 (b) and (c) resepectively. (Left) State dim. =
2048, Nmax = 40 (Middle) LSTM: Bilinear, Nmax = 40, (Right) LSTM: Bilinear,
State dim. = 2048

shown in Table 3 to pre-train our appearance gating network for person re-
identification. Similar pre-training was also done in [1, 38]. Table 5 shows the
effect of pre-training for person re-identification on the performance of gating
networks.

6.3 Ablation Study

We conduct an ablation study for different network architectures and training
settings on our validation sequences (MOT17-09 and MOT17-10). The MOT17
Benchmark provides three different public detectors. We used the Faster R-CNN
detector for the experimental results in this section.

Metrics. Among many different tracking metrics, we choose the Multiple
Object Tracking Accuracy (MOTA) [4], identity switches (IDS), and IDF1 [36]
for this study. MOTA is calculated by object detection mistakes (false posi-
tive and false negative) and tracking mistakes (identity switches). MOTA is
often dominated by object detection mistakes since the number of false posi-
tive/negative is typically much higher than IDS. IDS counts the number of track
ID changes for all the objects. IDF1 is a tracking metric which measures how
often objects are correctly identified by the same track ID.

Network Architectures.We test the three deep architectures shown in Fig.
1 for MHT gating. The results in Table 4 are generated by MHT with different
appearance gating networks. Motion gating results for different architectures
can be found in the supplementary material. The left table in Table 4 shows the
tracking performance of different deep architectures as gating networks. Bilinear
LSTM works best as the appearance gating network. In terms of the network
sizes (LSTM state dimensions), 2048 state dimension is a good choice for Bilinear
LSTM as an appearance gating network.

Training Settings. We also try differerent training settings such as different
maximum sequence lengths, missing detection augmentations, and network pre-
training. The results are included in Tab 4, 5, and 6. We used the (M)+(A)
model (in Table 6 (Middle)) which balances well between IDF1 and IDS as our
final model for the comparison with MHT and the MOT benchmark in Sec. 6.4.

We used the Adam optimizer [25] for training motion gating networks and set
the initial learning rate to 0.01 with the batch size of 64. We used the stochas-
tic gradient optimizer for training appearance and motion+appearance gating



Multi-object Tracking with Neural Gating 13

Input type MOTA IDF1 IDS

(A) Random 52.00 57.46 268
(A) Pre-training 52.33 59.07 233

Pre-training MOTA IDF1 IDS

(M)+(A) Random 50.31 50.39 499
(M)+(A) Pre-training 52.63 58.08 197

Table 5: Pre-training vs Random initialization (Left) LSTM: Bilinear, State dim. =
2048, Nmax = 40 (Right) LSTM: Baseline2 (Motion) + Bilinear (Appearance),
State dim. = 64 (Motion), 2048 (Appearance), Nmax = 40

Missing Det. MOTA IDF1 IDS

(M) Yes 52.47 50.22 229
(M) No 52.58 47.71 203

(A) Yes 52.29 41.37 244
(A) No 52.33 59.07 233

Input type MOTA IDF1 IDS

Motion (M) 52.47 50.22 229
Appearance (A) 52.33 59.07 233

(M) + (A) 52.63 58.08 197

Input type MOTA IDF1 IDS

Motion (M) 52.30 51.14 255
Appearance (A) 52.32 57.21 239

(M) + (A) 52.69 54.63 208

Table 6: (Left) Missing Detection Augmentation On/Off. Nmax = 40. We update
LSTM states with zero input vectors (as described in Sec. 4.3) for the models which
are trained with the missing detection augmentation. The results in this table show
that such LSTM state update is beneficial for the motion gating network, but not for
the appearance gating network. Thus, we utilize the missing detection handling only
for the motion gating network and the motion part in the motion+appearance gating
network. (Middle and Right) Different input types with different maximum lengths
of training sequences (Middle) Nmax = 40 (Right) Nmax = 80.

networks and set the initial learning rate to 0.005 with the batch size of 16. In
all cases, we let the learning rate decrease every 5000 iterations by exponential
decay with the decay rate 0.9 until we observe a decrease in performance on the
validation set.

6.4 MOT Challenge Benchmark

In this section, we report the performance comparison with MHT-DAM and our
tracking results on the MOT Challenge 17/16 Benchmark.

Comparison with MHT-DAM. In order to see whether our trained mod-
els work well with MHT, we first compare the tracking performance with MHT-
DAM [24] on the validation split. Unlike bLSTM, [24] does not benefit from any

Method MOTA IDF1 IDS

MHT-DAM 47.6 48.2 72
Ours 43.8 52.9 91

Method MOTA IDF1 IDS

MHT-DAM 53.7 54.8 136
Ours 54.8 60.5 140

Method MOTA IDF1 IDS

MHT-DAM 69.4 62.7 128
Ours 69.7 68.6 137

Table 7: Comparison with MHT-DAM on our val split (MOT17-02 and MOT17-11).
Nmax = 80. Tracks are interpolated through smoothing. (Left) DPM (Middle) Faster
R-CNN (Right) SDP.
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off-line training using multi-object tracking datasets. It rather builds appearance
models for multiple objects in an online manner. Table 7 shows the comparison
in results. Our new MHT with bLSTM works well when Faster RCNN and SDP
provide input detections. However, for the case of DPM, MOTA score is lower
compared to MHT-DAM, although our new method still shows stronger per-
formance on IDF1. We believe that this is because DPM produces quite noisy
detections while we use ground truth tracks to generate training sequences for
our model. Thus, there could be still some gap between our training data (even
after the data augmentation) and track proposals constructed from DPM.

MOT16/17 Challenge Benchmarks. We used the same model and set-
ting as shown in Table 7 as our final method for evaluating on the MOT test
sequences. The results are included in Table 8. we grouped previous methods
that are closely related to our method separately in order to see the perfor-
mance difference among these methods.

Table 8: Results from MOT 2017/2016 Challenge (accessed on 7/26/2018)

Method MOTA IDF1 IDS Hz

JCC [23] 51.2 54.5 1,802 1.8
MOTDT17* [31] 50.9 52.7 2,474 18.3
PHD-GSDL17 [14] 48.0 49.6 3,998 6.7

FWT* [20] 51.3 47.6 2,648 0.2

MHT Methods

EDMT17* [6] 50.0 51.3 2,264 0.6
MHT-DAM [24] 50.7 47.2 2,314 0.9
MHT-bLSTM* 47.5 51.9 2,069 1.9

* indicates the use of additional training data

Method MOTA IDF1 IDS Hz

NOMT [7] 46.4 53.3 359 2.6
MCjoint [23] 47.1 52.3 370 0.6
LMP* [38] 48.8 51.3 481 0.5
STAM16 [8] 46.0 50.0 473 0.2

RAR16pub [12] 45.9 48.8 648 0.9
NLLMPa [29] 47.6 47.3 629 8.3
JMC [40] 46.3 46.3 657 0.8
LINF1 [11] 41.0 45.7 430 4.2

CDA-DDALv2* [3] 43.9 45.1 676 0.5

MHT and LSTM-based Methods

EDMT* [6] 45.3 47.9 639 1.8
AMIR* [1] 47.2 46.3 774 1.0

MHT-DAM [24] 45.8 46.1 590 0.8
MHT-bLSTM* 42.1 47.8 735 1.8

7 Conclusion

In this paper, we proposed using an LSTM network to score track proposals in
a near-online multiple hypothesis tracking framework. In order to properly take
into account multiple past appearances, we proposed a Bilinear LSTM algorithm
that slices the LSTM memory into several vectors and uses a matrix vector mul-
tiplication between the memory output and the appearance input to simulate
a discriminatively trained predictor model. Such an algorithm is shown to be
significantly better than traditional LSTM in modeling the appearance of each
track, especially in terms of maintaining track identities. Jointly using appear-
ance and motion LSTM gating networks in an MHT framework, we have achieved
state-of-the-art performances in the MOT challenges for near-online methods.
We believe the proposed Bilinear LSTM is general and could be applicable in
many other problems that require learning an online sequential discriminative
model using an end-to-end approach and will explore those as future work.
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