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Abstract While most steps in the modern object detection methods
are learnable, the region feature extraction step remains largely hand-
crafted, featured by RoI pooling methods. This work proposes a general
viewpoint that unifies existing region feature extraction methods and
a novel method that is end-to-end learnable. The proposed method re-
moves most heuristic choices and outperforms its RoI pooling counter-
parts. It moves further towards fully learnable object detection.

1 Introduction

A noteworthy trait in the deep learning era is that many hand-crafted features,
algorithm components, and design choices, are replaced by their data-driven and
learnable counterparts. The evolution of object detection is a good example.
Currently, the leading region-based object detection paradigm [7,9,6,20,3,14,4,8]
consists of five steps, namely, image feature generation, region proposal genera-
tion, region feature extraction, region recognition, and duplicate removal. Most
steps become learnable in recent years, including image feature generation [6],
region proposal [21,5,20], and duplicate removal [11,12]. Note that region recog-
nition step is learning based in nature.

The region feature extraction step remains largely hand-crafted. The cur-
rent practice, RoI (regions of interest) pooling [6], as well as its variants [9,8],
divides a region into regular grid bins, computes features of the bin from the
image features located nearby to the bin via heuristic rules (avg, max, bilinear
interpolation [8,4], etc), and concatenates such features from all the bins as the
region features. The process is intuitive and works well, but is more like rules of
thumb. There is no clear evidence that it is optimal in some sensible way.

The recent work of deformable RoI pooling [4] introduces a bin-wise offset
that is adaptively learnt from the image content. The approach is shown better
than its RoI pooling counterpart. It reveals the potential of making the region
feature extraction step learnable. However, its form still resembles the regular
grid based pooling. The learnable part is limited to bin offsets only.

⋆ This work is done when Jiayuan Gu is an intern at Microsoft Research Asia.
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This work studies fully learnable region feature extraction. It aims to im-
prove the performance and enhance the understanding of this step. It makes the
following two contributions.

First, a general viewpoint on region feature extraction is proposed. The fea-
ture of each bin (or in a general sense, part) of the region is formulated as a
weighted summation of image features on different positions over the whole im-
age. Most (if not all) previous region feature extraction methods are shown to
be specialization of this formulation by specifying the weights in different ways,
mostly hand-crafted.

Based on the viewpoint, the second contribution is a learnable module that
represents the weights in terms of the RoI and image features. The weights
are affected by two factors: the geometric relation between the RoI and image
positions, as well as the image features themselves. The first is modeled using
an attention model as motivated by [22,12]. The second is exploited by simply
adding one convolution layer over the input image features, as motivated by [4].

The proposed method removes most heuristic choices in the previous RoI
pooling methods and moves further towards fully learnable object detection. Ex-
tensive experiments show that it outperforms its RoI pooling counterparts. While
a naive implementation is computationally expensive, an efficient sparse sam-
pling implementation is proposed with little degradation in accuracy. Moreover,
qualitative and quantitative analysis on the learnt weights shows that it is fea-
sible and effective to learn the spatial distribution of such weights from data,
instead of designing them manually.

2 A General Viewpoint on Region Feature Extraction

Image feature generation step outputs feature maps x of spatial size H × W
(usually 16× smaller than that of the original image due to down sampling
of the network [20]) and Cf channels. Region proposal generation step finds a
number of regions of interest (RoI), each a four dimensional bounding box b.

In general, the region feature extraction step generates features y(b) from x

and an RoI b as

y(b) = RegionFeat(x, b). (1)

Typically, y(b) is of dimension K×Cf . The channel number is kept the same
as Cf in x and K represents the number of spatial parts of the region. Each
part feature yk(b) is a partial observation of the region. For example, K is the
number of bins (e.g., 7 × 7) in the current RoI pooling practice. Each part is a
bin in the regular grid of the RoI. Each yk(b) is generated from image features
in x within the bin.

The concepts above can be generalized. A part does not need to have a
regular shape. The part feature yk(b) does not need to come from certain spatial
positions in x. Even, the union of all the parts does not need to be the RoI itself.
A general formulation is to treat the part feature as the weighted summation of
image features x over all positions within a support region Ωb, as
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yk(b) =
∑

p∈Ωb

wk(b, p,x)⊙ x(p). (2)

Here, Ωb is the supporting region. It could simply be the RoI itself or in-
clude more context, even the entire image. p enumerates the spatial positions
within Ωb. wk(b, p, x) is the weight to sum the image feature x(p) at the position
p. ⊙ denotes element-wise multiplication. Note that the weights are assumed
normalized, i.e.,

∑

p∈Ωb
wk(b, p, x) = 1.

We show that various RoI pooling methods [6,9,8,4] are specializations of
Eq. (2). The supporting region Ωb and the weight wk(·) are realized differently
in these methods, mostly in hand-crafted ways.

Regular RoI Pooling [6] The supporting region Ωb is the RoI itself. It is divided
into regular grid bins (e.g., 7× 7). Each part feature yk(b) is computed as max
or average of all image features x(p) where p is within the kth bin.

Taking averaging pooling as an example, the weight in Eq. (2) is

wk(b, p) =

{

1/|Rbk| if p ∈ Rbk

0 else
(3)

Here, Rbk is the set of all positions within the kth bin of the grid.
The regular pooling is flawed in that it cannot distinguish between very close

RoIs due to spatial down sampling in the networks, i.e., the spatial resolution
of the image feature x is usually smaller (e.g., 16×) than that of the original
image. If two RoIs’ distance is smaller than 16 pixels, their Rbks are the same,
and so are their features.

Spatial Pyramid Pooling [9] Because it simply applies the regular RoI pooling
on different levels of grid divisions, it can be expressed via simple modification
of Eq. (2) and (3). Details are irrelevant and omitted here.

Aligned RoI Pooling [8] It remedies the quantization issue in the regular RoI
pooling above by bilinear interpolation at fractionally sampled positions within
each Rbk. For simplicity, we assume that each bin only samples one point, i.e.,
its center (ubk, vbk)

4. Let the position p = (up, vp). The weight in Eq. (2) is

wk(b, p) = g(up, ubk) · g(vp, vbk), (4)

where g(a, b) = max(0, 1 − |a − b|) denotes the 1-D bilinear interpolation
weight. Note that the weight in Eq. (4) is only non-zero for the four positions
immediately surrounding the sampling point (ubk, vbk).

4 In practical implementation [8], multiple (e.g., 4) points are sampled within each bin
and their features are averaged as the bin feature. This is beneficial as more image
position features get back-propagated gradients.
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Because the weight in Eq. (4) depends on the bin center (ubk, vbk), the region
features are sensitive to even subtle changes in the position of the RoI. Thus,
aligned pooling outperforms its regular pooling counterpart [8].

Note that everything till now is hand-crafted. Also, image feature x is not
used in wk(·) in Eq. (3) and (4).

Deformable RoI pooling [4] It generalizes aligned RoI pooling by learning an
offset (δubk, δvbk) for each bin and adding it to the bin center. The weight in
Eq. (4) is extended to

wk(b, p,x) = g(up, ubk + δubk) · g(vp, vbk + δvbk). (5)

The image feature x appears here because the offsets are produced by a
learnable submodule applied on the image feature x. Specifically, the submodule
starts with a regular RoI pooling to extract an initial region feature from image
feature, which is then used to regress offsets through an additional learnable
fully connected (fc) layer.

As the weight and the offsets depend on the image features now and they
are learnt end-to-end, object shape deformation is better modeled, adaptively
according to the image content. It is shown that deformable RoI pooling out-
performs its aligned version [4]. Note that when the offset learning rate is zero,
deformable RoI pooling strictly degenerates to aligned RoI pooling.

Also note that the supporting region Ωb is no longer the RoI as in regular
and aligned pooling, but potentially spans the whole image, because the learnt
offsets could be arbitrarily large, in principle.

2.1 More Related Works

Besides the RoI pooling methods reviewed above, there are more region feature
extraction methods that can be thought of specializations of Eq. (2) or its more
general extension.

Region Feature Extraction in One-stage Object Detection [17,19,15] As opposed
to the two-stage or region based object detection paradigm, another paradigm
is one-stage or dense sliding window based. Because the number of windows
(regions) is huge, each region feature is simply set as the image feature on the
region’s center point, which can be specialized from Eq. (2) as K = 1, Ωb =
{center(b)}. This is much faster but less accurate than RoI pooling methods.

Pooling using Non-grid Bins [1,23] These methods are similar to regular pool-
ing but change the definition of Rbk in Eq. (3) to be non-grid. For example,
MaskLab [1] uses triangle-shaped bins other than rectangle ones. It shows better
balance in encoding center-close and center-distant subregions. In Interpretable
R-CNN [23], the non-grid bins are generated from the grammar defined by an
AND-OR graph model.
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Figure 1. Illustration of the proposed region feature extraction module in Eq. (2)
and (7).

MNC [2] It is similar as regular RoI pooling. The difference is that only the bins
inside the mask use Eq. (3) to compute weights. The weights of the bins outside
are zeros. This equals to relax the normalization assumption on wk.

Deformable Part-based RoI Pooling [18] It is similar as deformable RoI pool-
ing [4] that each bin is associated with an offset. Hence, the weight definition
also has a term of offset as Eq. (5) but it uses regular pooling instead of bi-
linear interpolation. Another main difference is that the offsets are determined
by minimizing an energy function, while in deformable RoI pooling the offsets
are determined by input features through a regular RoI pooling layer and the
following fully connected layer.

Position Sensitive RoI Pooling [3,13] It is similar as regular RoI pooling. The
difference is that each bin only corresponds to a subset of channels in the image
feature x, instead of all channels. This can be expressed by extending Eq. (2) as

yk(b) =
∑

p∈Ωb

wk(b, p,xk)⊙ xk(p), (6)

where xk only contains a subset of channels in x, according to the kth bin.

3 Learning Region Features

Regular and aligned RoI pooling are fully hand-crafted. Deformable RoI pooling
introduces a learnable component, but its form is still largely limited by the
regular grid. In this work, we seek to learn the weight wk(b, p,x) in Eq. (2) with
minimum hand crafting.

Intuitively, we consider two factors that should affect the weight. First, the
geometric relation between the position p and RoI box b is certainly critical. For
example, positions within b should contribute more than those far away from it.
Second, the image feature x should be adaptively used. This is motivated by the
effectiveness of deformable RoI pooling [4].
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Therefore, the weight is modeled as the exponential of the sum of two terms

wk(b, p,x) ∝ exp(Gk(b, p) +Ak(x, p)). (7)

The first term Gk(b, p) in Eq. (7) captures geometric relation as

Gk(b, p) = 〈W box
k · Ebox(b),W im · E im(p)〉. (8)

There are three steps. First, the box and image positions are embedded into
high dimensional spaces similarly as in [22,12]. The embedding is performed by
applying sine and cosine functions of varying wavelengths to a scalar z, as

E2i(z) = sin(
z

10002i/CE

), E2i+1(z) = cos(
z

10002i/CE

).

The embedding vector E(z) is of dimension CE . The subscript i above ranges
from 0 to CE/2 − 1. The image position p is embedded into a vector E im(p) of
dimension 2 ·CE , as p has two coordinates. Similarly, each RoI box b is embedded
into a vector Ebox(b) of dimension 4 · CE .

Second, the embedding vectors E im(p) and Ebox(b) are linearly transformed
by weight matrices W im and W box

k , respectively, which are learnable. The trans-
formed vectors are of the same dimension Cg. Note that the term W box

k · Ebox(b)
has high complexity because the Ebox(b)’s dimension 4 ·CE is large. In our imple-
mentation, we decompose W box

k as W box
k = Ŵ box

k V box. Note that V box is shared
for all the parts. It does not have subscript k. Its output dimension is set to CE .
In this way, both computation and the amount of parameters are reduced for
the term W box

k · Ebox(b).

Last, the inner product of the two transformed vectors is treated as the
geometric relation weight.

Eq. (8) is basically an attention model [22,12], which is a good tool to capture
dependency between distant or heterogeneous elements, e.g., words from different
languages [22], RoIs with variable locations/sizes/aspect ratios [12], and etc, and
hence naturally bridges the target of building connections between 4D bounding
box coordinates and 2D image positions in our problem. Extensive experiments
show that the geometric relations between RoIs and image positions are well
captured by the attention model.

The second term Ak(x, p) in Eq. (7) uses the image features adaptively. It
applies an 1× 1 convolution on the image feature,

Ak(x, p) = W app
k · x(p), (9)

where W app
k denotes the convolution kernel weights, which are learnable.

The proposed region feature extraction module is illustrated in Figure 1.
During training, the image features x and the parameters in the module (W box

k ,
W im, and W app

k ) are updated simultaneously.
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notation description
typical

values
notation description

typical

values

|Ωb| size of support region hundreds N #RoIs 300

H height of image feature x dozens K #parts/bins 49

W width of image feature x dozens CE embed dim. in Eq. (8) 512

Cf #channels of image feature x 256 Cg transform dim. in Eq. (8) 256

module
computational

complexity

naive

(|Ωb|=HW)

efficient

(|Ωb|=200†)

(P1) transform position embedding in Eq. (8) 2HWCECg 0.59G 0.59G

(P2) transform RoI box embedding in Eq. (8) NCE(KCg + 4CE)* 2.1G 2.1G

(P3) inner product in Eq. (8) NK|Ωb|Cg 7.2G 0.72G

(P4) appearance usage in Eq. (9) HWKCf 0.03G 0.03G

(P5) weighted aggregation in Eq. (2) NK|Ωb|Cf 7.2G 0.72G

sum 17.1G 4.16G

Table 1. Top: description and typical values of main variables. Bottom: computa-
tional complexity of the proposed method. †Using default maximum sample numbers as
in Eq. (10) and (11), the average actual sample number is about 200. See also Table 3.
*Note that we decompose W

box
k as W

box
k = Ŵ

box
k V

box, and the total computational
cost is the sum of two matrix multiplications V

box · Ebox (the multiplication result is
denoted as Êbox) and Ŵ

box
k · Êbox. See also Section 3 for details.

3.1 Complexity Analysis and an Efficient Implementation

The computational complexity of the proposed region feature extraction module
is summarized in Table 1. Note that Ak(x, p) and W im · E im(p) are computed
over all the positions in the image feature x and shared for all RoIs.

A naive implementation needs to enumerate all the positions in Ωb. When
Ωb spans the whole image feature x densely, its size is H × W and typically a
few thousands. This incurs heavy computational overhead for step 3 and 5 in
Table 1. An efficient implementation is to sparsely sample the positions in Ωb,
during the looping of p in Eq. (2). Intuitively, the sampling points within the
RoI should be denser and those outside could be sparser. Thus, Ωb is split into
two sets as Ωb = ΩIn

b ∪ΩOut
b , which contain the positions within and outside of

the RoI, respectively. Note that ΩOut
b represents the context of the RoI. It could

be either empty when Ωb is the RoI or span the entire image when Ωb does, too.

Complexity is controlled by specifying a maximum number of sampling posi-
tions for ΩIn

b and ΩOut
b , respectively (by default, 196 for both). Given an RoI b,

the positions in ΩIn
b are sampled at stride values stridebx and strideby, in x and

y directions, respectively. The stride values are determined as

stridebx = ⌈Wb/
√
196⌉ AND strideby = ⌈Hb/

√
196⌉, (10)
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where Wb and Hb are the width and height of the RoI. The sampling of ΩOut
b is

similar. Let strideout be the stride value, it is derived by,

strideout = ⌈
√

HW/196⌉. (11)

The sparse sampling of Ωb effectively reduces the computational overhead.
Especially, notice that many RoIs have smaller area than the maximum sampling
number specified above. So the actual number of sampled positions of ΩIn

b in
those RoIs is equal to their area, thus even smaller.

Experiments show that the accuracy of sparse sampling is very close to the
naive dense sampling (see Table 3).

4 Experiments

All experiments are performed on COCO detection datasets [16]. We follow the
COCO 2017 dataset split: 115k images in the train split for training; 5k images
in the minival split for validation; and 20k images in the test-dev split for testing.
In most experiments, we report the accuracy on the minival split.

State-of-the-art Faster R-CNN [20] and FPN [14] object detectors are used.
ResNet-50 and ResNet-101 [10] are used as the backbone image feature extractor.
By default, Faster R-CNN with ResNet-50 is utilized in ablation study.

For Faster R-CNN, following the practice in [3,4], the conv4 and conv5 im-
age features are utilized for region proposal generation and object detection,
respectively. The RPN branch is the same as in [20,3,4]. For object detection,
the effective feature stride of conv5 is reduced from 32 pixels to 16 pixels. Specif-
ically, at the beginning of the conv5 block, stride is changed from 2 to 1. The
dilation of the convolutional filters in the conv5 block is changed from 1 to 2.
On top of the conv5 feature maps, a randomly initialized 1 × 1 convolutional
layer is added to reduce the dimension to 256-D. The proposed module is ap-
plied on top to extract regional features, where 49 bins are utilized by default.
Two fully-connected (fc) layers of 1024-D, followed by the classification and the
bounding box regression branches, are utilized as the detection head. The images
are resized to 600 pixels at the shorter side if the longer side after resizing is
less than or equal to 1000; otherwise resized to 1000 pixels at the longer side, in
both training and inference [6].

For FPN, a feature pyramid is built upon an input image of single resolu-
tion, by exploiting multi-scale feature maps generated by top-down and lateral
connections. The RPN and Fast R-CNN heads are attached to the multi-scale
feature maps, for proposing and detecting objects of varying sizes. Here we fol-
low the network design in [14], and just replace RoI pooling by the proposed
learnable region feature extraction module. The images are resized to 800 pixels
at the shorter side if the longer side after resizing is less than or equal to 1333;
otherwise resized to 1333 pixels at the longer side, in both training and inference.

SGD training is performed on 4 GPUs with 1 image per GPU. Weight decay
is 1× 10−4 and momentum is 0.9. The added parameters in the learnable region
feature extraction module, W box

k , W im, and W app
k , are initialized by random
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method mAP mAP50 mAP75 mAPS mAPM mAPL

1× RoI

regular RoI pooling 29.8 52.2 29.9 10.4 32.6 47.8

aligned RoI pooling 32.9 54.0 34.9 13.9 36.9 48.8

ours 33.4 54.5 35.2 13.9 37.3 50.4

2× RoI

regular RoI pooling 30.1 53.2 30.6 10.6 33.3 47.4

aligned RoI pooling 32.8 54.6 35.1 14.2 37.0 48.5

ours 33.8 55.1 35.8 14.2 37.8 51.1

Whole image

regular RoI pooling* - - - - - -

aligned RoI pooling* - - - - - -

ours 34.3 56.0 36.4 15.4 38.1 51.9

Table 2. Comparison of three region feature extraction methods using different support
regions. Accuracies are reported on COCO detection minival set. *It is not clear how
to exploit the whole image for regular and aligned RoI pooling methods. Hence the
corresponding accuracy numbers are omitted.

Gaussian weights (σ = 0.01), and their learning rates are kept the same as the
existing layers. In both Faster R-CNN and FPN, to facilitate experiments, sep-
arate networks are trained for region proposal generation and object detection,
without sharing their features. In Faster R-CNN, 6 and 16 epochs are utilized
to train the RPN and the object detection networks, respectively. The learning
rates are set as 2 × 10−3 for the first 2

3 iterations and 2 × 10−4 for the last 1
3

iterations, for both region proposal and object detection networks. In FPN, 12
epochs are utilized to train both the RPN and the object detection networks,
respectively. For both networks training, the learning rates start with 5× 10−3

and decay twice at 8 and 10.667 epochs, respectively. Standard NMS with IoU
threshold of 0.5 is utilized for duplication removal.

4.1 Ablation Study

Effect of supporting region Ω. It is investigated in Table 2. Three sizes of
the supporting region Ω are compared: the RoI itself, the RoI expanded with
twice the area (with the same center), and the whole image range. Regular and
aligned RoI pooling are also compared5.

There are two observations. First, our method outperforms the other two
pooling methods. Second, our method steadily improves from using larger sup-
port regions, indicating that exploiting contextual information is helpful. Yet,
using larger support regions, e.g., 2× RoI region, has minor and no improve-
ments for regular and aligned RoI pooling, respectively, when compared to using

5 Deformable RoI pooling [4] is omitted as it does not have a fixed support region.
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|ΩOut
b |max |ΩIn

b |max mAP mAP50 mAP75 mAPS mAPM mAPL |ΩOut
b |avg |ΩIn

b |avg FLOPS

full* 72 33.4 55.6 35.3 14.1 37.2 50.7 1737 32 15.3G

full 142 34.2 56.2 36.3 15.0 38.5 51.3 1737 86 15.7G

full 212 34.1 56.0 35.9 14.5 38.3 51.1 1737 158 16.2G

full full 34.3 56.0 36.4 15.4 38.1 51.9 1737 282 17.1G

100 142 33.8 55.5 35.9 14.3 38.0 50.8 71 86 3.84G

196 142 34.1 55.6 36.3 14.5 38.3 51.1 114 86 4.16G

400 142 34.0 55.7 36.0 14.4 38.4 51.0 194 86 4.72G

625 142 34.1 55.7 36.1 14.5 38.0 51.3 432 86 6.42G

full 142 34.2 56.2 36.3 15.0 38.5 51.3 1737 86 15.7G

Table 3. Detection accuracy and computational times of efficient method using
different number of sample points. The average samples |ΩOut

b |avg and |ΩIn
b |avg are

counted on COCO minival set using 300 ResNet-50 RPN proposals. The bold row
(|ΩOut

b |max = 196, |ΩIn
b |max = 142) are used as our default maximum sample point

number. *full indicates that all image positions are used without any sampling.

1× RoI region. Moreover, it is unclear how to exploit the whole image for regular
and aligned pooling in a reasonable way.

Effect of sparse sampling. Table 3 presents the results of using different
numbers of sampling positions for efficient implementation. By utilizing proper
number of sampling positions, the accuracy can be very close to that of naive
dense enumeration. And the computational overhead can be significantly reduced
thanks to the sparse sampling implementation. By default, 196 maximum sam-
pling positions are specified for both ΩIn

b and ΩOut
b . The mAP score is 0.2 lower

than that of dense enumeration. In runtime, large RoIs will have fewer sampling
positions for ΩOut

b and small RoIs will have fewer sampling positions than the
maximum threshold for ΩIn

b . The average counted sampling positions in runtime
are are around 114 and 86 for ΩIn

b and ΩOut
b , respectively, as shown in Table 3.

The corresponding computational cost is 4.16G FLOPS, which coarsely equals
that of the 2-fc head (about 3.9G FLOPs).

For all the following experiments, our method will utilize the sparse sampling
implementation with 196 maximum sampling positions for both ΩIn

b and ΩOut
b .

Effect of geometric relation and appearance feature terms. Table 4
studies the effect of geometric relation and appearance feature terms in Eq. (7)
of the proposed module. Using geometric relation alone, the proposed module is
slightly better than aligned RoI pooling, and is noticeably better than regular
RoI pooling. By further incorporating the appearance feature term, the mAP
score rises by 0.9 to 34.1. The accuracy is on par with deformable RoI pooling,
which also exploits appearance features to guide the region feature extraction
process.
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method mAP mAP50 mAP75 mAPS mAPM mAPL

regular RoI pooling 29.8 52.2 29.9 10.4 32.6 47.8

aligned RoI pooling 32.9 54.0 34.9 13.9 36.9 48.8

deformable pooling 34.0 55.3 36.0 14.7 38.3 50.4

our (geometry) 33.2 55.2 35.4 14.2 37.0 50.0

our (geometry+appearance) 34.1 55.6 36.3 14.5 38.3 51.1

Table 4. Effect of geometric and appearance terms in Eq. (7) for the proposed region
feature extraction module. Detection accuracies are reported on COCO minival set.

Comparison on stronger detection backbones. We further compare the
proposed module with regular, aligned and deformable versions of RoI pooling
on stronger detection backbones, where FPN and ResNet-101 are also utilized.

Table 5 presents the results on COCO test-dev set. Using the stronger de-
tection backbones, the proposed module also achieves on par accuracy with
deformable RoI pooling, which is noticeably better than aligned and regular ver-
sions of RoI pooling. We achieve a final mAP score of 39.9 using FPN+ResNet-
101 by the proposed fully learnable region feature extraction module.

It is worth note that although our formulation is more general, it is only
slightly better than or comparable with deformable ROI pooling, at some ex-
tra computation cost. It reveals the important question: what is the best way
of region feature extraction? Previous regular ROI binning methods are clearly
limited as they are too hand-crafted and do not exploit the image context well.
But, is deformable ROI pooling the best? Practically, probably yes. Theoret-
ically, not necessarily. The proposed method is a first step toward answering
this question and we believe future work along this direction will provide better
answers. Region-based object detection should not stop at hand-crafted binning
based feature extraction, including deformable ROI pooling.

5 What is learnt?

Qualitative Analysis The learnt weights wk(∗) in Eq. (7) are visualized in Fig-
ure 2 (a). The supporting region Ω is the whole image.

Initially, the weights wk(∗) are largely random on the whole image. After
training, weights in different parts are learnt to focus on different areas on the
RoI, and they mostly focus on the instance foreground.

To understand the role of the geometric and appearance terms in Eq. (7),
Figure 2 (b) visualizes the weights when either of them is ignored. It seems that
the geometric weights mainly attend to the RoI, while the appearance weight
focuses on all instance foreground.

Quantitative Analysis For each part k, the weights wk(∗) are treated as a
probability distribution over all the positions in the supporting region Ω, as
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backbone method mAP mAP50 mAP75 mAPS mAPM mAPL

Faster R-CNN

+ResNet-50

regular RoI pooling 29.9 52.6 30.1 9.7 31.9 46.3

aligned RoI pooling 33.1 54.5 35.1 13.9 36.0 47.4

deformable RoI pooling 34.2 55.7 36.7 14.5 37.4 48.8

our 34.5 56.4 36.4 14.6 37.4 50.3

Faster R-CNN

+ResNet-101

regular RoI pooling 32.7 53.6 23.7 11.4 35.2 50.0

aligned RoI pooling 35.6 57.1 38.0 15.3 39.3 51.0

deformable RoI pooling 36.4 58.1 39.3 15.7 40.2 52.1

our 36.4 58.6 38.6 15.3 40.2 52.2

FPN

+ResNet-50

regular RoI pooling 35.9 59.0 38.4 19.6 38.8 45.4

aligned RoI pooling 36.7 59.1 39.4 20.9 39.5 46.3

deformable RoI pooling 37.7 60.6 40.9 21.3 40.7 47.4

our 37.8 60.9 40.7 21.3 40.4 48.0

FPN

+ResNet-101

regular RoI pooling 38.5 61.5 41.8 21.4 42.0 49.2

aligned RoI pooling 39.1 61.4 42.3 21.5 42.5 50.2

deformable RoI pooling 40.0 62.7 43.5 22.4 43.4 51.3

our 39.9 63.1 43.1 22.2 43.4 51.6

Table 5. Comparison of different algorithms using different backbones. Accuracies on
COCO test-dev are reported.

∑

p∈Ω wk(b, p,x) = 1. KL divergence is used to measure the discrepancy be-
tween such distributions.

We firstly compare the weights in different parts. For each ground truth
object RoI, KL divergence value is computed between all pairs of wk1

(∗) and
wk2

(∗), k1, k2 = 1, ..., 49. Such values are then averaged, called mean KL between
parts for the RoI. Figure 3 (left) shows its value averaged over objects of three
sizes (as defined by COCO dataset) during training. Initially, the weights of
different parts are largely indistinguishable. Their KL divergence measure is
small. The measure grows dramatically after the first test. This indicates that
the different parts are learnt to focus on different spatial positions. Note that the
divergence is larger for large objects, which is reasonable.

We then investigate how the weights resemble the instance foreground, by
comparing them to the ground-truth instance foreground mask in COCO. To-
wards this, for each ground truth object RoI, the weights from all the parts are
aggregated together by taking the maximum value at each position, resulting in
a “max pooled weight map”. The map is then normalized as a distribution (sum
is 1). The ground truth object mask is filled with 1 and 0. It is also normalized
as a distribution. KL divergence between these two distributions is called KL of
mask. Figure 3 (right) shows this measure averaged over objects of three sizes
during training. It quickly becomes small, indicating that the aggregation of all
part weights is learnt to be similar as the object mask.
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initial weights final weights

(a) The initial (left) and final (right) weights wk(∗) in Eq. (7) of two given RoIs (the
red boxes). The center images show the maximum value of all K = 49 weight maps.
The smaller images around show 4 individual weight maps.

(b) Example results of geometric weights (top), appearance weights (median) and
final weights (bottom).

Figure 2. Qualitative analysis of learnt weights. For visualization, all weights are nor-
malized by the maximum value over all image positions and half-half matted with the
original image.
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Figure 3. Quantitative analysis of learnt weights. The two plots are mean KL between

parts (left) and KL of mask (right) during training, respectively. Note that we test KL
divergence every two epochs since our training framework saves model weights using
such frequency.

The second observation is especially interesting, as it suggests that learning
the weights as in Eq. (7) is related to instance segmentation, in some implicit
manner. This is worth more investigation in the future work.
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