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Abstract. Photos taken in hazy weather are usually covered with white masks

and often lose important details. In this paper, we propose a novel deep learn-

ing approach for single image dehazing by learning dark channel and transmis-

sion priors. First, we build an energy model for dehazing using dark channel and

transmission priors and design an iterative optimization algorithm using proximal

operators for these two priors. Second, we unfold the iterative algorithm to be a

deep network, dubbed as proximal dehaze-net, by learning the proximal opera-

tors using convolutional neural networks. Our network combines the advantages

of traditional prior-based dehazing methods and deep learning methods by incor-

porating haze-related prior learning into deep network. Experiments show that

our method achieves state-of-the-art performance for single image dehazing.

Keywords: single image dehazing, prior learning, deep neural network

1 Introduction

Haze is an atmospheric phenomenon that dust, smoke, or dry particles obscure the clar-

ity of a scene. With hazes, only a portion of reflected lights reach the observer as a result

of absorption in the atmosphere. Based on this observation, the captured image I of a

hazy scene can be modeled as a linear combination of direct attenuation and airlight

contributions [7, 11, 27, 28]:

I(x) = J(x)T (x) +A(1− T (x)), (1)

where I is the image degraded by hazes, J is the scene radiance or haze-free image,

A is the global atmospheric light and T (x) = exp(−ηd(x)) is the media transmission

along the cone of vision which depends on scattering coefficient η and scene depth

d(x). Single image dehazing is an ill-posed inverse problem that requires to recover

the unknown haze-free image J , atmospheric light A and transmission T from a single

input image I . Therefore, it is essential to investigate effective haze-related priors to

regularize this inverse problem.

The traditional single image dehazing methods [2, 5, 7, 11, 18, 27, 28, 30, 31, 38] have

investigated various image priors. Tan et al. [28] assume that the contrast of hazy images

is lower than haze-free images and propose to maximize the contrast of hazy images un-

der the MRF framework. Fattal [7] uses independent component analysis for estimating

the transmission in hazy scenes assuming that the transmission and surface shading are
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Fig. 1. Single image dehazing results. (a) Input hazy image. (b) Recovered haze-free image using

DCP. (c) Dark channel of input image. (d) Transmission map by DCP. (f)∼(h) Recovered haze-

free image, dark channel and transmission by our network. (e) Comparisons on image blocks.

locally uncorrelated. He et al. [11] propose dark channel prior to estimate transmission

based on the observation that the local minimum of color channels of haze-free images

is close to zero. These prior-based methods are effective in single image dehazing due

to the investigations of prior knowledge and understandings of the physical mechanism

for hazes. However, these priors are mainly based on human observations and would

not always hold for diverse real world images. For example, dark channel prior [11] is

effective for most outdoor images but usually fails for those containing white scenery

such as white walls or clouds in sky region, as shown in Fig. 1 (b).

Recently, learning-based methods [4, 14, 15, 20, 21, 29, 34] have been introduced to

image dehazing. Ren et al. [20] propose a multi-scale convolutional neural network

(MSCNN) for learning the transmission map of the hazy image. It consists of a coarse-

scale network predicting a holistic transmission map and a fine-scale network for refin-

ing the map. Inspired by haze-relevant features, Cai et al. [4] propose a trainable end-

to-end system called DehazeNet for transmission estimation, with specially designed

feature extraction layers. Instead of estimating transmission map and atmospheric light

separately, Li et al. [14] propose AOD-Net by embedding the estimation of T and A into

learning a new K-module. It directly generates the clean image through a light-weight

CNN. The learning-based methods have shown promising results for single image he-

hazing. However, these methods usually take CNNs to learn a mapping from input hazy

images to the transmissions or haze-free images, without considering haze-related pri-

ors to constrain the mapping space compared with the traditional methods.

In this paper, we propose a novel deep learning-based method that integrates haze

imaging model constraints and image prior learning into a single network architecture.

First, based on the haze imaging model, we formulate the inverse problem of single

image dehazing as an energy model with haze imaging constraints in color and dark

channel spaces, regularized by dark channel and transmission priors. Second, we design

an iterative optimization algorithm using half-quadratic splitting, jointly estimating the
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transmission map and latent haze-free image. Third, we unfold this iterative algorithm

to be a deep architecture, dubbed as proximal dehaze-net, to implicitly learn the trans-

mission and dark channel priors by learning their corresponding proximal operators

using convolutional neural networks. We justify the effectiveness of learned dark chan-

nel and transmission priors by ablation study and the learned proximal dehaze-net leads

to state-of-the-art results on real and synthetic datasets.

To the best of our knowledge, this is the first work that uses CNNs to learn both dark

channel and transmission priors for single image dehazing. Compared with traditional

prior-based methods, our approach can discriminatively learn haze-related priors from

training data instead of using hand-crafted priors. Compared with deep learning-based

dehazing methods, our approach incorporates both haze imaging constraint and haze-

related priors learning into the network architecture, which may provide a promising

learning-based approach for solving the challenging inverse problem of dehazing.

2 Related Work

2.1 Dark channel

The most related work to ours is the dark channel prior [11] (DCP) method. The dark

channel of an image is defined as:

Idk(x) = min
c∈{r,g,b}

(

min
y∈Ω(x)

(

Ic(y)
)

)

, (2)

where Ic is a color channel of I and Ω(x) is a local patch centered at x. The dark channel

prior assumes that, in most non-sky patches, at least one color channel of a haze-free

outdoor image has very low intensity at some pixels. According to dark channel prior,

the transmission can be estimated as:

T = 1− ω min
c∈{r,g,b}

(

min
y∈Ω(x)

(Ic(y)

Ac

)

)

. (3)

DCP is effective for dehazing but may fail when the scene color is close to atmospheric

light. Instead of constraining dark channel to be close to zero as in DCP, we learn

dark channel prior by learning its corresponding proximal mapping from training data

using a convolutional neural network, potentially being able to well approximate dark

channels of haze-free images as shown in Fig. 1.

2.2 Learning CNNs for image inverse problems

Recently, there have been several works to solve image inverse problems in deep learn-

ing frameworks [17, 22, 33, 35, 36]. Zhang et al. [36] train a set of effective denoisers

and plug them in the scheme of half-quadratic splitting algorithm as a modular. Mein-

hardt et al. [17] solve the inverse problem in image processing using primal-dual hy-

brid gradient method and replace the proximal operator by a denoising neural network.

In [22, 33, 35], the linear inverse problems are solved by learning proximal operators

in the scheme of iterative optimization algorithms. These methods can well solve the
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linear inverse problems such as denoising, super-resolution, inpainting, non-blind de-

convolution, compressive sensing MRI, etc.

Compared with these works, we focus on single image dehazing which is a chal-

lenging inverse problem with more unknown variables in imaging model. Instead of

using common linear inverse models in these works, we specify single image dehaz-

ing as a non-linear inverse problem with dark channel and transmission priors (will be

discussed in section 3). We then propose an iterative solver and build a deep architec-

ture incorporating the prior learning for single image dehazing. This proposed energy

model and dehazing network are novel and the learned network achieves state-of-the-art

results in single image dehazing.

3 Dehazing as An Inverse Problem

In this section, we first build an energy function with dark channel and transmission pri-

ors and then propose an iterative solver for energy minimization based on half-quadratic

splitting (HQS) algorithm. This proposed energy model and its iterative optimization al-

gorithm are the basis for building our proximal dehaze-net as discussed in section. 4.

3.1 Dehazing energy model

Considering the haze imaging model in Eqn. (1), given a hazy image I ∈ R
M×N×3,

we assume a known global atmospheric light A ∈ R
3 and divide both sides of Eqn. (1)

by A in each color channel:

Ic(x)

Ac
=

Jc(x)

Ac
T (x) + (1− T (x)), c ∈ {r, g, b}. (4)

For simplicity, we denote Ic/Ac by P c and Jc/Ac by Qc. Then P , Q represent the

scaled hazy image and latent haze-free image respectively. Thus Eqn. (4) can be rewrit-

ten in a concise form as:

P c = Qc ◦ T + (1− T ), (5)

where ◦ is the element-wise product for matrices. We further assume that, within a local

patch, the transmission map T is constant as in [11], then it holds that

P dk = Qdk ◦ T + 1− T, (6)

where P dk, Qdk are dark channels of P , Q.

By enforcing Eqn. (5) in color space and Eqn. (6) in dark channel space as loss

terms, we design a dehazing energy function:

E(Q, T ) =
α

2

∑

c∈{r,g,b}

∥

∥Qc◦T+1−T−P c
∥

∥

2

F

+
β

2

∥

∥Qdk◦T+1−T−P dk
∥

∥

2

F
+ f(T ) + g(Qdk),

(7)

where α and β are coefficients for data terms. f(T ) and g(Qdk) are regularization

terms modeling the priors on transmission map T and dark channel Qdk. The optimized
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haze-free image Q∗ and transmission map T ∗ can be obtained by solving the following

optimization problem:

{Q∗, T ∗} = argmin
Q,T

E(Q, T ). (8)

Regularization terms of f and g. These two terms respectively model the transmission

prior and dark channel prior. Multiple image priors can be taken for them, e.g., g for

dark channel can be taken as L0 or L1 regularizer enforcing the dark channel close to

zero. The transmission map is closely related to depth which is piecewise linear, and

its regularizer f can be modeled by MRF [8, 19] or TGV [5], etc. However, instead of

using these hand-designed regularizations, we set them as uncertainties and aim to learn

them from data using a deep learning approach.

Relationship to DCP method. We find that DCP method is a special case of our model.

When α = 0, f(T ) = 0 and g(Qdk) strictly enforces that Qdk = 0, then Eqn. (7) has the

solution of transmission T ∗ = 1−P dk, which is same as DCP in Eqn. (3) when ω = 1.

The post-processing procedure of soft matting in DCP acts as an implicit transmission

regularization.

Given this energy model, we next introduce how to design its optimization algorithm

and deduce a deep architecture in sections 3.2 and 4 respectively.

3.2 Model optimization

We now solve the optimization problem of Eqn. (8) using half-quadratic splitting (HQS)

algorithm. The HQS algorithm has been widely used in solving image inverse prob-

lems [9, 10, 13, 32, 35]. By introducing an auxiliary variable U to substitute the dark

channel Qdk of latent haze-free image, we derive the augmented energy function:

E(Q, T, U) =
α

2

∑

c∈{r,g,b}

‖Qc◦T+1−T−P c‖2F

+
β

2
‖U ◦T+1−T−P dk‖2F +

γ

2
‖U−Qdk‖2F + f(T ) + g(U),

(9)

in which γ is a penalty weight, and when γ → ∞, the solution of minimizing Eqn. (9)

converges to that of minimizing Eqn. (7). We initialize Q0 = P and all elements of T0

are ones, then for an iteration n of HQS algorithm, minimizing Eqn. (9) can be achieved

by solving three sub-problems for alternately updating U , T and Q.

Update U . Given the estimated haze-free image Qn−1 and transmission map Tn−1 at

iteration n− 1, the auxiliary variable U can be updated as:

Un = argmin
U

β

2
‖U ◦Tn−1+1−Tn−1−P dk‖2F +

γ

2
‖U−Qdk

n−1‖
2
F + g(U), (10)

from which we can derive

Un = prox 1

bn
g

(

Ûn

)

, (11)

where

Ûn =
1

bn

[

βTn−1◦(P
dk+Tn−1−1) + γQdk

n−1

]

, (12)
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and bn = βTn−1 ◦ Tn−1 + γ. The proximal operator is defined as:

proxλg(V ) = argmin
X

1

2
‖X − V ‖2F + λg(X), (13)

assuming that g(X) is separable for different elements in matrix X .

Update T . We next update the transmission map T . Given Qn−1 and Un,

Tn = argmin
T

α

2

∑

c

‖Qc
n−1◦T+1−T−P c‖2F

+
β

2
‖Un◦T+1−T−P dk‖2F + f(T ).

(14)

Then we derive

Tn = prox 1

cn
f

(

T̂n

)

, (15)

where

T̂n=
1

cn

[
∑

cα(Q
c
n−1−1)◦(P c−1)+β(Un−1)◦(P dk−1)

]

, (16)

and cn=
∑

c α(Q
c
n−1−1)◦(Qc

n−1−1)+β(Un−1)◦(Un−1).
Update Q. Given Tn and Un, the haze-free image Q is updated as:

Qn = argmin
Q

α

2

∑

c

‖Qc◦Tn+1−Tn−P c‖2F +
γ

2
‖Qdk−Un‖

2
F . (17)

Computing dark channel is to extract the smallest value from local color patch around

each pixel. This operation can be implemented by a matrix D with value of one indicat-

ing the position of extracted minimal value, i.e.,
−−→
Qdk = D

−→
Q , where

−→
Q is the vectorized

Q. We further denote Tn ∈ R
M×N×3 as a matrix with each color channel as Tn. Then

Eqn. (17) can be rewritten as:

−→
Qn = argmin

−→
Q

α

2
‖
−→
Q ◦

−→
Tn+1−

−→
Tn−

−→
P ‖22 +

γ

2
‖D

−→
Q−

−→
Un‖

2
2, (18)

which has the solution:

−→
Qn =

α(
−→
P +

−→
Tn−1)◦

−→
Tn + γD⊤−→Un

α
−→
Tn◦

−→
Tn + γdiag(D⊤D)

. (19)

The updated haze-free image Qn can be derived by reshaping
−→
Qn back to a matrix with

the same size of input image. Note that the divisions in the Eqns. (12), (16), (19) are all

element-wise operations. The detailed conduction of above equations can be found in

supplementary material.

Special case. If we discard transmission regularization term by setting f(T ) = 0 and

set the dark channel regularization term as L1-norm, i.e., g(Qdk) =
∑

x∈Ω |Qdk(x)|
enforcing the dark channel sparse and close to zero, then the corresponding proximal

operators in Eqns. (11) and (15) are defined as:

prox 1

bn
g(Ûn) = softThresh(Ûn,

1

bn
), (20)

prox 1

cn
f (T̂n) = T̂n, (21)
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(a) Input (b) Result of DCP (c) Result of Ener-L1 (d) Result of proximal dehaze-net

Fig. 2. An example of real image dehazing.

respectively, where softThresh(·, 1/bn) is a soft thresholding function [6] with thresh-

old 1/bn. We take this as the baseline of our method, denoted as Ener-L1. An example

of Ener-L1 is shown in Fig. 2 (c). Ener-L1 is indeed effective for haze removal which

is comparable to DCP. Through prior learning as will be discussed in next section, our

proximal dehaze-net can better recover haze-free image as shown in Fig. 2 (d).

4 Proximal Dehaze-Net

Based on the above iterative optimization algorithm, we build a deep neural network

for single image dehazing as illustrated in Fig. 3 (a). The network is a structure with

N stages implementing N iterations in the iterative optimization algorithm for solving

Eqn. (8). Each stage takes outputs of the previous stage Un−1, Tn−1 and Qn−1 (repre-

senting dark channel, transmission map and haze-free image respectively) as inputs and

computes updated Un, Tn and Qn.

Instead of setting by hand the regularization terms of g(·) and f(·) (modeling dark

channel and transmission priors) in the energy function of Eqn. (7), we use deep CNNs

to learn their corresponding proximal operators prox 1

bn
g and prox 1

cn
f for updating Un

and Tn in each stage n:

Un = prox 1

bn
g(Ûn) , G(Ûn),

Tn = prox 1

cn
f (T̂n) , F(T̂n),

(22)

where G and F are deep CNNs to be learned for representing the corresponding prox-

imal operators. In this way, we design an end-to-end training architecture, dubbed as

proximal dehaze-net. We will next introduce the network structure.

4.1 Network design

As shown in Fig. 3 (a), each stage of the proximal dehaze-net implements one iter-

ation of model optimization discussed in section 3.2, and the proximal operators are

substituted by convolutional neural networks as in Eqn. (22).

We now introduce the network structure for each stage. Please refer to Fig. 3 (b) for

better understanding. For the n-th stage, Ûn is first computed by Eqn. (12), then sent
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D-Net

T-Net GIF-Block
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Input Stage-1 Stage-� Output

(a) Multi-stage network for image dehazing (b) Network structure for the �–thstage

Fig. 3. Architecture of proximal dehaze-net. (a) The network consists of multiple stages. The

outputs U∗, T ∗, Q∗ are estimated dark channel, transmission map and dehazed image. (b) The

detailed architecture for the n-th stage, in which the variables Un, Tn and Qn are successively

updated by the algorithm described in section. 3.2. D-Net is to learn proximal mapping G for dark

channel prior. T-Net and GIF-Block are to learn the proximal mapping F for transmission prior.

into a convolutional neural network, i.e., D-Net, to perform proximal mapping prox 1

bn
g .

The updated dark channel is:

Un = G(Ûn) , D-Net(Ûn, P ), (23)

in which we concatenate Ûn with hazy image P as input.

Similarly, T̂n is first computed using Eqn. (16), then concatenated with P and sent

into another convolutional neural networks, T-Net and a GIF-Block, to perform proxi-

mal mapping prox 1

cn
f . The updated transmission map is:

Tn = F(T̂n) , GIF-Block
(

T-Net(T̂n, P )
)

, (24)

T-Net and GIF-Block are respectively responsible for transmission estimation and guided

image filtering (GIF) for better edge alignment with image edges.

Finally, with Qn−1, Un and Tn, we get the updated Qn using Eqn. (19). After N
stages, the final estimated haze-free image J is with channels of Jc = Qc

NAc for

c ∈ {r, g, b}. We estimate the atmospheric light A according to [11]. We next introduce

the structures of D-Net, T-Net and GIF-Block.

D-Net and T-Net. D-Net and T-Net have similar structures. They both include three

cascaded convolutional blocks. Each block consists of a convolutional layer, a ReLU

layer, a pooling layer and an upsampling layer. The convolutional layers in these blocks

have nine 7×7 filters, nine 5×5 filters and nine 3×3 filters respectively. The last block

is followed by another convolutional layer with one 1×1 filter. Then the output map is

finally sent to a ReLU layer for D-Net or a sigmoid layer for T-Net. The ReLU layer

aims to keep the output dark channel U non-negative, while the sigmoid layer is to keep

the output transmission map T within [0, 1].

GIF-Block. GIF-Block performs standard guided image filtering [12]. This block en-

forces the transmission map to be well aligned with image along edges. As shown in

Fig. 3 (b), GIF-Block takes the input image P as guidance and performs guided image
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(a) Input (b) U = G(Û) (c) T = F(T̂ ) (d) Output

I Û U T̂ T I∗

Fig. 4. Effectiveness of using CNNs to learn proximal mappings for dark channel and transmis-

sion priors. The left and right images in (b) (c) respectively represent the inputs and outputs of

proximal mappings G and F for dark channel and transmission. (d) Our final dehazing result.

filtering on the output of T-Net:

GIF-Block
(

T-Net(T̂n, P )
)

, GIFP

(

T-Net(T̂n, P )
)

, (25)

using the guided filtering operator GIFP with guidance of P . The GIF-block is a differ-

entiable block implementing guided filtering represented by a computation graph. It is

included as a part of our end-to-end trainable system more than just a post-processing

step. More details on the algorithm and computation graph of GIF-Block can be found

in the supplementary material.

To illustrate what were learned for these proximal mappings, in Fig. 4, we show an

example of our learned proximal mappings for dark channel and transmission using the

learned proximal dehaze-net (we will introduce network training in section 4.2). Fig. 4

(b), (c) respectively show the dark channels and transmission maps before and after the

proximal mappings of G and F . We can observe that the learned proximal mapping

G produces reasonable dark channel with low values but retaining the high values for

white windows. The learned proximal mapping F produces a smooth transmission map

consistent with the underlying scenery depth.

4.2 Network training

The training loss for each training image is defined as the sum of pixel-wise L1 dis-

tances between the outputs of proximal dehaze-net {Q∗, T ∗, U∗} and the ground truths

{Qgt, T gt, Ugt}:

ℓ =
∑

O∈{Q,T,U}

∑

x

‖O∗(x)−Ogt(x)‖1. (26)

When training the proximal dehaze-net, we compute the gradients of loss w.r.t. the

inputs of Eqns. (11), (15), (19) for back-propagation. Due to space limit, please refer

to supplementary material for these gradients. In our implementation, the parameters

of nets (including D-Net and T-Net) in different stages are not shared. Parameters of α
and β in energy function are set to 1 and 5 respectively. We implement and train our

network using MatConvNet1 framework. We choose Adam solver with a learning rate

1 http://www.vlfeat.org/matconvnet/
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of 0.001. We use a batch size of 10 and it usually takes 13.6 hours to train a single stage

network for 50 epochs on a Titan X GPU with 12 GB memory.

5 Experiments

In this section, we evaluate our method on both synthetic and real datasets and compare

with the other state-of-the-art dehazing methods proposed in recent years.

5.1 Datasets

Training dataset. Our training dataset consists of three RGB-D datasets including

NYU-Depth [26], Middlebury-Stereo [23–25] and MPI-Sintel [3]. We sampled 9000

pairs of RGB-D image patches in size of 240×240 from the training dataset. According

to haze imaging model Eqn. (1), given A and η, the hazy image and transmission are

generated by the clean image and its corresponding depth map. For each pair of RGB-

D image patches, we randomly select A ∈ [0.7, 1] and η ∈ [0.5, 1.5] to generate the

ground truth transmission map and hazy image, then compute the dark channel from

the clean image. Therefore we construct a set of 9000 training samples including hazy

images, ground truth haze-free images, transmission maps and dark channels.

Test datasets. To quantitatively evaluate the dehazing methods, we established two

benchmark datasets – TestA and TestB for evaluating dehazing performance. For TestA,

we use the RGB-D images from NYU, Middlebury and Sintel datasets (without over-

lapping with training images) to generate 548 full sized hazy images. We also establish

a more realistic dataset TestB including 128 images by applying different hazes on Haz-

eRD [37] dataset. In TestA, images are either taken indoors or computer generated, thus

are different from the real-world outdoor hazy images. HazeRD provides real outdoor

images with high-quality depth information, therefore enables us to better simulate real

outdoor images taken under hazy condition.

5.2 Results on synthetic datasets

We first compare our network with recent methods for single image dehazing on both

synthetic datasets – TestA and TestB. The compared methods include dark channel prior

(DCP) [11], fast visibility restoration (FVR) [30], boundary constraint and contextual

regularization (BCCR) [18], gradient residual minimization (GRM) [5], color attenua-

tion prior (CAP) [38], non-local dehazing (NLD) [2], multi-scale CNN (MSCNN) [20],

DehazeNet [4] and AOD-Net [14]. Among these methods, MSCNN, DehazeNet and

AOD-Net are learning-based methods. For quantitative evaluation, we show the aver-

age peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index between

the recovered images and ground truths.

As shown in Table 1, our proximal dehaze-net achieves best results in both PSNR

and SSIM values on TestA and significantly improves the DCP [11] method by nearly

1 dB in PSNR. Since all learning-based methods do not include images in TestB as

training data, it is fair to compare them on TestB. As shown in Table 1, our method
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Table 1. Dehazing results on synthetic datasets TestA and TestB. We show the average PSNR

and SSIM of the recovered images by the compared methods.

Methods DCP [11] FVR [30] BCCR [18] CAP [38] NLD [2] GRM [5] MSCNN [20] DehazeNet [4] AOD-Net [14] Ours

TestA
PSNR 18.32 15.18 16.00 16.63 17.87 18.45 17.37 19.17 18.00 19.31

SSIM 0.8244 0.7599 0.7556 0.7050 0.7978 0.8043 0.7564 0.7888 0.7928 0.8388

TestB
PSNR 17.66 16.17 16.31 18.56 18.82 17.47 19.10 19.53 18.13 20.14

SSIM 0.8430 0.8472 0.8337 0.8256 0.8355 0.7921 0.8540 0.8498 0.8266 0.8932

(a) TestAinput

Ground truth DCP (17.58; 0.90) MSCNN (18.10; 0.88) DehazeNet(19.06; 0.89) Ours (19.83; 0.92)

Ground truth DCP (19.17; 0.91) MSCNN (20.78; 0.87) DehazeNet(23.56; 0.85) Ours (26.01; 0.94)

(b) TestBinput

Fig. 5. Dehazing results on two examples from TestA and TestB. We show the recovered images

and corresponding transmission maps by different methods. PSNR and SSIM values of dehazed

images are shown in brackets.

achieves highest PNSR and SSIM on TestB and exceeds the second best learning-based

method DehazeNet [4] by 0.61dB in PSNR.

In Fig. 5, we show two examples of dehazing results and corresponding transmis-

sion maps from TestA and TestB. Compared with other methods, our proximal dehaze-

net can better estimate transmission maps and produce more visually pleasant haze-free

images with highest PSNR and SSIM values. Though DehazeNet [4] achieves rela-

tively high PSNR as shown in Table 1, its results still contain hazes as shown in Fig. 5.

On the other hand, DCP [11] can effectively remove the hazes, but sometimes may

over-enhance the color contrast in these results. As a comparison, our method can well

control the amount of removed hazes and produces visually natural results.

5.3 Results on real datasets

In Fig. 6, we also evaluate and compare our network with recent state-of-the-art meth-

ods [4, 11, 14, 20, 38] on real-world hazy images. The real-world example images are

collected from Internet and previous works. For traditional methods, such as DCP [11]

and CAP [38], the hazes are significantly removed and the results are with high color
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(a) Input
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(b) DCP [4] (c) CAP [7] (d) MSCNN [10] (e) DehazeNet [11] (f) AOD-Net [12] (g) Ours

Fig. 6. Dehazing results on real images. Please zoom in for better illustration.

contrast. However, CAP sometimes blurs image textures and causes over-saturation in

color, as observed in the 2nd and 4th images of Fig. 6. DCP can not properly deal

with sky regions and is likely to introduce artifacts as shown in the 4th, 5th and 7th

images of Fig. 6. It is interesting that the learning-based methods [4, 14, 20] trained

on synthetic dataset generalize well to produce visually pleasant results for real im-

age dehazing. However, as shown in the 4th and 6th images of Fig. 6, MSCNN [20]

sometimes cause color distortion, which makes the recovered images seem unnatural.

DehazeNet [4], although achieves high PSNR values on synthetic datasets, does not

remove hazes as effectively as other methods, such as the 1st, 3rd and 7th images of

Fig. 6. AOD-Net [14] usually slightly reduces image brightness and sometimes causes

faded scene of foreground as shown in the 3rd and 6th images of Fig. 6. Our proximal

dehaze-net, integrating haze imaging model with deep learning, can effectively remove

hazes in different amounts while still keeping the results visually natural and pleasant.

5.4 Ablation study

To investigate the effect of learning dark channel and transmission priors for our net-

work, we respectively discard dark channel regularization g(U) and transmission reg-

ularization f(T ) in Eq. (9). We then denote our proximal dehaze-net without learning

dark channel prior as Net-ND and without learning transmission prior as Net-NT. We

train Net-ND and Net-NT with one stage from scratch and compare with Ener-L1 (see

section. 3.2) and Net-S1 (our proximal dehaze-net with one stage) on TestB. We show
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Fig. 7. Comparison of different network architectures on TestB dataset. (a) Results of our proxi-

mal dehaze-net and nets without prior learning. (b) Results of our nets in different complexities.

the PSNR and SSIM in Fig. 7 (a). Compared with Net-S1, Net-NT without learning

transmission prior decreases the PSNR by 0.64 dB, and Net-ND without learning dark

channel prior decreases the PSNR by 4.72 dB, even lower than Ener-L1. Therefore

learning both priors, especially the dark channel prior, is essential for our approach.

To evaluate the effect of model complexity on performance, we trained proximal

dehaze-nets with different filter sizes, filter numbers and number of stages. For Net-L,

we use larger filter sizes by setting all convolutional kernels to be 7×7. For Net-M, we

use 64 rather than only 9 filters in each convolution layer. We also trained our proximal

dehaze-net with 2 stages, denoted as Net-S2. We show the PSNR and SSIM on TestB

in Fig. 7 (b), from which we can see that increasing network complexity promotes the

PSNR by over 0.88 dB. However, we did not observe significant qualitative improve-

ments visually using these more complex networks. Moreover, increasing network com-

plexity increases the running time. To be specific, the running times on a single GPU

for these networks on an image of 480×640 are 0.058s for Net-S1, 0.096s for Net-S2,

0.077s for Net-L and 0.143s for Net-M respectively. For the sake of efficiency, we adopt

Net-S1 as our final model and all reported results are based on Net-S1.

5.5 Extension to more applications

Although our network is trained for image dehazing, we can also extend it to other tasks

that are similar to dehazing. In Fig. 8 (a), we show an example of underwater image

enhancement. Ignoring the forward scattering component, the simplified underwater

optical model [1] has similar formulation with haze imaging model. Our network can

effectively remove haze-like effect in this underwater image. Although halation has a

different imaging model, it brings haze-like effect to image. Our proximal dehaze-net

can be directly applied to anti-halation image enhancement without need of re-training,

as shown in Fig. 8 (b). In Fig. 8 (c), we also show an example of our network applied to

a haze-free image to test the robustness. Our network does not change the image much

and the result still looks natural and clear.
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(a) Underwater image enhancement (c) Haze-free image(b) Anti-halation enhancement

Fig. 8. Extension to other applications.

(a) Heavy haze image dehazing (b) Night-time image dehazing

Fig. 9. Failure cases of our method.

5.6 Limitations

While our method behaves well on most natural images, it has limitations towards cer-

tain situations in which the photo is taken in heavy fog or at night-time. For the first case

as shown in Fig. 9 (a), image information is seriously lost due to heavy fog and it is hard

for us to recover satisfactory result. For the latter case, since night-time haze follows

a different imaging model as described in [16], our method fails to effectively remove

hazes in images taken at night-time as shown in Fig. 9 (b). However, if we change the

data fidelity term of our dehazing energy function to fit night-time image haze model,

there is a potential to improve the result.

6 Conclusion

In this paper, we proposed a novel proximal dehaze-net for single image dehazing. This

network integrates haze imaging model, dark channel and transmission priors into a

deep architecture. This is achieved by building an energy function using dark channel

and transmission priors for single image dehazing, and learning these priors using their

corresponding proximal operators in an optimization-inspired deep network. This en-

ergy function and proximal dehaze-net are novel for dehazing, and the learned network

achieves promising results on both synthetic and real-world hazy images. In the future,

we are interested in building realistic outdoor training dataset for dehazing or using

outdoor clear images as supervision in a generative adversarial training framework.
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