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Abstract. Annotation errors and bias are inevitable among different
facial expression datasets due to the subjectiveness of annotating fa-
cial expressions. Ascribe to the inconsistent annotations, performance of
existing facial expression recognition (FER) methods cannot keep im-
proving when the training set is enlarged by merging multiple datasets.
To address the inconsistency, we propose an Inconsistent Pseudo Anno-
tations to Latent Truth(IPA2LT) framework to train a FER model from
multiple inconsistently labeled datasets and large scale unlabeled data.
In IPA2LT, we assign each sample more than one labels with human an-
notations or model predictions. Then, we propose an end-to-end LTNet
with a scheme of discovering the latent truth from the inconsistent pseudo
labels and the input face images. To our knowledge, IPA2LT serves as the
first work to solve the training problem with inconsistently labeled FER
datasets. Experiments on synthetic data validate the effectiveness of the
proposed method in learning from inconsistent labels. We also conduct
extensive experiments in FER and show that our method outperforms
other state-of-the-art and optional methods under a rigorous evaluation
protocol involving 7 FER datasets.

1 Introduction

Facial expressions convey varied and nuanced meanings. Automatically recogniz-
ing facial expression is important to understand human’s behaviors and interact
with them. During the last decades, the community has made promising pro-
gresses in building datasets and developing methods for facial expression recog-
nition (FER). Datasets have sprung up for both in-the-lab and in-the-wild fa-
cial expressions, such as CK+[20], MMI[28], Oulu-CASTA[33], SFEW/AFEW|7],
AffectNet[22], EmotioNet[2], RAF-DB[16], and others. Based on these datasets,
lots of FER approaches are proposed and achieve the state-of-the-art perfor-
mance|[27, 25, 30,4, 14, 34, 18].

However, errors and bias of human annotations exist among different datasets.
As been known, it is subjective to classify the face expression into several emo-
tional categories. Human’s understanding of facial expressions varies with differ-
ent cultures, living environments, and other experiences. Although the human
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Fig. 1. (a) Inconsistent predictions due to the annotations bias in AffectNet and RAF.
(b) Test accuracy on different datasets with varied combination of training data.

coders are claimed to be trained before the annotation tasks[16, 30|, the bias of
annotations is inevitable among different datasets, because teams from differ-
ent backgrounds would have different criterions in controlling the quality of the
released datasets. The annotation bias results in two main issues: (1) FER sys-
tems are easy to heritage the recognition bias from the training dataset. Fig.1(a)
shows examples of the inconsistent predictions caused by the annotation bias in
AffectNet and RAF datasets. The faces presented on the left have similar expres-
sions but they are labeled as “fear” in AffectNet and as “disgust” in RAF. As a
consequence, the two models trained from AffectNet and RAF have inconsistent
predictions on the unlabeled images presented on the right. They are predicted
as “fear” by the AffectNet-trained model but as “disgust” by the RAF-trained
one. (2) It is difficult to accumulate the benefit of different datasets by simply
merging them as a whole during the training process. Fig.1(b) shows the test
accuracy on different test sets with varied combination of training data. As can
be seen, models trained from the most data are not sufficient to be the best one.
On RAF-test, the model trained from the union of AffectNet and RAF(A+R)
has lower test accuracy than the one trained from RAF only. On posed facial
expression data, model A+R performs worse than the one from AffectNet only.

To address the issues, we propose a 3-step framework to build a FER system
on inconsistently annotated datasets. We name the framework as Inconsistent
Pseudo Annotations to Latent Truth (IPA2LT) because it tags multiple labels
for each image with the human annotations or predicted pseudo labels, and then
learns a FER model to fit the latent truth from the inconsistent pseudo labels.
Fig.2 illustrates the main idea of the IPA2LT framework. IPA2LT consists of
three steps. It first trains two machine annotators from data A and B respec-
tively. The predictions by machine annotators and the human annotations are
probably to be inconsistent. They are used as multiple labels for each image in
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Fig.2. Three steps in the proposed Inconsistent Pseudo Annotations to Latent
Truth(IPA2LT) framework.

several human labeled datasets as well as the large scale unlabeled data. Un-
labeled data serves as the bridge between data A and B by sharing the same
machine annotators with them. Then, IPA2LT trains a Latent Truth Net(LTNet)
to discover the latent true label. LTNet is end-to-end trainable and therefore it
can estimate the latent truth depending on both the input face image and the in-
consistent labels. During the inference, the learned LTNet is applied to estimate
the true label for a new face. Our contributions are summarized as follows:

1. We propose a relatively unexplored problem: how to learn a classifier from
more than one datasets with different annotation preferences. To the best of our
knowledge, it is the first work that addresses the annotation inconsistency in
different FER datasets.

2. We introduce a IPA2LT framework to train a FER model from multiple
inconsistently labeled datasets and the large scale unlabeled data. In the frame-
work, we propose an end-to-end trainable LTNet! embedded with a scheme of
discovering the latent truth given multiple observed(or predicted) labels and the
input face images.

3. Experiments on both synthetic and real data validate the effectiveness of
the proposed method in learning from inconsistent labels. We conduct extensive
experiments in FER and show the advantages of IPA2LT over the state-of-the-art
under a rigorous evaluation protocol involving 7 FER datasets.

! Code available at https://github.com/dualplus/LTNet.
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2 Related work

The proposed method aims to train a classifier from inconsistently labeled datasets.
The inconsistent labels associate with multiple noisy labels. Therefore we review
the related work about the methods with inconsistent labels and noisy labels.

Methods with inconsistent labels: A straightforward way to address in-
consistent labels is using “soft labels” during the training process. For example,
He et. al.[11] dealt with the noisy labels from multiple annotators by proposing
a loss that incorporates the “soft labeling” in a max-margin learning framework.
The soft labels based methods assume all the annotations to have equal con-
tributions in rating the importance, and ignore that some annotations are less
reliable than others.

Another typical way is the ones in estimating the ground truth in crowd-
sourcing[35]. These works estimate the latent truth from different annotators
using EM algorithm. As early as 1979, Dawid and Skene[5] proposed to solve the
labeling task with & different categories by assuming each worker to be associated
with a k x k confusion matrix, where the (I, ¢)-th entry represents the probability
that a sample in class [ is labeled as class ¢ by the worker. The EM-based
methods have had empirical success in determining the labels in crowdsourcing|3,
19, 36, 32]. Considering the label qualities from different annotators, methods are
proposed to iteratively qualify the annotators and estimate the latent truths,
such as using Gaussian Mixture Model and Bayesian Information Criterion[31],
Chinese restaurant process[23], and other probabilistic frameworks.

However, the methods in crowdsourcing focus on estimating the ground truth
of the samples that already have a set of inconsistent annotations. They ignore
the mapping between the latent truth and the input data and make few efforts on
learning a predictor to estimate labels for unseen samples. We focus on training
the predictor for unseen samples and capture the relations between the input
data and the true labels.

Methods with noisy labels: To address the noisy labels, numbers of meth-
ods were proposed. One idea is to leverage a small set of clean data. The clean
data is used to assess the quality of the labels during the training process [17, 29,
6], or to train the feature extractors[l], or to estimate the distribution of noisy
labels[26]. For example, Li et.al.[17] proposed a unified distillation framework
using information from a small clean dataset and label relations in knowledge
graph, to hedge the risk of learning from noisy labels. Veit et.al.[29] comprised
a multi-task network that jointly learns to clean the noisy annotations and to
classify the images. Azadi et.al.[1] selected reliable images by an auxiliary image
regularization for deep CNNs with noisy labels. The CNN feature extractor was
trained from a set of clean data. Sukhbaatar and Fergus [26] introduced an extra
layer into the network to adapt the network outputs to match the noisy label
distribution and they estimated the layer’s parameters from clean and noisy
data.

Other methods do not need a set of clean data but assume extra constrains
or distributions on the noisy labels[21], such as proposing losses for randomly
flipped labels[24], regularizing the deep networks on corrupted labels by a Metor-
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Net[13], augmenting the prediction objective with the similarities and improving
the learner iteratively using bootstrapping[15], and other approaches that intro-
ducing constrains. As a very similar work to the proposed LTNet, Goldberger
and Ben-Reuven[9] modeled the noise by a softmax layer that connects the cor-
rect labels to the noisy ones. They presented a neural-network approach that
optimizes the same likelihood function as optimized by the EM algorithm. LT-
Net differs from this work, as well as other methods with noisy labels, by that
we consider each sample having several annotations rather than one for each.
Therefore, we can discover the noise patterns from the multiple anotations.

3 Proposed method

3.1 IPA2LT framework

We propose an Inconsistent Pseudo Annotations to Latent Truth(IPA2LT) frame-
work to train a FER model from multiple inconsistently labeled datasets. IPA2LT
leverages large scale unlabeled data as well as several human labeled datasets.
In IPA2LT, each sample has more than one annotations, including the observed
or predicted ones. With the inconsistent pseudo annotations, IPA2LT builds an
end-to-end network LTNet to fit the latent truth.

Figure 2 illustrates the 3-step IPA2LT framework. Let us suppose that we are
given two human labeled datasets A and B, and the unlabeled data U. Note that
the IPA2LT framework is flexible to be adapted to more than two human labeled
datasets. As can be seen in the Step 1 in Fig. 2, IPA2LT trains two machine
coders (M and Mp) from the two datasets A and B, respectively. In Step 2,
IPA2LT makes pseudo annotations for both the human labeled and unlabeled
data using the predictions by machine coders. Specifically, we predict data A
using Mg and thus data A has two sets of labels, i.e., the human annotated one
and the Mp-predicted one. Similarly, data B has two sets labels as the human
annotated one and the M-predicted one. We also estimate two sets of labels
for the large scale unlabeled data U using M s and Mg, respectively. Then, each
sample has two labels that are probably inconsistent. In Step 3, IPA2LT trains
an end-to-end Latent Truth Net(LTNet) to discover the latent truth considering
the inconsistent labels and the input images. A scheme of discovering the latent
truth is embedded in LTNet. During the inference, the learned LTNet can be
used to estimate the true label for a new face image.

The first two steps can be complemented easily by adopting any classification
methods as the machine coders and using them to predict the pseudo labels.
Yet, it is non-trivial to train a model that fits the latent truth provided multiple
inconsistent annotations. To achieve this, we propose an end-to-end trainable
LTNet that is embedded with a scheme of discovering the latent truths from
multiple observed(or predicted) labels and the input images.

3.2 Formulation of LTNet

Inconsistent annotations are caused by the labeling preference bias of different
annotators when they are labeling a set of data. Each annotator has a coder-
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specific bias in assigning the samples to some categories. Mathematically speak-
ing, let X = {x;,...,xn} denote the data, y° = [y$,...,y%] the annotations by
coder c. Inconsistent annotations assume that

P(yp|xn) # Pynlxn),Vxn € X, i # ] (1)

where P(y*|x,) denotes the probability distribution that coder i annotates sam-
ple x,,.

LTNet assumes that each sample x,, has a latent truth y,. Without the
loss of generality, let us suppose that LTNet classifies x,, into category ¢ with
probability P(y, = i|x,;©), where © denotes the network parameters. If x,, has
a ground truth of i, coder ¢ has an opportunity of 7{; = P(y;, = jly, = i) to
annotate x,, as j, where y¢ is the annotation of sample x,, by coder c. Then, the
sample x,, is annotated as label j by coder ¢ with a probability of:

L
P(ys, = jlxn;©) = Y P(ys; = jlyn = i) Pyn = ilxn; ©), (2)

=1

where L is the number of categories and ZJL P(ys = jlyn =1) = Zf =1
Given the annotations from C' different coders on data X, LTNet aims to
maximize the loglikelihood of the observed annotations as:

,fax log (Py!y?,---,y74:0)) (3)
where y° = [y§,yS, - ,yJCV]T is the annotations by coder ¢ on the N samples in

X. T¢ = [7f;]Lxr denotes the transition matrix with rows summed to 1. The
loglikelihood is computed as:

N C L
=22 D L = )log (7;Plyn = ilxn; 0)) (4)

where 1(-) is the indicating function. It equals to 1 if the condition in the bracket
holds and equals to 0 otherwise.

3.3 Solutions to the objective function of LTNet

The objective function (3) aims to find the transition matrics T!,---,T¢ and
the optimal parameters © that are used to compute the latent truths for the
input data X.

It is difficult to optimize (3) because it is NP hard. An intuitive approach is
to solve (3) in two separate steps: estimate the latent truth using Dawid&Skene’s
EM algorithm[5] and then train the network with the estimated labels. The EM
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Fig. 3. Architecture of the end-to-end trainable LTNet. Each row of the transition
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algorithm alternatively optimizes the latent truth {y,})_, and the transition
matrices T¢ Ve € {1,---,C} by maximizing:
)

max clOgP(yl’yz’--- Y ) (5)

{yn}ﬁ]:th’“' , T

where P(y',y%, - ,y9) = [T_, 11, Hle (75P(yn = i))l(y"zj). During the
E-step in each iteration of EM algorithm, we fix the transition matrices T¢, Ve €
{1,---,C} and compute the expectation of latent truth {y,}Y ;. During the
M-step, we fix the latent truth {y,})_; and optimize the transition matrices
T, Ve € {1,---,C}. After several iterations in EM algorithm, we can have the
estimated latent truth for each sample. Then, we train a convolution neural
network for FER, whose parameters are ©, to fit the estimated latent truth.

The 2-step solution estimates the latent truth and learns the classifier pa-
rameters separately. It ignores the relations between the input images and the
latent truths. The latent truth should also be determined according to the raw
images rather than only to the annotations by multiple coders. To this end,
we integrate the Dawid&Skene’s[5] and the CNN into an end-to-end trainable
architecture LTNet.

Figure 3 illustrates the architecture of LTNet. LTNet takes facial images as
inputs and estimates the latent truths’ probability distribution p through a basic
deep convolution neural network. Then, rather than minimizing the discrepancy
between the estimated truths and the observed labels directly, LTNet predicts
each coder’s annotation and minimizes the discrepancy between the predicted
and observed annotations. Specifically, the estimated truths are passed through
a coder-specific probability transition layer to get the predictions of coder c’s
annotation. Coder ¢’s probability transition layer has the transition matrix T¢ €
RIXL as parameters, where L is the number of categories. T¢’s entry 7;; denotes
the probability that coder ¢ annotates a sample as category j if the sample is
with ground truth i. Each row of T* indicates a probability distribution and thus
is summed to 1. The probability transition layer takes the input as the ground
truths’ probability p = [P(y = 1]x,0),--- , P(y = L|x,0)]T, and then outputs
the predicted distribution of coder ¢’s annotation as p¢ = p ' T¢. To ensure that
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each row of T is summed to 1, we normalize each row of T before each forward
process. Note that other tricks can be adopted to keep T¢’s rows summed to 1
as well. For example, the probability transition layers can take the row of T¢ as
the output of soft-max operation on a L-dimensional vector.

Finally, parameters in LTNet is learned by minimizing the cross-entropy loss
of the predicted and observed annotations for each coder as:

N C L
min — 1(y;, = k) log(p;, (k 6
o ey ;c:l 2 ( ) log(py, (K)) (6)
L
st Yy rh=1Vi=1,..,L (7)

where N is the number of samples, C is the number of coders, and L is the
number of categories. 7 is the element of T°. y;, is the annotation of the n-th
sample by coder c. p¢ = [p¢(1),--- ,pS(L)]" denotes the predicted distribution
of coder ¢’s annotation on the n-th sample. Solving (6) is equivalent to solving the
objective function (3). LTNet can be optimized by back-propagation methods.

4 Experiments

4.1 Evaluations on synthetic inconsistently labeled data

Data The synthetic data was builded from the widely used CIFAR-10 dataset,
which contained 60,000 tiny images in 10 categories. In CIFAR-10, 10000 im-
ages (1000 image/category) were chosen as the test part and the others were the
training part. We synthesized 3 pieces of inconsistent annotations for the train-
ing samples by randomly revising 20%, 30%, and 40% of the corrected labels,
respectively. The artificial noisy labels were distributed uniformly in different
categories. The test set remained clean and was used to evaluate the approaches
in our experiments.

Comparison to other methods We compared LTNet with 3 types of meth-
ods: i) basic CNNs trained on a single set of noisy labels; ii) basic CNNs trained
on all the 3 pieces of noisy labels with different label selecting strategy, i.e.,
simply mixing all the labels or selecting the majority ratings as labels; and iii)
state-of-the-art methods that address inconsistent or noisy labels, i.e., AIR[1],
NAL[9], EM4+CNN|[5,32]. In AIR, we trained a CNN from the mixture of the
noisy labels and used the features from the trained CNN to do the afterward
Lqs-norm regularization. In NAL, we regarded the mixture of the three noisy
sets as a whole. EM+CNN is similar to the 2-step solution in Section 3.3, where
we used EM algorithms to estimate the latent truth, and then trained a CNN on
the latent truth. In our experiments, we used two ways to initialize the EM algo-
rithm, i.e., majority rating [5] and spectral method[32]. The source code for AIR
and EM are downloaded from the authors’ website. NAL was re-implemented
by ourselves. No other datasets were used to pre-train or initialize the models in
all of the experiments.
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Table 1. Test accuracy on CIFAR-10 with noisy labels

Training data | Methods | Test Acc.(%)
clean ‘ basic CNN ‘ 87.43
40% noise (A)|basic CNN 62.50
30% noise (B)|basic CNN 68.70
20% noise (C)|basic CNN 75.15
mixture of ABC|basic CNN 84.04
mixture of ABC|AIR[1] 76.37
mixture of ABC|NAL[9](re-implementation) 84.41
majority ratings of ABC|basic CNN 82.95
inconsistent annotations| EM+CNN (majority init.[5]) 77.65
inconsistent annotations| EM+CNN/(spectral init.[32]) 78.82
inconsistent annotations|LTNet (proposed) 87.23

The test accuracy of all the methods are shown in Table 1. We also report the
test accuracy of the basic CNN trained on clean data. As can be seen in Table
1, whichever methods are used, using all the inconsistently labeled sets boosts
the performance of the models using a single noisy set. Because the multiple
annotations, although being inconsistent, convey more correct information than
a single set of noisy labels.

Within the methods trained on mixture data, we observe that the end-to-end
methods (e.g., basic CNN on mixture data or majority ratings, NAL, LTNet)
are significantly better than the step-by-step methods (e.g., AIR, EM+CNN).
A viable explanation is that the end-to-end methods can intrinsically capture
the relations between the input image and inconsistent labels. But the step-by-
step methods separately capture the relations between the input images and the
estimated labels, and the relations between the latent truths and inconsistent
labels. Among all the end-to-end methods, the proposed LTNet achieves the
highest test accuracy and has a comparable performance to the CNN trained
from clean data.

To further investigate the methods, we plot the test accuracy curve during
the training iterations in Fig. 4(a). The x-axis is the iteration number during the
training process. As can be seen, the test accuracy curves of LTNet, CNN(clean
data), CNN(mixed all), and ANL keep increasing during the training, while those
of CNN (with 40%, 30%, or 20% noisy labels) and EM+CNN(spectral or major
init) reach a peak value and then decrease as the training iterates. Because the
latter methods are unable to distinguish the incorrect label information from
the noisy labels or estimated ground truth. That is also why the latter methods
have lower test accuracy than the former methods in Table 1.

Latent truth learning To investigate that if LTNet can discover the latent
truth given multiple inconsistent labels, we illustrate the confusion matrix be-
tween the ground truth labels and the LTNet-learned latent truth in Fig.4(b). As
can be seen, the diagonal values are larger than 0.9 and most of them are larger
than 0.95. The average agreement between the true labels and LTNet-learned
latent truth is 0.964. Note that the LTNet was trained on the images with three
sets of noisy labels. The noise percentages are 20%, 30%, and 40%, respectively.
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Fig. 4. (a) Test accuracy curve of different methods during the training process. (b)
Confusion matrix between the true labels and LTNet-learned latent truths. The LT Net
is trained from the mixture of data with 20%, 30%, and 40% noises.

The average agreement between the ground truth and the three noisy labels is
0.7. If we plot confusion matrix between the true labels and the three noisy la-
bels, the diagonal values should be about 0.8, 0.7, and 0.6 respectively. The high
agreement between the ground truth and LTNet-learned latent truth indicates
that LTNet is competent in discovering the latent truth from several inconsistent
and noisy labels.

4.2 Evaluations on facial expression datasets

To validate the effectiveness of the proposed method in the real-world FER
application, we first compared it with the state-of-the-art methods. Since errors
and bias exist in the annotations of different FER datasets, we adopted a rigorous
cross-dataset evaluation protocol and evaluated the methods by their average
performance on 7 different datasets covering both in-the-wild and in-the-lab
(posed) facial expression. Then, we analyzed the inconsistent labels in FER
datasets using the proposed method.

Data Both human annotated data and unlabeled data were used in the exper-
iments. The annotated data includes three FER datasets in-the-wild (RAF[16],
AffectNet[22], and SFEW][7]) and four in-the-lab ones(CK+[20], CFEE[8], MMI[28],
and Oulu-CASTA[33)).

The in-the-wild datasets contain facial expression in real world with various
poses, illuminations, intensities, and other uncontrolled conditions. Both RAF
and AffectNet have images downloaded from the web search engines. RAF[16]
contains 12,271 training samples and 3,068 test samples annotated with six basic
emotional categories (anger, disgust, fear, happy, sad, surprise) and neutral.
Images in RAF were labeled by 315 human coders and the final annotations
were determined through the crowdsourcing techniques. AffectNet[22] contains
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around 400,000 annotated images and each image is labeled by only one human
coder. It includes 5,000 labeled images in 10 categories as the validation set.
We selected around 280,000 images as training samples and 3,500 images as
validation ones with neutral and six basic emotions. SFEW/7] contains images
from movies annotated with neutral or one of the six basic emotions. It has 879
training samples and 406 validation samples.

The in-the-lab datasets record the facial expression in controlled environment
and they usually contain posed expression. CK+[20] contains 593 sequences
from 123 subjects, of which only 327 are annotated with 7 emotion labels (six
basic emotions and contempt). We only used the ones with basic emotion labels
and select the first frame of each sequence as neutral face and the last peak
frame as the emotional face. Hence, 636 images were selected in total. CFEE[8]
contains 230 subjects with 22 images each. For each subject, we selected 7 images
with the six basic emotions and the neutral face. MMI|[28] contains 30 subjects
with 213 videos. For each video, we selected the first 2 images as neutral faces
and the middle one third part as emotional faces. Oulu-CASTA[33] contains
80 subjects with 480 videos. We also selected the first 2 images as neutral faces
and the last two fifth part as emotional faces.

The unlabeled data consists of the un-annotated part of AffectNet (around

700,000 images) and a collection of unlabeled facial images downloaded from
Bing (around 500,000 images).
Experiment settings To evaluate the methods’ generalization ability on data
under the unseen condition, cross-dataset evaluation protocol was applied for
SFEW, CK+, CFEE, MMI, and Oulu-CASIA datasets. In other words, only the
training part of AffectNet (AffTr) and RAF (RAFTr) datasets and the unlabeled
data were utilized to learn the models.

In our experiments, we adopted a 80-layer Residual Network[10] as the basic
network. In the proposed IPA2LT framework, we first trained two basic models
My and Mp from AffTr and RAFTr, respectively. Then, we used M4 to predict
on RAFTr as well as the unlabeled data. Similarly, we assigned another set of
annotations for AffTr and unlabeled data using Mg. The estimated annotations
and the human annotations constituted the inconsistent labels, from which we
trained the LTNet. Parameters in LTNet are initialized by pre-training them on
the union the dataset AffTr and RAFTr. The transition layer is initialized by
a close-to-identity-matrix. It is computed by adding an identity matrix and a
random matrix with each entry positive. Then, each row of the initial matrix is
normalized to have a sum 1. We do not initialize the probability transition matrix
by the identity matrix because the identity matrix has all the non-diagonal
entries as 0, which will not be updated during the training process.

The proposed LTNet was implemented under the framework of Caffe[12].
Stochastic gradient decent method was used to optimize the parameters. The
momentum was 0.9 and the weight decay was 0.0005. The learning rate was
initialized as 0.00001 and decreased with “poly” policy. Parameters v and power
for the learning rate policy was 0.1 and 0.5. The max iteration was set as 300,000.

Comparison with the state-of-the-art We compared the proposed method
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Table 2. Test accuracy (%) of different methods on different test sets with both the
in-the-wild and in-the-lab facial expressions.(Bold: best. Underline: second best.)

W in-the-wild Posed average
Methods RAF AffectNet SFEW CK+ CFEE MMI Oulu-

(te.) (val)  (tr+val) CASTA wild posed overall

AffTr (base)|79.50  56.51 55.64 |91.04 76.09 65.32 61.49 |63.88 73.48 69.37
RAFTr (base)|85.10  44.66 51.75 |79.87 64.41 58.17 52.50 |60.50 63.74 62.35
AffTr+RAFTr (base)|83.28 56.57 56.58 |92.45 76.09 62.90 60.50 |65.48 72.99 69.77

E2E-FC| 23.99  24.00 22.33 |51.73 26.52 22.25 31.28 |23.44 32.95 28.87

AIR[1]|67.37 54.23 49.88 |43.87 64.47 59.64 47.03 |57.16 53.75 55.21

NAL[9]| 84.22  55.97 58.13 |91.20 75.84 64.71 61.00 [66.11 73.19 70.15
IPA2LT(EM[5]4+CNN)|85.30 57.31 54.94 |86.64 72.48 63.11 59.95 |65.85 70.54 68.53
IPA2LT(LTNet)|86.77 55.11 58.29 |91.67 76.02 65.61 61.02 |[66.72 73.58 70.64

with models trained from either or both of AffTr and RAFTr, and the state-
of-the-art methods addressing noisy or inconsistent labels. Table 2 presents the
test accuracy of the methods on different test datasets.

When compared to the models that are directly trained from either or both
of AffTr and RAFTr, the proposed IPA2LT framework with LTNet, denoted
as IPA2LT(LTNet), achieves the highest average test accuracy on in-the-wild,
posed, and the overall facial expressions datasets. The consistent improvements
indicate that the proposed methods cut the edge by exploring the inconsistent
labels in an end-to-end training manner.

In E2E-FC, we replaced the probability transition layers in Fig. 3 with a fully
connected layer that are category general but coder specific. The performance
of E2E-FC is low because the probability distribution constrain is very crucial
in LTNet. With the probability distribution constrain, the last second layer in
LTNet can be interpreted as the hidden truth by a probability distribution.
However, without the constrain, the outputs of the last second layer of E2E-FC
are not essentially the reflections of the hidden truth.

ATR[1] and NAL[9] are methods that address noisy labels. In the experiments
of AIR and NAL, we considered the union of AffTr and RAFTr with their human
annotations as a set of noisy training data. As can be seen in Table 2, both AIR
and NAL have lower test accuracy than IPA2LT(LTNet). Because AIR and NAL
did not consider the annotation bias of different annotators.

We also investigated the two solutions to discover the latent truth by com-
paring IPA2LT(EM+CNN) and TPA2LT(LTNet). For IPA2LT(EM+CNN), we
used the 2-step solution in Section 3.3 to estimate the latent truth. Results in
Table 2 show that LTNet outperforms EM+CNN, because EM+CNN estimates
the latent truth and trains the network separately, ignoring the relations between
the input facial images and the given inconsistent labels.

Analysis of the inconsistent labels in FER To investigate whether the
LTNet has learned a reasonable latent truth, we analyzed the inconsistent labels
by plotting the LTNet-learned transition matrices and the confusion matrices
computed from the estimated truth and the observed annotations in Fig. 5.
The top row shows the transition matrices for different coders. The bottom row
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latent truth

Ne. An. Di. Fe. Ha. Sa. Ne. An. Di. Fe. Ha.
Observed label Observed label

Ne. An. Di. Fe. Ha. Sa. Su.
Observed label

(c)

Ne. An. Sa. Su.

Di. Fe. Ha.
Observed label

=4

T

estimated true label
estimated true label

Ne. An. Di. Fe. Ha. Sa Ne. An. Di. Fe. H;

3 Ne. An. Di. Fe. Ha. Sa. Su.
human annotation human annotation

pesudo annotation

Ne. An. Di. Fe. Ha. Sa. Su
pesudo annotation

(e) (f) (8) (h)

Fig.5. The LTNet-learned transition matrices (top row) and the confusion matrices
counted from the estimated truth and human/predicted annotations (bottom row).
The top row shows transition matrices for coder (a) AffectNet, (b) RAF, (c) AffectNet-
trained model, and (d) RAF-trained model. The bottom row shows statistics on dataset
(e) AffectNet, (f) RAF, (g) Unlabeled data annotated by AffectNet-trained model, and
(h) Unlabeled data annotated by RAF-trained model.

case 1: label 1=label 2=label 3 case 2: label 1#label 2#label 3 case 3:label 3zlabel 2=label 1 case 4: label 3=label 1#label 2 case 2: label 3=label 2#label 1
9788 7 4

label 1: human annotaion
label 2: prediction by

AffTr-traind model
label 3: latent truth

label 1: human annotaion
label 2: prediction by

RAFTr-traind model
label 3: latent truth

label 1: prediction by
AffTr-traind model
label 2: prediction by
RAFTr-traind model
label 3: latent truth

4

#samples in AffTr

2086

#samples in RAFTr

#samples in unlabelled data

case 1 case 2 case 3 case 4 case 5 case 1 case 2 case 3 case 4 case 5

case 1 case 2 case 3 case 4 case 5
@) (b) (©

Fig. 6. Statistics of the 5 cases in (a) AffTr, (b) RAFTY, and (c) unlabeled data.

shows the confusion matrices computed from different datasets. Although the
LTNet-learned transition matrices have larger diagonal values than the confusion
matrices from statistics, the two rows of matrices have similar patterns. Both
the transition matrix and confusion matrix with RAF dataset have the closest
to 1 diagonal values. It means that the human annotations of RAF are the most
reliable. That is reasonable because RAF determines a label from tens of human
coders while AffectNet has only one coder each image and the unlabeled data is
labeled by the trained models. We can also see from Fig. 5 (¢), (d), (g), and (h)
that annotations by the trained models are the least reliable.

We counted the images that have consistent and inconsistent annotations
in AffTr, RAFTr, and the unlabeled data. Fig. 6 plots the statistics of samples
in different cases. Case 1 contains samples with consistent human annotation,
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case 1

HHa'
Y-~
y R:Ha -

AffectNet

RAF

! <
AHa
g i B:An |
G:Ha |

Fig. 7. Examples from the 5 cases in AffectNet, RAF, and the unlabeled data.(H
human annotation, A: prediction by AffTr-trained model, R: prediction by RAFTr-
trained model, G: LTNet-learned truth. Ne: neutral, An: anger, Di: disgust, Fe: fear,
Ha: happy, Sa: sad, and Su: surprise.)

Unlabeled data

latent truth, and model-predicted labels. In Case 2, all the three annotations are
different from each other. In Case 3, the latent truth differs from the other two
while the other two are the same. In Case 4 and 5, the latent truth agrees with
one but differs from the other. Majority of the samples have consistent labels
and very few of them have a latent truth that differs from both the other two
labels. As can be seen from Fig. 6 (¢) that the latent truth agrees more with the
predictions from the AffTr-trained model, because AffiTr contains much more
samples than RAFTr and leads to a more robust FER model. Fig. 7 show some
samples from the 5 cases in the three datasets. As can be seen, the estimated
truth is reasonable whatever the other two labels are.

5 Conclusions

This paper proposed a IPA2LT framework to solve a relatively unexplored prob-
lem, i.e., how to learn a classifier from more than one datasets with inconsistent
labels. To our knowledge, it is the first work to address the annotation incon-
sistency in different facial expression datasets. In the IPA2LT framework, we
proposed an end-to-end trainable network LTNet embedded with a scheme of
discovering the latent truth from multiple inconsistent labels and the input im-
ages. Experiments on both the synthetic and real data validate the effectiveness
and advantages of the proposed method over other state-of-the-art methods that
deal with noisy or inconsistent labels.
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