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Abstract. We introduce a new problem of generating an image based
on a small number of key local patches without any geometric prior. In
this work, key local patches are defined as informative regions of the
target object or scene. This is a challenging problem since it requires
generating realistic images and predicting locations of parts at the same
time. We construct adversarial networks to tackle this problem. A gen-
erator network generates a fake image as well as a mask based on the
encoder-decoder framework. On the other hand, a discriminator network
aims to detect fake images. The network is trained with three losses to
consider spatial, appearance, and adversarial information. The spatial
loss determines whether the locations of predicted parts are correct. In-
put patches are restored in the output image without much modification
due to the appearance loss. The adversarial loss ensures output images
are realistic. The proposed network is trained without supervisory signals
since no labels of key parts are required. Experimental results on seven
datasets demonstrate that the proposed algorithm performs favorably on
challenging objects and scenes.

Keywords: Image synthesis - Generative adversarial networks

1 Introduction

The goal of image generation is to construct images that are as barely distin-
guishable from target images which may contain general objects, diverse scenes,
or human drawings. Synthesized images can contribute to a number of appli-
cations such as the image to image translation [7], image super-resolution [13],
3D object modeling [36], unsupervised domain adaptation [15], domain transfer
[39], future frame prediction [33], image inpainting [38], image editing [43], and
feature recovering of astrophysical images [29].

In this paper, we introduce a new image generation problem: a holistic image
generation conditioned on a small number of local patches of objects or scenes
without any geometry prior. It aims to estimate what and where object parts
are needed to appear and how to fill in the remaining regions. There are various
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Fig. 1. The proposed algorithm is able to synthesize an image from key local patches
without geometric priors, e.g., restoring broken pieces of ancient ceramics found in
ruins. Convolutional neural networks are trained to predict locations of input patches
and generate the entire image based on adversarial learning.

applications for this problem. For example, in a surveillance system, objects
are often occluded and we need to recover the whole appearance from limited
information. For augmented reality, by rendering plausible scenes based on a few
objects, the experience of users become more realistic and diverse. Combining
parts of different objects can generate various images in a target category, e.g.,
designing a new car based on parts of BMW and Porsche models. Broken objects
that have missing parts can be restored as shown in Figure 1. While the problem
is related to image completion and scene understanding tasks, it is more general
and challenging than each of these problems due to following reasons.

First, spatial arrangements of input patches need to be inferred since the
data does not contain explicit information about the location. To tackle this
issue, we assume that inputs are key local patches which are informative regions
of the target image. Therefore, the algorithm should learn the spatial relation-
ship between key parts of an object or scene. Our approach obtains key regions
without any supervision such that the whole algorithm is developed within the
unsupervised learning framework.

Second, we aim to generate an image while preserving the key local patches.
As shown in Figure 1, the appearances of input patches are included in the
generated image without significant modification. In other words, the inputs are
not directly copied to the output image. It allows us to create images more
flexibly such that we can combine key patches of different objects as inputs. In
such cases, input patches must be deformed by considering each other.

Third, the generated image should look closely to a real image in the tar-
get category. Unlike the image inpainting problem, which mainly replaces small
regions or eliminates minor defects, our goal is to reconstruct a holistic image
based on limited appearance information contained in a few patches.

To address the above issues, we adopt the adversarial learning scheme [4]
in this work. The generative adversarial network (GAN) contains two networks
which are trained based on the min-max game of two players. A generator net-
work typically generates fake images and aims to fool a discriminator, while a
discriminator network seeks to distinguish fake images from real images. In our
case, the generator network is also responsible for predicting the locations of in-
put patches. Based on the generated image and predicted mask, we design three
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losses to train the network: a spatial loss, an appearance loss, and an adversarial
loss, corresponding to the aforementioned issues, respectively.

While a conventional GAN is trained in an unsupervised manner, some recent
methods formulate it in a supervised manner by using labeled information. For
example, a GAN is trained with a dataset that has 15 or more joint positions
of birds [25]. Such labeling task is labor intensive since GAN-based algorithms
need a large amount of training data to achieve high-quality results. In contrast,
experiments on seven challenging datasets that contain different objects and
scenes, such as faces, cars, flowers, ceramics, and waterfalls, demonstrate that
the proposed unsupervised algorithm generates realistic images and predict part
locations well. In addition, even if inputs contain parts from different objects,
our algorithm is able to generate reasonable images.

The main contributions are as follows. First, we introduce a new problem
of rendering realistic image conditioned on the appearance information of a few
key patches. Second, we develop a generative network to jointly predict the
mask and image without supervision to address the defined problem. Third, we
propose a novel objective function using additional fake images to strengthen the
discriminator network. Finally, we provide new datasets that contain challenging
objects and scenes.

2 Related Work

Image Generation. Image generation is an important problem that has been
studied extensively in computer vision. With the recent advances in deep con-
volutional neural networks [12,31], numerous image generation methods have
achieved the state-of-the-art results. Dosovitskiy et al. [3] generate 3D objects
by learning transposed convolutional neural networks. In [10], Kingma et al.
propose a method based on variational inference for stochastic image genera-
tion. An attention model is developed by Gregor et al. [5] to generate an image
using a recurrent neural network. Recently, the stochastic PixelCNN [21] and
PixelRNN [22] are introduced to generate images sequentially.

The generative adversarial network [4] is proposed for generating sharp and
realistic images based on two competing networks: a generator and a discrimi-
nator. Numerous methods [28,42] have been proposed to improve the stability of
the GAN. Radford et al. [24] propose deep convolutional generative adversarial
networks (DCGAN) with a set of constraints to generate realistic images effec-
tively. Based on the DCGAN architecture, Wang et al. [34] develop a model to
generate the style and structure of indoor scenes (SSGAN), and Liu et al. [15]
present a coupled GAN which learns a joint distribution of multi-domain images,
such as color and depth images.

Conditional GAN. Conditional GAN approaches [18,26,40] are developed to
control the image generation process with label information. Mizra et al. [18] pro-
pose a class-conditional GAN which uses discrete class labels as the conditional
information. The GAN-CLS [26] and StackGAN [40] embed a text describing an



4 D. Lee, S. Yun, S. Choi, H. Yoo, M.-H. Yang, and S. Oh

image into the conditional GAN to generate an image corresponding to the con-
dition. On the other hand, the GAWWN [25] creates numerous plausible images
based on the location of key points or an object bounding box. In these meth-
ods, the conditional information, e.g., text, key points, and bounding boxes, is
provided in the training data. However, it is labor intensive to label such infor-
mation since deep generative models require a large amount of training data. In
contrast, key patches used in the proposed algorithm are obtained without the
necessity of human annotation.

Numerous image conditional models based on GANs have been introduced
recently [13,43,39,38,23,14,30,7]. These methods learn a mapping from the source
image to target domain, such as image super-resolution [13], user interactive
image manipulation [43], product image generation from a given image [39],
image inpainting [38,23], style transfer [14] and realistic image generation from
synthetic image [30]. Isola et al. [7] tackle the image-to-image translation problem
including various image conversion examples such as day image to night image,
gray image to color image, and sketch image to real image, by utilizing the
U-net [27] and GAN. In contrast, the problem addressed in this paper is the
holistic image generation based on only a small number of local patches. This
challenging problem cannot be addressed by existing image conditional methods
as the domain of the source and target images are different.

Unsupervised Image Context Learning. Unsupervised learning of the spa-
tial context in an image [2,20,23] has attracted attention to learn rich feature
representations without human annotations. Doersch et al. [2] train convolu-
tional neural networks to predict the relative position between two neighboring
patches in an image. The neighboring patches are selected from a grid pattern
based on the image context. To reduce the ambiguity of the grid, Noroozi et
al. [20] divide the image into a large number of tiles, shuffle the tiles, and then
learn a convolutional neural network to solve the jigsaw puzzle problem. Pathak
et al. [23] address the image inpainting problem which predicts missing pixels
in an image, by training a context encoder. Through the spatial context learn-
ing, the trained networks are successfully applied to various applications such as
object detection, classification and semantic segmentation. However, discrimina-
tive models [2,20] can only infer the spatial arrangement of input patches, and
the image inpainting method [23] requires the spatial information of the missing
pixels. In contrast, we propose a generative model which is capable of not only
inferring the spatial arrangement of inputs but also generating the entire image.

Image reconstruction from local information. Weinzaepfel et al. [35] re-
construct an image from local descriptors such as SIFT while the locations are
known. This method retrieves an image patch for each region of interest from
a database based on the similarity of local descriptors. These patches are then
warped into a single image and stitched seamlessly. Zhang et al. [41] extrapolate
an image from a limited field of view to a panoramic image. An input image
is aligned with a guidance panorama image such that the unseen viewpoint is
predicted based on self-similarity.
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Fig. 2. Proposed network architecture. A bar represents a layer in the network. Lay-
ers of the same size and the same color have the same convolutional feature maps.
Dashed lines in part encoding networks represent shared weights. An embedded vector
is denoted as E.

3 Proposed Algorithm

Figure 2 shows the structure of the proposed network for image generation from
a few patches. It is developed based on the concept of adversarial learning,
where a generator and a discriminator compete with each other [4]. However,
in the proposed network, the generator has two outputs: the predicted mask
and generated image. Let Gq be a mapping from N observed image patches
x = {z1,...,xn} to amask M, G : x — M.® Also let G7 be a mapping from x
to an output image y, Gz : x — y. These mappings are performed based on three
networks: a part encoding network, a mask prediction network, and an image
generation network. The discriminator D is based on a convolutional neural
network which aims to distinguish the real image from the image generated
by Gz. The function of each described module is essential in order to address
the proposed problem. For example, it is not feasible to infer which region in
the generated image should be similar to the input patches without the mask
prediction network.

We use three losses to train the network. The first loss is the spatial loss
Ls. It compares the inferred mask and real mask which represents the cropped
region of the input patches. The second loss is the appearance loss L4, which
maintains input key patches in the generated image without much modification.
The third loss is the adversarial loss L to distinguish fake and real images. The
whole network is trained by the following min-max game:

min mngR(GI, D)+ MLs(Gm) + X2La(Gum, Gr), (1)

Gm,Gz
where A1 and A, are weights for the spatial loss and appearance loss, respectively.

5 Here, x is a set of image patches resized to the same width and height suitable for
the proposed network and N is the number of image patches in x.
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Fig. 3. Examples of detected key patches on faces [16], vehicles [11], flowers [19], and
waterfall scenes. Three regions with top scores from the EdgeBox algorithm are shown
in red boxes after pruning candidates of an extreme size or aspect ratio.
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3.1 Key Part Detection

We define key patches as informative local regions to generate the entire image.
For example, when generating a face image, patches of eyes and a nose are more
informative than those of the forehead and cheeks. Therefore, it would be better
for the key patches to contain important parts that can describe objects in a tar-
get class. However, detecting such regions is a challenging problem as it requires
to possess high-level concepts of the image. Although there exist methods to find
most representative and discriminative regions [32,1], these schemes are limited
to the detection or classification problems. In this paper, we only assume that
key parts can be obtained based on the objectness score. The objectness score
allows us to exclude most regions without textures or full of simple edges which
unlikely contain key parts. In particular, we use the Edgebox algorithm [44] to
detect key patches of general objects in an unsupervised manner. In addition,
we discard detected patches with extreme sizes or aspect ratios. Figure 3 shows
examples of detected key patches from various objects and scenes. Overall, the
detected regions from these object classes are fairly informative. We sort candi-
date regions by the objectness score and feed the top IV patches to the proposed
network. In addition, the training images and corresponding key patches are
augmented using a random left-right flip with the equal probability.
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3.2 Part Encoding Network

The structure of the generator is based on the encoder-decoder network [6]. It
uses convolutional layers as an encoder to reduce the dimension of the input data
until the bottleneck layer. Then, transposed convolutional layers upsample the
embedded vector to its original size. For the case with a single input, the network
has a simple structure as shown in Figure 4(a). For the case with multiple inputs
as considered in the proposed network, there are many possible structures. In
this work, we carefully examine four cases while noting that our goal is to encode
information invariant to the ordering of image patches.

The first network is shown in Figure 4(b), which uses depth-concatenation
of multiple patches. This is a straightforward extension of the single input case.
However, it is not suitable for the task considered in this work. Regardless of the
order of input patches, the same mask should be generated when the patches
have the same appearance. Therefore, the embedded vector E must be the same
for all different orderings of inputs. Nevertheless, the concatenation causes the
network to depend on the ordering, while key patches have an arbitrary order
since they are sorted by the objectness score. In this case, the part encoding
network cannot learn proper filters. The same issue arises in the model in Figure
4(c). On the other hand, there are different issues with the network in Figure
4(d). While it can resolve the ordering issue, it predicts a mask of each input
independently, which is not desirable as we aim to predict masks jointly. The
network should consider the appearance of both input patches to predict posi-
tions. To address the above issues, we propose to use the network in Figure 4(e).
It encodes multiple patches based on a Siamese-style network and summarizes
all results in a single descriptor by the summation, i.e., E = E; + ... + En. Due
to the commutative property, we can predict a mask jointly, even if inputs have
an arbitrary order. In addition to the final bottleneck layer, we use all convolu-
tional feature maps in the part encoding network to construct U-net [27] style
architectures as shown in Figure 2.

3.3 Mask Prediction Network

The U-net is an encoder-decoder network that has skip connections between -
th encoding layer and (L — ¢)-th decoding layer, where L is the total number of
layers. It directly feeds the information from an encoding layer to its correspond-
ing decoding layer. Therefore, combining the U-net and a generation network is
effective when the input and output share the same semantic [7]. In this work,
the shared semantic of input patches and the output mask is the target image.

We pose the mask prediction as a regression problem. Based on the embedded
part vector E, we use transposed convolutional layers with a fractional stride [24]
to upsample the data. The output mask has the same size as the target image
and has a value between 0 and 1 at each pixel. Therefore, we use the sigmoid
activation function at the last layer.

The spatial loss, Lg, is defined as follows:

L5(Gr) = Expiara (0, Mpaara M) G (x) = M[1]. (2)
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Fig. 5. Sample image generation results on the CelebA dataset using the network in
Figure 2. Generated images are sharper and realistic with the skip connections.

We note that other types of losses, such as the ly-norm, or more complicated
network structures, such as GAN, have been evaluated for mask prediction, and
similar results are achieved by these alternative options.

3.4 Image Generation Network

We propose a doubled U-net structure for the image generation task as shown in
Figure 2. It has skip connections from both the part encoding network and mask
generation network. In this way, the image generation network can communicate
with other networks. This is critical since the generated image should consider
the appearance and locations of input patches. Figure 5 shows generated images
with and without the skip connections. It shows that the proposed network
improves the quality of generated images. In addition, it helps to preserve the
appearances of input patches. Based on the generated image and predicted mask,
we define the appearance loss £4 as follows:

LA(G My GT) = Ex ypiara (6.9), Mopaara () [|GT(X) @ G (x) —y @ M||1], (3)

where ® is an element-wise product.

3.5 Real-Fake Discriminator Network

A simple discriminator can be trained to distinguish real images from fake im-
ages. However, it has been shown that a naive discriminator may cause artifacts
[30] or network collapses during training [17]. To address this issue, we propose
a new objective function as follows:
Lr(Gz, D) =Eyop, .. (v log D(y)]+
B0’ ~Paata (e v.v') Mopgara (M)
llog(1 — D(Gz(x)))+ )
log(1 — D(M ® Gz(x) + (1 = M) ® y)) +log(1 — D((1 = M) ® Gz(x) + M @ y))+
log(1 =DM @y + (1 - M)®y)) +log(l = D((1 - M) @y + M®y)),
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where ¢ is a real image randomly selected from the outside of the current mini-
batch. When the real image y is combined with the generated image Gz(x) (line
4-5 in (4)), it should be treated as a fake image as it partially contains the fake
image. When two different real images y and y are combined (line 6-7 in (4)), it
is also a fake image although both images are real. It not only enriches training
data but also strengthens discriminator by feeding difficult examples.

4 Experiments

Experiments for the CelebA-HQ and CompCars datasets, images are resized to
the have the minimum length of 256 pixels on the width or height. For other
datasets, images are resized to 128 pixels. Then, key part candidates are obtained
using the Edgebox algorithm [44]. We reject candidate boxes that are larger than
25% or smaller than 5% of the image size unless otherwise stated. After that,
the non-maximum suppression is applied to remove candidates that are too close
with each other. Finally, the image and top IV candidates are resized to the target
size, 256 x 256 x 3 pixels for the CelebA-HQ and CompCars datasets or 64 x 64 x 3
pixels for other datasets, and fed to the network. The A\; and Ao are decreased
from 1072 to 10~ as the epoch increases. A detailed description of the proposed
network structure is described in the supplementary material.

We train the network with a learning rate of 0.0002. As the epoch increases,
we decrease A1 and Ag in (1). With this training strategy, the network focuses
on predicting a mask in the beginning, while it becomes more important to gen-
erate realistic images in the end. The mini-batch size is 64, and the momentum
of the Adam optimizer [9] is set to 0.5. During training, we first update the
discriminator network and then update the generator network twice.

As this work introduces a new image generation problem, we carry out exten-
sive experiments to demonstrate numerous potential applications and ablation
studies as summarized in Table 1. Due to space limitation, we present some re-
sults in the supplementary material. All the source code and datasets will be
made available to the public.

4.1 Datasets

The CelebA dataset [16] contains 202,599 celebrity images with large pose varia-
tions and background clutters (see Figure 8(a)). There are 10,177 identities with
various attributes, such as eyeglasses, hat, and mustache.We use aligned and
cropped face images of 108 x 108 pixels. The network is trained for 25 epochs.
Based on the CelebA dataset, we use the method [8] to generate a set of
high-quality images. The CelebA-HQ dataset consists of 30,000 aligned images
of 1,024 x 1,024 pixels for human face. The network is trained for 100 epochs.
There are two car datasets [37,11] used in this paper. The CompCars dataset
[37] includes images from two scenarios: the web-nature and surveillance-nature
(see Figure 8(c)). The web-nature data contains 136,726 images of 1,716 car
models, and the surveillance-nature data contains 50,000 images. The network
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Table 1. Setups for numerous experiments in this work.

Experiment Description

The main experiment of this paper. It aims to generate an en-
tire image from key local patches without knowing their spatial
location (Figure 6, Figure 8 and supplementary materials ).

Image generation
from key patches

It relaxes the assumption of the input from key patches to random
patches. It is more difficult problem than the original task. We
show reasonable results with this challenging condition.

Image generation
from random patches

Generating images from patches of different objects. This is a new
Part combination application of image synthesis as we can combine human faces or
design new cars by a patch-level combination (Figure 9).

We perform a classification task based on the feature representa-
tion of our trained network. As such, we can classify objects by
only using their parts as an input.

Unsupervised
feature learning

It shows the effectiveness of the proposed objective function in
(4) compared to the naive GAN loss. Generated images from our
loss function is more realistic.

An alternative
objectvie function

We evaluate three different network architectures; auto-encoder
based approach, conditional GAN based method, and the pro-
posed network without mask prediction network.

An alternative
network structure

We change the number of input patches for the CelebA dataset.
The proposed algorithm renders proper images for a different
number of inputs.

Different number of
input patches

To consider practical scenarios, we degrade the input patches
using a noise. Experimental results demonstrate that the trained
network is robust to a small amount of noise.

Degraded
input patches

As there is no rule of thumb to assess generated images, we carry

tud, . .
User study out user study to evaluate the proposed algorithm quantitatively.

is trained for 50 epochs to generate 128x128 pixels images. To generate high-
quality images (256 x 256 pixels), 30,000 training images are used and the network
is trained for 300 epochs. The Stanford Cars dataset [11] contains 16,185 images
of 196 classes of cars (see Figure 8(d)). They have different lighting conditions
and camera angles. Furthermore, a wide range of colors and shapes, e.g., sedans,
SUVs, convertibles, trucks, are included. The network is trained for 400 epochs.

The flower dataset [19] consists of 102 flower categories (see Figure 8(e)).
There is a total of 8,189 images, and each class has between 40 and 258 images.
The images contain large variations in the scale, pose, and lighting condition.
We train the network for 800 epochs.

The waterfall dataset consists of 15,323 images taken from various viewpoints
(see Figure 8(b)). It has different types of waterfalls as images are collected
from the internet. It also includes other objects such as trees, rocks, sky, and
ground, as images are obtained from natural scenes. For this dataset, we allow
tall candidate boxes, in which the maximum height is 70% of the image height,
to catch long water streams. The network is trained for 100 epochs.
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Fig. 6. Generated images and predicted masks on the CelebA-H(Q dataset. Three key
local patches (Input 1, Input 2, and Input 3) are from a real image (Real). Given
inputs, images and masks are generated. We present masked generated images (Gen
M) and masked ground truth images (Real M).

The ceramic dataset is made up of 9,311 side-view images (see Figure §(f)).
Images of both Eastern-style and Western-style potteries are collected from the
internet. The network is trained for 800 epochs.

4.2 Image Generation Results

Figure 6, Figure 7, and Figure 8 shows image generation results of different ob-
ject classes. Each input has three key patches from a real image and we show
both generated and original ones for visual comparisons. For all datasets, which
contain challenging objects and scenes, the proposed algorithm is able to gen-
erate realistic images. Figure 6 and Figure 7 show that the proposed algorithm
is able to generate high-resolution images. In addition, input patches are well
preserved around their original locations. As shown in the masked images, the
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Fig. 7. Generated images and predicted masks on the CompCars dataset.

proposed problem is a superset of the image inpainting task since known regions
are assumed to available in the latter task. While the CelebA-HQ dataset pro-
vides high-quality images, we can generate more diverse results on the original
CelebA dataset as shown in Figure 8(a). The subject of the generated face images
may have different gender (column 1 and 2), wear a new beanie or sunglasses
(column 3 and 4), and become older, chubby, and with new hairstyles (column
5-8). Even when the input key patches are concentrated on the left or right sides,
the proposed algorithm can generate realistic images (column 9 and 10). In the
CompCars dataset, the shape of car images is mainly generated based on the
direction of tire wheels, head lights, and windows. As shown in Figure 7 and
Figure 8(c), the proposed algorithm can generate various poses and colors of
cars while keeping the original patches properly. For some cases, such as column
2 in Figure 8(c), input patches can be from both left or right directions and
the generation results can be flipped. It demonstrates that the proposed algo-
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(e) Flower dataset (f) Ceramic dataset

Fig. 8. Examples of generated masks and images on six datasets.

rithm is flexible since the correspondence between the generated mask and input
patches, e.g., the left part of the mask corresponds to the left wheel patch, is not
needed. Due to the small number of training samples compared to the CompCars
dataset, the results of the Stanford Cars dataset are less sharp but still realistic.
For the waterfall dataset, the network learns how to draw a new water stream
(column 1), a spray from the waterfall (column 3), or other objects such as rock,
grass, and puddles (column 10). In addition, the proposed algorithm can help
restoring broken pieces of ceramics found in ancient ruins (see Figure 8(f)).
Figure 9 shows generated images and masks when input patches are obtained
from different persons. The results show that the proposed algorithm can handle
a wide scope of input patch variations. For example, inputs contain different
skin colors in the first column. In this case, it is not desirable to exactly preserve
inputs since it will generate a face image with two different skin colors. The
proposed algorithm generates an image with a reasonable skin color as well
as the overall shape. Other cases include with or without sunglasses (column
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Fig.9. Results on the CelebA dataset when input patches come from other images.
Input 1 and Input 2 are patches from Real 1. Input 3 is a local region of Real 2. Given
inputs, the proposed algorithm generates the image (Gen) and mask (Gen M).

2), different skin textures (column 3), hairstyle variations (column 4 and 5),
and various expressions and orientations. Despite large variations, the proposed
algorithm is able to generate realistic images.

5 Conclusions

We introduce a new problem of generating images based on local patches with-
out geometric priors. Local patches are obtained using the objectness score to
retain informative parts of the target image in an unsupervised manner. We pro-
pose a generative network to render realistic images from local patches. The part
encoding network embeds multiple input patches using a Siamese-style convo-
lutional neural network. Transposed convolutional layers with skip connections
from the encoding network are used to predict a mask and generate an image.
The discriminator network aims to classify the generated image and the real im-
age. The whole network is trained using the spatial, appearance, and adversarial
losses. Extensive experiments show that the proposed network generates realistic
images of challenging objects and scenes. As humans can visualize a whole scene
with a few visual cues, the proposed network can generate realistic images based
on given unordered image patches.
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