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Abstract. 3D Convolutional Neural Networks are sensitive to transforma-
tions applied to their input. This is a problem because a voxelized version of a
3D object, and its rotated clone, will look unrelated to each other after passing
through to the last layer of a network. Instead, an idealized model would
preserve a meaningful representation of the voxelized object, while explaining
the pose-difference between the two inputs. An equivariant representation
vector has two components: the invariant identity part, and a discernable
encoding of the transformation. Models that can’t explain pose-differences
risk “diluting” the representation, in pursuit of optimizing a classification or
regression loss function.

We introduce a Group Convolutional Neural Network with linear equivari-
ance to translations and right angle rotations in three dimensions. We call
this network CubeNet, reflecting its cube-like symmetry. By construction,
this network helps preserve a 3D shape’s global and local signature, as it is
transformed through successive layers. We apply this network to a variety of
3D inference problems, achieving state-of-the-art on the ModelNet10 classifi-
cation challenge, and comparable performance on the ISBI 2012 Connectome
Segmentation Benchmark. To the best of our knowledge, this is the first 3D
rotation equivariant CNN for voxel representations.
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1 Introduction

Convolutional neural networks (CNNs) are the go-to model for most prediction-based
computer vision problems. However, most popularized CNNs are treated as black-
boxes, lacking interpretability and simple properties concerning the data domains
they act on. For instance, in 3D object recognition, we know that object categories are
invariant to object pose, but convolutional neural network filters are orientation, scale,
reflection, and parity (point reflection) selective. This means that every activation
in any intermediate layer is sensitive to local pose, and ultimately the global output
of the network is too. A simple solution to obtain this sought-after invariance is to
augment the input data with transformed copies, spanning all possible variations,
to which we seek to be invariant [2]. This method is simple and effective, but relies
on an efficient and realistic data augmentation pipeline. There is also the argument,
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why should we bother learning these invariances, if we can enforce them a priori?
If successful, we would not need as much training data [8, 50]. Indeed, convolutional
neural networks already have i) filter locality and ii) translational weight-tying built
directly into their architectures, which arguably could be learned using a multilayer
perceptron with a enough computational budget and training data.

We introduce a CNN architecture, which is linearly equivariant (a generalization of
invariance defined in the next section) to 3D rotations about patch centers. To the
best of our knowledge, this paper provides the first example of a group-CNN [8] with
linear equivariance to 3D rotations and 3D translations of voxelized data. By exploit-
ing the symmetries of the classification task, we are able to reduce the number of
trainable parameters using judicious weight tying. We also need less training and test
time data augmentation, since some aspects of 3D geometry are already ‘hard-baked’
into the network. We demonstrate state-of-the-art and comparable performance on
i) the ModelNet10 classification challenge, which is a standard 3D classification
benchmark task, and ii) the ISBI 2012 connectome segmentation benchmark, which
is a 3D anisotropic boundary segmentation problem. We have released our code at
https://deworrall92.github. com.

2 Background

For completeness, we set out our terminology and definitions. We outline definitions of
linear equivariance, invariance, groups, and convolution, and then combine these ideas
into the group convolution, which is the workhorse of the paper. These definitions
are not our contribution and can be found in textbooks such as [7], but we have tried
to standardize them and simplify notation.

Definition 1 (Equivariance) Consider a set of transformations G, where individ-
ual transformations are indexed as g€ G. Consider also a function or feature map
@ : X — )Y mapping inputs € X to outputs ye ). Transformations can be applied
to any xe X using the operator ’7;X X =X, so that x+— 7;)( [z]. The same can be
done for the outputs with y— 7;3’ [y]. We say that D is equivariant to G if

(T, [2) =T [@(x)],  VgeG. 1)

Since 7;X and 7_;3; are related via (1), they are essentially different representations
of the same transformation. Due to this connection, it is customary to drop the 7.
notation and write

P(gx) = gP(x). (2)

Equivariance is important, because it highlights an explicit relationship between input
transformations and feature-space transformations, which in the context of deep
learning is not well-understood. An example of an equivariant task is pose-detection,
where g represents the sought-after pose. The kind of equivariant feature maps, we are
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interested in, are those where 7% and 72 are linear. Such feature maps are known
as linearly equivariant. A special case of equivariance is invariance, where we have

& (x) =D(gx), 3)

that is, the feature-space transformation is just the identity. An example of an in-
variant task is object classification. Note when we use the term equivariant in the
rest of the paper, we will generally refer to non-invariance.

Groups Invertible transformations are members of a class of mathematical objects
called groups. Groups are a mathematical abstraction, which are used to describe the
compositional structure of mathematical operators, such as transformations. Groups
have four main properties: for group elements f,g,heG

1. closure: chained transformations are transformations, e.g. fgeG
2. associativity: f(gh) = (fg)h = fgh

3. identity: there exists a transformation e € G (sometimes written 0) such that
eg=ge=gNgeG

1 1 1

4. invertibility: every transformation g has an inverse ¢g~*, so gg~ =g~ 'g=e.

Rotations and translations are both examples of groups.

Convolution The fundamental operation in convolutional neural networks is the
convolution—technically CNNs perform cross-correlation, but we stick with the term
‘convolution’ to remain in sync with the literature. . In 3D, convolution is the inner
product of a filter W € R*w*d with patches extracted from an activation tensor or
feature map F€RT*WXD swhere hyw,d,H,W,D are the height, width, and depth of
the filter /activations respectively. The method of patch extraction is usually a transla-
tionally sliding window. So given a filter W, the translated version is gW, such that

[F*W]g = Z [gW]xFx= Z Wy-1xFx; (4)

x€Z3 x€EZ3

where to index elements of the filters/activations we have used the multi-index notation
Wy:=W,, . for x=[z,y,2] " €Z3, and so in this example W15 =Wao g v g,2—0.
for voxel-wise translation in 3D by g=|g. 7gy,gz]—r. This sliding-window interpretation
of convolution can be viewed as applying the same filter to different local regions
of the inputs. Note that in reality, since the feature map is zero outside of a a
certain neighborhood, we need not sum over all Z3. Note also how the output of the
convolution is indexed by the transformation parameter g; that is, the ¢ activation
corresponds to the response of a g-shifted filter gW. We have used the notation
[FxW], to emphasize that [Fx+W] is an indexable object like W or F, and it can
be viewed as a vector (see Figure 1). CNNs usually have multiple channels k per
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activation tensor, so in general we really have

[FxW] ZZ [gW]FF? | (5)

i=1xeZ3

where the dummy index i is over input channels with output channel k.
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Fig. 1. (Best viewed in color) On the left we show the standard 2D convolution of Equation
4 between a sliding filter W and an input patch F. On the right we show the 2D right-angle
rotation convolution (called Zs-convolution) acting on an input where G =72

One can show (c.f. [8,11] and Equations 8 & 9) that the standard translational convo-
lution is equivariant to translations; that is, translations of the input to the convolution
result in translations in the feature space representation [FxW]. The extension of
this translational equivariance to other groups of transformation is embodied in the
group convolution [8], which we show next. This has been proven [29] to be the only
operator which is equivariant to (compact) group-structured transformations.

Definition 2 (Group Convolution) A group convolution between a filter W and
a single-channel feature map F over a group of transformations G is

[F*MQ:Z[QMhFh:ZWg*hFh- (6)

heG heG

The extension to multichannel activations parallels Equation (5).

We see that the main difference between the standard convolution of Equation 4
and the group convolution of Equation 6 is that we have replaced the domain of
summation from Z? to the group G. So the sliding inner product could generalize
to a sliding-and-rotating inner-product, or sliding-and-flipping inner product, or even
sliding-and-scaling inner product depending on the choice of group G. A simple
example is shown in Figure 1, where we show a 2D translational convolution and
a first layer 2D right-angle rotational convolution (called Z4-convolution). In this
example, the domain of the Z,-convolution is G =72, the standard 2D image domain,
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but the output is over the group of four 2D rotations, Z4. This amounts to taking
an inner product of the kernel W rotated four times, with each individual response
being stacked into a vector. If we were to then convolve a kernel over the response
of this first Z4-convolution, the domain of that convolution would be G=Z,. Stacks
of group convolutions turn out to be equivariant as well.

Note that the dimensionality of the convolutional responses is linear in the number
of elements of the group G. At each layer, it is common to choose the size of the
group to be the same, or smaller if we include pooling. To maintain a transformation
invariant output, we using average over the the group at the final layer of the network,
which is an extension of global average pooling to groups.

In this paper, we are interested in the group of 3D roto-translations. The group
convolution for this group will involve us convolving an activation tensor with rotated
and shifted copies of a filter [W]x =W -1, :WRglezgv where Ry is a 3D rotation
matrix and z, is a translational offset.

g

3 Related Work

Recently there has been an explosion of interest into CNNs with predefined trans-
formation equivariances, beyond translation [8, 50, 11,29, 16, 42, 36, 14, 19, 31, 18,22,
15, 55,49, 26, 25,48, 33, 28, 9]. However, with the exception of Cohen and Welling [9)
(projections on sphere), Kondor [28] (point clouds), and Thomas et al. [48] (point
clouds), these have mainly focused on the 2D scenario. There are also examples of
CNNs, which have explicit regularization to learn equivariance [43,30, 51,40]. To the
best of our knowledge, we are the first to develop a 3D rotation equivariant CNN
architecture for voxelized data.

Handcrafted equivariance There are many computer vision models that exhibit equiv-
ariance properties. Perhaps the first notable instance is the scale-space [13], which
specifically displays equivariance to isotropic scale, later extended to affine equiv-
ariance by Lindeberg [34]. In the presence of continuous transformations, Freeman
and Adelson famously [17] (and less famously Lenz [32]), shored up the theory of
steerable filters, which are a set of bandlimited linear filters wy € RT*W  which can
be synthesized ezactly at any rotation 6 as a finite linear combination of basis filters

N
(] (X) = Zan (9)(;5”()() (7)

These are attractive because their expressiveness is controlled by the number of
coefficients IV, rather than the spatial size of the filter. These have been applied
to scale-spaces/pyramids in Simoncelli et al. [44], and have been placed on firm
theoretical ground by Teo [47] in his PhD thesis. It has also been shown that for
certain transformations, such as scalings (or more generally non-compact groups),
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exact steering is only possible if N =o0. In this case, Perona [37] showed that he
could approximate Equation 7 using an SVD formulation. Like our method, all these
works display handcrafted linear equivariance to a predefined set of transformations.

2D Rotation Invariant Neural Networks For CNNs, as mentioned, most works have
focussed on 2D rotations. Fasel & Gatica-Perez [16], Laptev et al. [31], and Gonzalez
et al. [19] average classifier predictions on multiple rotated copies of an input. Sifre &
Mallat [42] and Oyallon & Mallat [36] use a scattering network [5] for roto-translation
invariant classification. Every layer of these networks is locally (patch-wise) rotation
invariant, performing a pre-determined wavelet transform averaging responses over
rotation. Cotter and Kingsbury [12] recently suggested, however, that these networks
lack discriminativeness, partially from the phase removal and partially from the fact
that the wavelet transforms are not optimized per-task, which our method can handle.

2D Rotation Equivariant Neural Networks Henriques & Vedaldi [22] and Esteves
et al. [15] perform a log-polar transform of the input, which converts scalings and
rotations about a single point into a translation. Applying a standard translation
equivariant CNN to this representation is then equivariant to rotations and scalings
about the image center. This is only equivariant to global rotations, and does not
generalize to 3D. For locally equivariant methods Dieleman et al. [14] maintain multiple
rotated feature maps at every layer of a network; whereas, Cohen & Welling [8] rotate
the filters. In the same paper, Cohen and Welling also extended this method to finite
groups and later generalized this to arbitrary compact groups in [11]. Worrall et al. [50]
generalized the filter rotation method to continuous rotations, using circular Fourier
transforms to compute continuous rotation responses with a finite number of filters. At
the same time Zhou et al. [55] extended the filter rotation method to non-90° rotations
using bilinear interpolation. Gonzalez et al. [18] do similar, but also pool over rotations
and use a representation similar to [50]. Weiler et al. [49] so far have the best solution to
rotate filters, using steerable filters to solve the interpolation problem. Our method can
be seen as an instance of Cohen & Welling [8] adapted to 3D rotation and translation.

Deeply Learned Equivariance There are many papers which also focus on learning
equivariance. Tangent Prop by Simard et al. [43] is a classic example of an invariance
inducing regularizer. Hinton et al. [23] introduced the transforming autoencoder to
build latent spaces with equivariant structure. More recently, Worrall et al. [51] ex-
tended this method by imposing explicit transformation rules on the latent space.
Papers such as InfoGAN by Chen et al. [6] and the Deep Convolutional Inverse Graph-
ics Network of Kulkarni et al. [30] seek to learn equivariant structure in unsupervised
fashion unsupervised. Most recently Sabour et al. [40] and Hinton et al. [24] achieved
highly impressive results on the MNIST dataset with capsule networks by learning
approximations to affine equivariance. While these methods are very flexible, they
require lots of training data

3D Methods For classification, the most straightforward CNNs operating on 3D voxel
data use 3D convolutions as of Equation 4 such as Maturana & Scherer [35] or 3D
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Convolutional Deep Belief Network as in Wu et al. [53]. Brock et al. [4] take this to
the extreme, designing an ensemble of six 45-layer deep inception- and resnet-style
networks trained with a lot of data-augmentation and rotation averaging. Sedaghat
et al. [41] rely less on brute force, augmenting the prediction task with orientation
estimation. For 3D rotation equivariant methods, Cohen & Welling introduce the
Spherical CNN [10], which operates on images projected onto the sphere, while
Kondor [28] and Thomas et al. [48] operate on point clouds. All three methods use
variants of a 3D extension of Worrall et al. [50], which introduced continuous rotation
equivariance into CNNs, by use of the shifting property of Fourier transforms.

4 Method

We have introduced the concept of groups as a way to model transformations, and as
a way to extend standard convolution to these transformations. Here, we chart out
three different discrete 3D rotation groups; namely, Klein’s four-group, the tetrahedral
group and the cube group. We then show how to apply these groups in a group
equivariant CNN using Cayley tables to build three different 3D rotation equivariant
CNNs. We do not consider equivariant to continuous 3D rotations in this paper,
leaving it for future work.

Cube Group The set of all right-angle rotations of a cubic filter Fy € RVXNXN

forms a group. There are 24 such rotations, going by the name of the cube group'
Sy. Each of the 24 rotations applied to a cube is shown in Figure 2. The group is
non-commutative, so F g g)-1x #F(4,4,)-1x for rotations g; and gz, for example.

Tetrahedral Group Using 24 copies of the same filter increases the computational
overhead 24 times. A cheaper subsampling is the rotations of the tetrahedron. This has
12 states, and goes by the name of the rotational tetrahedral group Ty. Ty is formally
a subgroup? of the cube group, comprised of all even rotations (i.e. all rotations which
can be made by two 90°-rotations). It is shown as the 12 cube rotations wrapped
in thin blue in Figure 2.

Klein’s Four-group The smallest subsampling of rotations, which can be seen as
rotations about 3 independent axes is Klein’s Vierergruppe V or four-group. It has four
rotations as can be seen in Figure 3. This group is a subgroup of the rotational tetrahe-
dral group and the cube group. Interestingly, it is commutative and also the smallest
non-cyclic group. It is shown as the 4 rotations wrapped in dashed red in Figure 2.

1 Other names are the subgroup O of the octohedral group; symmetric group Sy; and full
tetrahedral group 7.

2 A subgroup H is any subset of G, which satisfies the four group axioms, which we
introduced in the background section
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Fig. 2. (Best viewed in color) LEFT: The 24 rotations of the cube group Sy, applied to
the a cube Fx are shown. For instance, rotation g22 applied to the cube returns F92_21x,
shown by the #22 in the bottom row. The 12 cubes wrapped in thin blue boxes are the
rotational tetrahedral group T4. The 4 cubes wrapped in thick dashed red lines are the Klein
four-group V. RIGHT: The Cayley table of the cube group, representing how rotations are
composed. For instance, on the BOTTOM LEFT, we have the example of composing rotation
g7 with rotation gi. The composition is performed by i) first applying g to the cube to
yield Fg7_1x then ii) applying g1 to Fg—lx, returning Fgl—lg;lx. The first transformation is
easy to visualize - it is by #7 in the grid of cubes. The transformation g, is a rotation by
90° counter-clockwise about the vertical axis, thus for the composition we rotate Fg;1x 90°
counter-clockwise about the z-axis. This results in Fgg—lx. This result is stored in the Cayley
table by placing the first rotation down the left column and the second rotation along the
top row. The intersection of row 7 with column 1 is the rotation 8. On the BOTTOM RIGHT,
we show the composition grgi1 = g17 # gs = g197, demonstrating the non-commutativity
property of the cube group and 3D rotations in general.

4.1 Cayley tables

Knowing how a rotation of the input will permute the convolutional response can be
figured out from the group Cayley table. This is a multiplication table enumerating
every composition of transformations. For Klein’s four-group, we label the rotations
as go (the identity), g1, g2, & g3. The Cayley table with instructions of how to read
it are given in Table 1. The Cayley table is useful for determining how to perform the
group convolution in deeper layers. We can see why this is the case because looking to
the expression for the group convolution ) 7, - oW g-1,Fj, we see a product g thin
the indices of W. We can use the Cayley table to ascertain the single transformation
that is the result of the product. Looking closely at a Cayley table we see that
all the rows/columns are permutations of one another, this will be important for
understanding how input rotations affect the group-convolutional response.
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Table 1. The Cayley table for Klein’s four-group. The product g2g3 (a g2-rotation followed
by a gs-rotation) can be found by looking down the left column for the first transformation
go, then finding the second transformation gz in the top row. The cell at the intersection of
row-g2 and column-gs (shaded in yellow) is g1, so g2gs=gi.

®(Jo 91 92 g3
go|go g1 g2 g3
91|91 go g3 92
92|92 g3 go g1
93|93 92 g1 go

4.2 Discrete Group Equivariance and Permutations

Rotating an input to a group convolution will lead to a transformation of its output.
Specifically a rotation will lead to a permutation of the output, where we view the
output as a vector of responses, with each dimension corresponding to a different
group element/transformation g€ G. An example of this vectorized output can be
seen in Figure 1. For translations the permutation is a voxel-wise shift, but for the
aforementioned 3D rotations the permutations are much more complicated. If we
apply a transformation p to the input features F', then

[PFIx Wiy = [gWpFli=)  W-1,Fy-1s (8)
heG heG
= Z Wg—lph/Fh/ = [F*W}p—l‘g = [p[F*W”g. (9)
neG

Here we have made the substitution h’' =p~'h and noted that p~'G =G for p€ G,
where p~1G = {p~lg | g € G}. What lines 8 and 9 say is that the output of the
group convolution is permuted whenever the input F is transformed by an element
of the group G. The specific permutation of the output depends on the specific
transformation and transformation group. Thinking of FxW and [pF]xW as vectors
separated by a permutation, we can write

[pF]*W =p[F+W]|=P,[FxW]|, (10)

where the first equality is from Equations 8 and 9 and in the second equality we have
rewritten the permutation as multiplication with the permutation matriz Pp,. In fact
P, is the permutation matrix corresponding to the p™ column of the Cayley table.
Thus we see that group convolutions are linearly equivariant to transformations p€ G,
as defined in Equation 1. We see an example of this for Klein’s four-group in Figure
3, where we have labeled the four rotations as go (the identity), g1, g2, & gs.

4.3 Implementation: Roto-translational group-convolution

Now we show how to implement a group-convolution for a 3D roto-translation. In this
example, we focus on the four-group to model rotations. A roto-translation can be
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F g F g2F g3F
O P xw, (l9:F] « Wi, 1971 < W, QitgaF1+ Wi,
[P+ W], O it0:7)+ W, Qi1+ W, E (95F] + W,
= Qi1+ W, O lo:F)+ W, |23 195+ W,
QiF«wi,, = | (l92F] « W1, O llssF) i,

Fig. 3. Example of how the group convolution output permutes as a function of the input
rotation. This example is for Klein’s four-group V. Each cube represents a rotation from V'
and a corresponding example feature vector is given with each cube.

synthesized from a rotation, followed by a translation. Roto-translations form a group,
which can be seen as the product? of V' and Z3. For our purposes, it is safe to assume
that we can write the elements of this producted group as tr for t€Z3 and r€V. So,

[Fx W]y, ZZter o= ZZ[ t[rw) ] (11)

TEL3PEV TEZL3pEV

The interpretation behind this equation is as follows. First we start with a filter W.
‘W has a different value for each voxel in its receptive field, indexed by the translation
variable 7, and also for every input rotation p—it may be easier just to think of
four 3D filters, W,,, W, ,W,, ;W ,,_, one for each rotation in V. To convolve, we
first rotate the kernel as "W, , then we perform a translational shift ¢[rW,, |—this
second part ends up as the standard convolution of Equation 4, which is efficient on
GPUs. The initial rotation of the filter 7W,, can be found from composing r and
pe using our Cayley tables. It is the rotation needed to rotate r into p,. When the
input is a raw image, the input domain is just Z3, so the rotation of W is just r.

To compute gradient for backpropagation we leverage the power of automatic dif-
ferention, which is available in most modern neural network libraries.

5 Experiments and results

Here we describe two simple experiments we performed to demonstrate the effec-
tiveness of group-convolutions on 3D voxelized data. We tested on the ModelNet10
classification challenge, which is a small 3D voxel dataset, and on the ISBI 2012
connectome segmentation challenge. In both examples, we found Klein’s four-group
to be the most effective group for the rotation-equivariant group-convolutions.

5.1 ModelNet10

The ModelNet 10 dataset [53] contains 4905 CAD models from 10 categories with
a train:test split of 3991:914. Each model is aligned to a canonical frame and then

3 Formally, this is a semi-direct product.
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rotated at 12 evenly-sampled orientations about the z-axis. These rotated models
are then voxelized to a 32x32x32 grid. We use the voxelized version of Maturana
and Scherer [35]. While the dataset consists of vertically aligned models, rotated only
about the z-axis, we posit that local features occur at all 3D rotations, and so a
Cubenet is well positioned to operate on such as dataset. We use the four-group of
rotations and the rotational tetrahedral group 7T}, since we found the cube-group too
large and slow to be trained practically multiple times during a model search.

We use a simple VGG-like [45] network architecture shown in Figure 4. It consists of 10
group-convolutional layers followed by a 2-layer fully-connected network. Before every
convolution, we combine multiplicative dropout with 0.1 standard deviation on the fil-
ter tensors, and after every convolution we add batch normalization. We use ReLLU non-
linearities and global average pooling before two fully-connected layers at the end of the
network. The loss function is the multi-class cross-entropy. We initialize all weights us-
ing the He method [20] and train the network with ADAM stochastic gradient descent
[27], with a learning rate of 1e-3, which steps down by 1/5 every 5 epochs for 25 epochs.

The data augmentation is performed similar to the implementation found in Brock
[4] with 12 stratified rotations about the z-axis, reflections in the x- and y-axis with
uniform probability and uniformly random translations of up to £4 voxels along
all three axes. We use this data augmentation to maintain a direct comparison
with prior works. It should also be noted that rotational data augmentation cannot
be avoided entirely, since our networks are only equivariant to subgroups of the
full roto-translation group SF(3), so we still need to augment for all angles in the
quotient SE(3)/G, where G is the subgroup of interest. We also rescale the voxel
values to {—1,5} instead of {0,1} as in [4], who showed it helps with sparse voxel
volumnes. We show our results in Table 2. We compare the rotational tetrahedral
group and the four-group models. For the four-group model, we compare the average
single-view accuracy across 5 models for robustness, with rotation averaged accuracy
and single-view accuracy for the best model. The single view accuracy is computed
as the accuracy averaged over each of the 12 rotated test views; whereas, the rotation
averaged accuracy is computed as the accuracy of the average of all 12 predictions.

For the single-model category, our four-group, rotation-averaged network attains
state-of-the-art performance. Interestingly, our single-view result we obtain is very
similar to ORION [41], which introduces an orientation estimation task along with the
classification. We posit that the Ty-model does not perform as well as the V-model,
because increasing the number of filter copies reduces the diversity of filters, when
the number of total filters (number of learnable filters times number of copies) is
constrained. Essentially there is a tradeoff between filter diversity and the extent of
equivariance due to weight-tying. The Klein-group appears to achieve best in this
situation. It is also interesting to see that rotation averaging improves performance
slightly, compared to our single-view model. We suggest this is because we are av-
eraging over rotations not covers by the four-group. Looking across the model sizes,
we see that the group-convolutional models sit somewhere in the middle in terms of
number of parameters. Speed-wise, we found that during development the four-group
network only trained about 2x slower than non-group CNNs.
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Table 2. Results for the ModelNet 10 benchmark. We compare against other methods
which operate on a voxel-representation of the data. The only model to beat us is Brock et
al. ’s ensemble of 6 models. If we just restrict to a single model, then we hold state-of-the-art

accuracy.
Method ModelNet10 # params (x10°, 2 s.f.)
3D ShapeNets [53] 0.8354 12
Xu & Todovoric [54] 0.8800 0.080
3D-GAN [52] 0.9100 11
VRN [4] 0.9133 18
VoxNet [35] 0.9200 0.92
Fusion-Net [21] 0.9311 120
ORION [41] 0.9380 0.91
Ours Ty 0.9127 4.5
Our V (average) 0.9372 4.5
Ours V' (best model single-view) 0.9420 4.5
Ours V (best model rotation averaged) 0.9460 4.5
VRN Ensemble [4] 0.9714 108
ModelNet10 network 240 TSBI 2012 network
9 9 18 18 36 36 72 72 144 144 g 512 10 3
s3f (133 1330 |33 £33 |33 133 (3% 133 | 33| P
Sl e e e e R ] 160 160
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Fig. 4. (Best viewed in color) The architectures used in our experiments. We use a simple
VGG-like architecture for the ModelNet10 classification challenge, and a UNet /FusionNet-like
architecture for the ISBI2012 boundary segmentation benchmark.

5.2 ISBI 2012 Challenge: Connectome Segmentation

The ISBI 2012 Challenge is a volumetric boundary segmentation benchmark. The
task is to segment Drosophilia ventral nerve cords from a serial-section transmission
electron microscopy (EM) image [1]. The training set is a single 2 x 2 x 1.5 ym?
volume of anisotropic imaging resolution (high 2-y resolution, low z resolution). Each
voxel is 4 x4 x50 nm? so the full training image is 512 x 512 x 30 voxels in shape. The
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test image is 512 x512x 30 voxel, with withheld labels. Scoring is performed using
the metrics Viana and Vi, described in [1]. Larger is better.

Here we are faced with two major issues, a) small dataset, b) high imaging anisotropy.
We counter a) with heavy data augmentation as per [38] and by noting that group
convolutions reduce the number of trainable parameters through significant weight-
tying. To counter the imaging anisotropy, we use Klein’s four-group, which is not
affected by stretching of one of the axes.

Fig. 5. Examples of 2D slices from the training volume, the associated label mask, and the
prediction made by our network. The original volume contains small amounts of noise and
certain structures within the volume are ambiguous in nature.

Competing methods segment on a single 2D high-resolution slice at a time, but as
a proof of concept we try segmentation as a 3D problem, feeding 3D image chunks
into a 3D network. We use an architecture as shown in Figure 4, based on Weiler
et al.’s steerable version [49] of the FusionNet [38]. It is a UNet [39] with added skip
connections within the encoder and decoder paths to encourage better gradient flow.
We place Gaussian multiplicative dropout [46] with standard deviation 0.1 before
every convolution. By this we mean if x is an activation and n~ Normal(n;1,0.1?) then
the result of dropout is z-n. We also place batch normalization after every convolution
and use ReLLU nonlinearities directly before each convolution, except on the input.

For the training set we extract random 100 x 100 x5 voxel patches from the training
volume and predict the center slice. We reflection pad 10 voxels in the x-y plane, and
constant pad up to 5 voxels in the the z-direction if we sample at the upper or lower
image boundaries. We then apply a random elastic distortion in the z-y-plane, and
pass the patches through our group-equivariant FusionNet. We keep our implemen-
tation close to the design of Weiler et al. to maintain a close comparison, and do not
perform extensive model search. The results are shown in Table 3.

Our results are comparable with other leading methods. Our Vi,nq metric is slightly
improved over UNet and Quan et al., but not as good as Weiler et al., who use a 2D
group convolutional neural network approach, with 17 rotations about the z-axis and
lifting multicut post-process. The leading method uses the lifting multicut method
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Table 3. Results for the ISBI 2012 challenge. We have tried to keep our implementation as
close as possible to Weiler et al.. Unlike other methods, we perform no post-processing at
all unlike Weiler et al. who use a lifting multi-cut [3] post-process, or UNet and Quan et
al. who use rotation averaging. Quan also adds an optional median filtering to boost scores.
This shows that we can adapt state-of-the-art models to process 3D volumetric data with
little change in the competitiveness of the results.

Method Viand  Vinto

UNet [39] 0.97276 0.98662
Quan et al. [38] 0.97804 0.98995
Ours 0.98018 0.98202

Weiler et al. [49] 0.98680 0.99144
TIAL MC/LMC 0.98792 0.99183

too. Our Vi,5, metric is not as good as the other methods, but we believe with
sufficient model search, and extensive post-processing we could increase this number
further. The main point of this experiment, as with the ModelNet10 experiment, was
to demonstrate that we could get relatively good performance, without the need for
extensive test-time rotation averaging.

6 Conclusion

‘We have presented a 3D convolutional neural network architecture, which is equiv-
ariant to right-angle rotations in three dimensions. This relies on an extension of the
standard convolution to 3D rotations. On the ModelNet10 classification challenge, we
have achieved state-of-the-art for a single model, beating some much larger models,
which rely on heavy data augmentation. Since our models are rotation in/equivariant
by design, our CNNs need not learn to overcome rotations, the way a standard
CNN does. In 3D, this is an especially important gain. As a result, our model is
positioned to get better generalization with less data, while avoiding the need to
perform time-costly rotation averaging at test-time.

Another perspective on our approach is to think of it as global average pooling
over rotations, where we expose a new ‘rotation-dimension.” Without adhering to a
defined group, it would be challenging to disentangle or orient a feature space (at any
one layer, or across multiple layers) with respect to such a rotation dimension. The
trade-off is that we commit to a group and its corresponding CubeNet architecture,
to avoid the considerable effort of learning to disentangle pose.

We leave it to future work to examine whether these models can be generalized to
continuous rotations and other challenging transformations, such as scale. There is
also the untouched challenge of finding 3D rotation groups, which are not aligned
to the Cartesian voxel-grid.
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