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Abstract. Domain adaptation is an important tool to transfer knowl-
edge about a task (e.g. classification) learned in a source domain to a
second, or target domain. Current approaches assume that task-relevant
target-domain data is available during training. We demonstrate how to
perform domain adaptation when no such task-relevant target-domain
data is available. To tackle this issue, we propose zero-shot deep do-

main adaptation (ZDDA), which uses privileged information from task-

irrelevant dual-domain pairs. ZDDA learns a source-domain representa-
tion which is not only tailored for the task of interest but also close to
the target-domain representation. Therefore, the source-domain task of
interest solution (e.g. a classifier for classification tasks) which is joint-
ly trained with the source-domain representation can be applicable to
both the source and target representations. Using the MNIST, Fashion-
MNIST, NIST, EMNIST, and SUN RGB-D datasets, we show that ZD-
DA can perform domain adaptation in classification tasks without access
to task-relevant target-domain training data. We also extend ZDDA to
perform sensor fusion in the SUN RGB-D scene classification task by sim-
ulating task-relevant target-domain representations with task-relevant
source-domain data. To the best of our knowledge, ZDDA is the first
domain adaptation and sensor fusion method which requires no task-
relevant target-domain data. The underlying principle is not particular
to computer vision data, but should be extensible to other domains.
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1 Introduction

The useful information to solve practical tasks often exists in different domains
captured by various sensors, where a domain can be either a modality or a
dataset. For instance, the 3-D layout of a room can be either captured by a
depth sensor or inferred from the RGB images. In real-world scenarios, it is
highly likely that we can only access limited amount of data in certain domain(s).
The performance of the solution (e.g. the classifier for classification tasks) we
learn from one domain often degrades when the same solution is applied to other
domains, which is caused by domain shift [17] in a typical domain adaptation
(DA) task, where source-domain training data, target-domain training data, and
a task of interest (TOI) are given. The goal of a DA task is to derive solution(s)
of the TOI for both the source and target domains.
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Fig. 1. We propose zero-shot deep domain adaptation (ZDDA) for domain adapta-
tion and sensor fusion. ZDDA learns from the task-irrelevant dual-domain pairs when
the task-relevant target-domain training data is unavailable. In this example domain
adaptation task (MNIST [27]→MNIST-M [13]), the task-irrelevant gray-RGB pairs are
from the Fashion-MNIST [46] dataset and the Fashion-MNIST-M dataset (the colored
version of the Fashion-MNIST [46] dataset with the details in Sec. 4.1)

The state-of-the-art DA methods such as [1, 14–16, 25, 30, 35, 37, 39–41, 43,
44, 47, 50] are proposed to solve DA tasks under the assumption that the task-

relevant data, the data directly applicable and related to the TOI (regardless
of whether it is labeled or not), in the target domain is available at training
time, which is not always true in practice. For instance, in real business use
cases, acquiring the task-relevant target-domain training data can be infeasible
due to the combination of the following reasons: 1) Unsuitable tools at the field.
2) Product development timeline. 3) Budget limitation. 4) Data import/export
regulations. Such impractical assumption is also assumed true in the existing
works of sensor fusion such as [31, 48], where the goal is to obtain a dual-domain
(source and target) TOI solution which is robust to noise in either domain. This
unsolved issue motivates us to propose zero-shot deep domain adaptation (ZD-
DA), a DA and sensor fusion approach which learns from the task-irrelevant
dual-domain training pairs without using the task-relevant target-domain train-
ing data, where we use the term task-irrelevant data to refer to the data which is
not task-relevant. In the rest of the paper, we use T-R and T-I as the shorthand
of task-relevant and task-irrelevant, respectively.

We illustrate what ZDDA is designed to achieve in Fig. 1 using an example
DA task (MNIST [27]→MNIST-M [13]). We recommend that the readers view
all the figures and tables in color. In Fig. 1, the source and target domains
are gray scale and RGB images respectively, and the TOI is digit classification
with both the MNIST [27] and MNIST-M [13] testing data. We assume that
the MNIST-M [13] training data is unavailable. In this example, ZDDA aims
at using the MNIST [27] training data and the T-I gray-RGB pairs from the
Fashion-MNIST [46] dataset and the Fashion-MNIST-M dataset (the colored
version of the Fashion-MNIST [46] dataset with the details in Sec. 4.1) to train
digit classifiers for MNIST [27] and MNIST-M [13] images. Specifically, ZDDA
achieves this by simulating the RGB representation using the gray scale image
and building a joint network with the supervision of the TOI in the gray scale
domain. We present the details of ZDDA in Sec. 3.
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Table 1. Problem setting comparison between ZDDA, unsupervised domain adap-
tation (UDA), multi-view learning (MVL), and domain generalization (DG)

problem conditions UDA MVL DG ZDDA

given T-R target-domain training data? Y Y N N
given T-R training data in multiple (>1) domains/views? N Y Y N

example prior work [33] [42] [28] N/A

We make the following two contributions: (1) To the best of our knowledge,
our proposed method, ZDDA, is the first deep learning based method performing
domain adaptation between one source image modality and another different tar-
get image modality (not just different datasets in the same modality such as the
Office dataset [32]) without using the task-relevant target-domain train-

ing data. We show ZDDA’s efficacy using the MNIST [27], Fashion-MNIST [46],
NIST [18], EMNIST [9], and SUN RGB-D [36] datasets with cross validation. (2)
Given no task-relevant target-domain training data, we show that ZDDA
can perform sensor fusion and that ZDDA is more robust to noisy testing data in
either source or target or both domains compared with a naive fusion approach
in the scene classification task from the SUN RGB-D [36] dataset.

2 Related Work

Domain adaptation (DA) has been extensively studied in computer vision and
applied to various applications such as image classification [1, 14–16, 25, 30, 35,
37, 39–41, 43, 44, 47, 50], semantic segmentation [45, 51], and image captioning [8].
With the advance of deep neural networks in recent years, the state-of-the-art
methods successfully perform DA with (fully or partially) labeled [8, 15, 25, 30,
39] or unlabeled [1, 14–16, 35, 37, 39–41, 43–45, 47, 50] T-R target-domain data.
Although different strategies such as the domain adversarial loss [40] and the
domain confusion loss [39] are proposed to improve the performance in the DA
tasks, most of the existing methods need the T-R target-domain training data,
which can be unavailable in reality. In contrast, we propose ZDDA to learn from
the T-I dual-domain pairs without using the T-R target-domain training data.
One part of ZDDA includes simulating the target-domain representation using
the source-domain data, and similar concepts have been mentioned in [19, 21].
However, both of [19, 21] require the access to the T-R dual-domain training
pairs, but ZDDA needs no T-R target-domain data.

Other problems related to ZDDA include unsupervised domain adaptation
(UDA), multi-view learning (MVL), and domain generalization (DG), and we
compare their problem settings in Table 1, which shows that the ZDDA problem
setting is different from those of UDA, MVL, and DG. In UDA and MVL, T-R
target-domain training data is given. In MVL and DG, T-R training data in
multiple domains is given. However, in ZDDA, T-R target-domain training data
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Table 2. Working condition comparison between ZDDA and other existing methods.
Among all the listed methods, only ZDDA can work under all four conditions

Can each method work under each condition? [28] [11] [6] [49] [14] [32] [39] ZDDA

without T-R target-domain training data Y N N Y N Y N Y
without T-R training data in >1 domains N Y Y Y Y Y Y Y

without accurate domain descriptor Y Y Y N Y Y Y Y
without class labels for any target domain data Y N Y Y Y N N Y

conjunction of all the above conditions N N N N N N N Y

is unavailable and the only available T-R training data is in one source domain.
We further compare ZDDA with the existing methods relevant to our problem
setting in Table 2, which shows that among the listed methods, only ZDDA can
work under all four conditions.

In terms of sensor fusion, Ngiam et al. [31] define the three components for
multimodal learning (multimodal fusion, cross modality learning, and shared
representation learning) based on the modality used for feature learning, su-
pervised training, and testing, and experiment on audio-video data with their
proposed deep belief network and autoencoder based method. Targeting on the
temporal data, Yang et al. [48] follow the setup of multimodal learning in [31],
and validate their proposed encoder-decoder architecture using video-sensor and
audio-video data. Although certain progress about sensor fusion is achieved in
the previous works [31, 48], we are unaware of any existing sensor fusion method
which overcomes the issue of lacking T-R target-domain training data, which is
the issue that ZDDA is designed to solve.

3 Our Proposed Method — ZDDA

Given a task of interest (TOI), a source domain Ds, and a target domain Dt,
our proposed method, zero-shot deep domain adaptation (ZDDA), is designed to
achieve the following two goals: 1) Domain adaptation: Derive the solutions
of the TOI for both Ds and Dt when the T-R training data in Dt is unavailable.
We assume that we have access to the T-R labeled training data in Ds and the
T-I dual-domain pairs in Ds and Dt. 2) Sensor fusion: Given the previous
assumption, derive the solution of TOI when the testing data in both Ds and Dt

is available. The testing data in either Ds or Dt can be noisy. We assume that
there is no prior knowledge available about the type of noise and which domain
gives noisy data at testing time.

For convenience, we use a scene classification task in RGB-D as an example
TOI to explain ZDDA, but ZDDA can be applied to other TOIs/domains. In this
example, Ds and Dt are depth and RGB images respectively. According to the
our previous assumption, we have access to the T-R labeled depth data and T-I
RGB-D pairs at training time. The training procedure of ZDDA is illustrated in
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Fig. 2. An overview of the ZDDA training procedure. We use the images from the SUN
RGB-D [36] dataset for illustration. ZDDA simulates the target-domain representation
using the source-domain data, builds a joint network with the supervision from the
source domain, and trains a sensor fusion network. In step 1, we choose to train s1 and
fix t, but we can also train t and fix s1 to simulate the target-domain representation.
In step 2, t can also be trainable instead of being fixed, but we choose to fix it to make
the number of trainable parameters manageable. The details are explained in Sec. 3

Fig. 2, where we simulate the RGB representation using the depth image, build
a joint network with the supervision of the TOI in depth images, and train a
sensor fusion network in step 1, step 2, and step 3 respectively. We use the ID
marked at the bottom of each convolutional neural networks (CNN) in Fig. 2 to
refer to each CNN.

In step 1, we create two CNNs, s1 and t, to take the depth and RGB images
of the T-I RGB-D pairs as input. The purpose of this step is to find s1 and
t such that feeding the RGB image into t can be approximated by feeding the
corresponding depth image into s1. We achieve this by fixing t and enforcing the
L2 loss on top of s1 and t at training time. We choose to train s1 and fix t here,
but training t and fixing s1 can also achieve the same purpose. The L2 loss can
be replaced with any suitable loss functions which encourage the similarity of the
two input representations, and our selection is inspired by [19, 21]. The design
in step 1 is similar to the hallucination architecture [21] and the supervision
transfer [19], but we require no T-R dual-domain training pairs. Instead, we use
the T-I dual-domain training pairs.

After step 1, we add another CNN, s2 (with the same network architecture
as that of s1 ), and a classifier to the network (as shown in step 2) to learn
from the label of the training depth images. The classifier in our experiment is
a fully connected layer for simplicity, but other types of classifiers can also be
used. The newly added CNN takes the T-R depth images as input, and shares
all the weights with the original source CNN, so we use s2 to refer to both of
them. t is the same as that in step 1. At training time, we pre-train s2 from
s1 and fix t. Our choice of fixing t is inspired by the adversarial adaptation
step in ADDA [40]. t can also be trainable in step 2, but given our limited
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(a) testing domain adaptation (b) testing sensor fusion

Fig. 3. An overview of the ZDDA testing procedure. We use the SUN RGB-D [36]
images for illustration. Different from the color coding in Fig. 2, the colors here are
purely used to distinguish different CNNs/classifiers/predictions

amount of data, we choose to fix it to make the number of trainable parameters
manageable. s2 and the source classifier are trained such that the weighted sum
of the softmax loss and L2 loss are minimized. The softmax loss can be replaced
with other losses suitable for the TOI.

After step 2, we expect to obtain a depth representation which is close to
the RGB representation in the feature space and performs reasonably well with
the trained classifier in the scene classification. Step 1 and step 2 can be done
in one step with properly designed curriculum learning, but we separate them
not only because of clarity but also because of the difficulty of designing the
learning curriculum before training. After step 2, we can form the scene classifi-
er in depth/RGB (denoted as CD/CRGB) by concatenating s2/t and the trained
source classifier (as shown in Fig. 3a), which meets our first goal, domain adap-
tation. We use the notation ZDDA2 to refer to the method using the training
procedure in Fig. 2 up to step 2 and the testing procedure in Fig. 3a.

To perform sensor fusion, we propose step 3, where we train a joint classifier
for RGB-D input using only the T-R depth training data. We create two CNNs,
s3 and s4 (each with the same network architecture as that of CNNs1), and add
a concatenation layer on top of them to concatenate their output representations.
The concatenated representation is connected to a joint classifier. At training
time, we pre-train s3 and s4 from s2 and s1 respectively and fix s4. Both s3

and s4 take the T-R depth images as the input. To train a more robust RGB-D
scene classifier, we randomly select some inputs of s3 and s4, and optionally add
noise to them independently. We supervise the entire network with the label of
the depth training data for the scene classification, which is done by the softmax
loss enforced on top of the joint classifier.

According to step 1, the output of s4 is expected to simulate the RGB
representation as if we feed the T-R RGB image to t. This expectation is based
on the assumption that the relationship between the dual-domain pairwise data
is similar, regardless of whether the data is T-R or T-I. Given the simulated
RGB representation, s3 is trained to learn a depth representation suitable for
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Table 3. The statistics of the datasets we use. For NIST, we use the “by class”
dataset, remove the digits, and treat uppercase and lowercase letters as different classes.
For EMNIST, we use the “EMNIST Letters” split which only contains the letters.
We create the colored datasets from the original ones using Ganin’s method [13] (see
Sec. 4.1 for details). We refer to each dataset by the corresponding dataset ID (e.g.
DN and DN -M refer to the NIST and the NIST-M datasets, respectively)

original dataset MNIST [27] Fashion-MNIST [46] NIST [18] EMNIST [9] SUN RGB-D [36]

dataset ID DM DF DN DE DS

image content digit clothing letter letter scene

image size 28×28 28×28 128×128 28×28 ∼VGA
# classes 10 10 52 26 45

# training data 60000 60000 387361 124800 details in Sec. 4.1
# testing data 10000 10000 23941 20800 details in Sec. 4.1

class labels 0-9 dress, coat, etc. A-Z, a-z Aa-Zz corridor, lab, etc.
balanced class? N Y N Y N

example images

colored dataset MNIST-M Fashion-MNIST-M NIST-M EMNIST-M N / A

example images N / A

the RGB-D scene classification without the constraint of the L2 loss in step 2.
At testing time, s4 is replaced with t which takes the T-R RGB testing images
as input with optional noise added to test the ZDDA’s performance given noisy
RGB-D testing data (as shown in Fig. 3b). In Fig. 3b, we also test replacing
“RGB images and t” with “depth images and s4” to evaluate the performance
of ZDDA in step 3 given only testing depth images. After the training procedure
in Fig. 2, we can form three scene classifiers in RGB, depth, and RGB-D domains
(one classifier per domain), and our trained RGB-D classifier is expected to be
able to handle noisy input with reasonable performance degradation. The 3-step
training procedure of ZDDA in Fig. 2 can be framed as an end-to-end training
process with proper learning curriculum. We separate these 3 steps due to the
ease of explanation. We use the notation ZDDA3 to refer to the method using
the training procedure in Fig. 2 up to step 3 and the testing procedure in Fig. 3b.

4 Experiment Setup

4.1 Datasets

For domain adaptation (DA), we validate the efficacy of ZDDA under classifica-
tion tasks using the MNIST [27], Fashion-MNIST [46], NIST [18], EMNIST [9],
and SUN RGB-D [36] datasets. For sensor fusion, we experiment on the SUN
RGB-D [36] dataset. We summarize the statistics of these datasets in Table 3,
where we list the dataset IDs which we use to refer to these datasets. For DM ,
DF , DN , and DE , we create the colored version of these datasets (DM -M, DF -
M, DN -M, and DE-M) according to the procedure proposed in Ganin’s work [13]
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Table 4. The base network architecture (BNA) we use in our experiments. For each
BNA, We specify the layer separating the source/target CNN and the source classifier
in Fig. 2. The layer name in the right column is based on the official Caffe [24] and
SqueezeNet v1.1 [23] implementation of each BNA

base network source/target CNN architecture
architecture (BNA) (up to where in BNA (inclusive))

LeNet [5] ip1
GoogleNet [38] pool5/7x7 s1
AlexNet [26] fc7

SqueezeNet v1.1 [23] fire9/concat

— blending the gray scale images with the patches randomly extracted from the
BSDS500 dataset [2]. These colored datasets and the original ones are used to
construct four DA tasks adapting from gray scale to RGB images. For each DA
task, we use one of the other three pairs of the datasets (original and colored
ones) as the T-I data. For example, for the DA task DM → DM -M, DF and DF -
M together are one possible choice as the T-I data. The DA task DM → DM -M
is acknowledged as one of the standard experiments to test the efficacy of the
DA methods in recent works [1, 7, 14, 20, 33, 34], so we adopt this experiment and
extend it to DF , DN , and DE .

DS contains 10335 RGB-D pairs belonging to 45 different scenes. For each
RGB-D pair, both the raw (noisy) depth image and post-processed clean depth
image are provided, and we choose to use the raw depth image to simulate
the real-world scenarios. Out of the 45 scenes, we select the following 10 scenes:
computer room (0), conference room (1), corridor (2), dining room (3), discussion
area (4), home office (5), idk (6), lab (7), lecture theatre (8), and study space (9),
where the number after each scene is the scene ID we use to refer to each scene.
The 8021 RGB-D pairs belonging to the other scenes are used as the T-I training
data. The 10 scenes are selected based on the following two constraints: 1) Each
scene contains at least 150 RGB-D pairs in DS , which ensures a reasonable
amount of T-R data. 2) The total number of the RGB-D pairs belonging to the
selected 10 scenes is minimized, which maximizes the amount of the T-I training
data. We empirically find that the amount and diversity of the T-I training data
are important for ZDDA. To avoid the bias toward the scene with more data,
for each of the selected 10 scenes, we randomly select 89/38 RGB-D pairs as the
T-R training/testing data. When experimenting on different scene classification
tasks using different selections of scenes, we only use the training/testing data
associated with those selected scenes as the T-R data.

4.2 Training Details

We use Caffe [24] to implement ZDDA. Table 4 lists the base network architecture
(BNA) we use and the layer separating the source/target CNN and the source
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classifier in Fig. 2. For instance, in the case when the BNA is LeNet [5], the
architecture of each source/target CNN in Fig. 2 is the LeNet [5] architecture
up to the “ip1” layer, and the rest of the LeNet [5] architecture is used as the
source classifier. For the DA tasks involving DM , DF , DN , and DE , we use the
LeNet [5] as the BNA and train all the CNNs in Fig. 2 from scratch except that
the target CNN is pre-trained from the T-I dataset and fixed afterwards. For
example, when using DF and DF -M as the T-I data in the DA task DM → DM -
M, we train a CNN (denoted as CNNref ) with the LeNet [5] architecture from
scratch using the images and labels of DF -M, and pre-train the target CNNs in
Fig. 2 from CNNref . We follow similar procedures for other DA tasks and T-I
datasets involving DM , DF , DN , and DE .

For the experiment involving DS , we mostly use GoogleNet [38] as the B-
NA, but we also use AlexNet [26] and SqueezeNet v1.1 [23] in the cross vali-
dation experiment with respect to different BNAs. Since only limited amount
of RGB-D pairs are available in DS , we pre-train all the CNNs in Fig. 2 from
the BVLC GoogleNet model [4], BVLC AlexNet model [3], and the reference
SqueezeNet model [22] when the BNA is GoogleNet [38], AlexNet [26], and
SqueezeNet v1.1 [23], respectively. These pre-trained models are trained for the
ImageNet [10] classification task.

For the optionally added noise in ZDDA3, we experiment on training/testing
with noise-free data and noisy data. In the latter case, given that no prior knowl-
edge about the noise is available, we use the black image as the noisy image to
model the extreme case where no information in the noisy image is available. We
train ZDDA3 step 3 with the augmented training data formed by copying the
original T-R source-domain training data 10 times and replacing ptrain% of the
images selected randomly with the black images. We follow this procedure twice
independently and use the two augmented training datasets as the inputs of the
two source CNNs in step 3. We empirically set ptrain = 20. The testing data in
Fig. 3b is constructed by replacing ptest% of the original testing images selected
randomly with the black images, and we evaluate ZDDA under different ptests.
For all the experiments, the number of the output nodes of the source/joint
classifiers is set to be the number of classes in the TOI, and these classifiers are
trained from scratch. For the joint classifiers, we use two fully connected lay-
ers unless otherwise specified, where the first fully connected layer of the joint
classifier has 1024 output nodes.

In terms of the training parameters used in Fig. 2 for the task involving DS

when the BNA is GoogleNet [38], we use a batch size of 32 and a fixed learning
rate 10−5/10−6/10−3 for step 1/2/3. The learning rate is chosen such that the
trained network can converge under a reasonable amount of time. We set the
weight of the softmax loss and the L2 loss in step 2 to be 103 and 1 respec-
tively such that both losses have comparable numerical values. Step 1/2/3 are
trained for 104/103/103 iterations. For the other training parameters, we adopt
the default ones used in training the BVLC GoogleNet model [4] for the Ima-
geNet [10] classification task unless otherwise specified. In general, we adopt the
default training parameters used in training each BNA for either the MNIST [27]
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Table 5. The overall / average per class accuracy (%) of the domain adaptation
tasks (gray scale images → RGB images) formed by the datasets in Table 3, where we
introduce the dataset IDs and use them to refer to the datasets here. The middle four
rows show the performance of ZDDA2. The color of each cell reflects the performance
ranking in each column, where darker is better. The number in the parenthesis of the
middle four rows is the semantic similarity between the T-R and T-I datasets measured
by word2vec [29], where larger numbers represent higher semantic similarity. The T-R
target-domain training data is only available for the row “target only”

T-I DM → DM -M DF → DF -M DN → DN -M DE → DE-M

data → → → →

source only 39.04/39.31 33.77/33.77 8.59/8.79 33.70/33.70

DM , DM -M N/A 51.55/51.55 (0.049) 34.25/33.35 (0.174) 71.20/71.20 (0.178)
DF , DF -M 73.15/72.96 (0.049) N/A 21.93/21.24 (0.059) 46.93/46.93 (0.053)
DN , DN -M 91.99/92.00 (0.174) 43.87/43.87 (0.059) N/A N/A
DE , DE-M 94.84/94.82 (0.178) 65.30/65.30 (0.053) N/A N/A

target only 97.33/97.34 84.44/84.44 62.13/61.99 89.52/89.52

or ImageNet [10] classification tasks in the Caffe [24] and SqueezeNet v1.1 [23]
implementation unless otherwise specified.

4.3 Performance References and Baselines

To obtain the performance references of the fully supervised methods, we train
a classifier with the BNA in Table 4 in each domain using the T-R training data
and labels in that domain. When the BNA is LeNet [5], we train the classifier
from scratch. For the other BNAs, we pre-train the classifier in the same way as
that described in Sec. 4.2. After training, for each DA task, we get two fully su-
pervised classifiers Cfs,s and Cfs,t in the source and target domains respectively.
For the baseline of the DA task, we directly feed the target-domain testing im-
ages to Cfs,s to obtain the performance without applying any DA method. For
the baseline of sensor fusion, we compare ZDDA3 with a naive fusion method by
predicting the label with the highest probability from CRGB and CD in Sec. 3.

5 Experimental Result

We first compare ZDDA2 with the baseline in four domain adaptation (DA) tasks
(adapting from gray scale to RGB images) involving DM , DF , DN , and DE , and
the result is summarized in Table 5, where the first two numbers represent the
overall/average per class accuracy (%). Darker cells in each column represent
better classification accuracy in each task. In Table 5, the middle four rows
represent the performance of ZDDA2. {DN , DN -M} and {DE , DE-M} cannot
be the T-I data for each other because they are both directly related to the
letter classification tasks. Table 5 shows that regardless of which T-I data we
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Table 6. The performance comparison of the domain adaptation task
MNIST→MNIST-M. The color of each cell reflects the performance ranking (darker is
better). For ZDDA2, we report the best overall accuracy from Table 5. All the listed
methods except ZDDA2 use the MNIST-M training data. Without the access
to the MNIST-M training data, ZDDA2 can still achieve the accuracy comparable to
those of the competing methods (even outperform most of them) in this task

method [14] [34] [20] [33] [7] ZDDA2

accuracy (%) 76.66 86.70 89.53 94.20 98.20 94.84

Table 7. Performance comparison with different numbers of classes in scene clas-
sification. The reported numbers are classification accuracy (%). The color of each
cell reflects the performance ranking in each column, where darker color means better
performance. PRGB-D represents the task-irrelevant RGB-D pairs

exp. training testing number of classes
ID method modality modality 2 3 4 5 6 7 8 9 10

1 GoogleNet D D 85.53 83.33 82.89 70.00 67.11 59.02 54.28 50.88 51.84
2 ZDDA2 D+PRGB-D D 88.16 85.96 83.55 77.89 70.18 66.92 64.80 62.28 59.74
3 ZDDA3 D+PRGB-D D 88.16 86.84 84.87 77.89 72.37 66.92 64.47 64.33 63.16

4 GoogleNet D RGB 68.42 57.02 56.58 48.95 42.11 45.11 40.46 34.50 31.58
5 ZDDA2 D+PRGB-D RGB 80.26 78.07 76.32 67.37 57.89 53.76 47.37 45.03 43.16
6 GoogleNet RGB RGB 88.16 85.09 84.87 79.47 78.07 68.80 70.07 69.88 63.68

7 ZDDA3 D+PRGB-D RGB-D 88.16 85.96 85.53 76.32 72.81 68.42 65.13 63.16 63.16

selected scene IDs (defined in Sec. 4.1) 0∼1 0∼2 0∼3 0∼4 0∼5 0∼6 0∼7 0∼8 0∼9

use, ZDDA2 significantly outperforms the baseline (source only). To see how
the semantic similarity between the T-R dataset (denoted as DT −R) and T-I
dataset (denoted as DT −I) affects the performance, we are inspired by [12] and
use the word2vec [29] to compute the mean similarity (denoted as S) of any two
labels from DT −R and DT −I (one from each). We report S(DT −R, DT −I) in
the parenthesis of the middle four rows of Table 5, where higher S represents
higher semantic similarity. Given Table 5 and the following reference S values:
S(object, scene)=0.192, S(animal, fruit)=0.171, and S(cat, dog)=0.761, we find
that: (1) For all the listed DA tasks except DF → DF -M, higher S corresponds
to better performance, which is consistent with our intuition that using more
relevant data as the T-I data improves the performance more. (2) All the listed
Ss in Table 5 are close to or lower than S(animal, fruit)=0.171, which we believe
shows that our T-I data is highly irrelevant to the T-R data.

Second, in Table 6, we compare ZDDA2 with the existing DA methods be-
cause the DA task DM → DM -M is considered as one of the standard experi-
ments in recent works [7, 14, 20, 33, 34]. Although this is not a fair comparison
(because ZDDA2 has no access to the T-R target-domain training data), we find
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Table 8. Validation of ZDDA’s performance (in mean classification accuracy (%))
with different training/testing splits and choices of classes in scene classification. GN
stands for GoogleNet [38]. The definition of PRGB-D and the representation of the cell
color in each column are the same as those in Table 7

training testing validation on validation on
method modality modality train/test splits class choices

GN D D 52.63±1.76 53.98±1.68
ZDDA2 D+PRGB-D D 56.89±2.13 62.05±1.97
ZDDA3 D+PRGB-D D 58.37±3.08 62.49±1.74

GN D RGB 31.26±1.76 32.60±2.37
ZDDA2 D+PRGB-D RGB 44.47±2.50 45.47±2.57

GN RGB RGB 66.26±1.60 67.95±2.20

ZDDA3 D+PRGB-D RGB-D 58.68±3.10 62.13±1.50

# of classes / # of folds 10 / 5 9 / 10

that ZDDA2 can reach the accuracy comparable to those of the state-of-the-
art methods (even outperform some of them), which supports that ZDDA2 is a
promising DA method when the T-R target-domain training data is unavailable.

Third, we test the efficacy of ZDDA on the DA tasks constructed from DS

(adapting from depth to RGB images). We compare ZDDA with the baseline
under different scene classification tasks by changing the number of scenes in-
volved. The result is summarized in Table 7, where we list the training and
testing modalities for each method. We also list the scene IDs (introduced in
Sec. 4.1) involved in each task. Darker cells represent better accuracy in each
column. We verify the irrelevance degree between T-R and T-I data by measur-
ing the semantic similarity using the word2vec [29] (the same method we use in
Table 5). For the 10-class experiment in Table 7, S(DS(T-R), DS(T-I))=0.198
(close to the reference S(object, scene)=0.192), which we believe shows high ir-
relevance between our T-I and T-R data. For simplicity, we use Ei to refer to
the experiment specified by exp. ID i in this section. For the fully supervised
methods in depth domain, ZDDA (E2, E3) outperforms the baseline (E1) due
to the extra information brought by the T-I RGB-D pairs. We find that for
most listed tasks, ZDDA3 (E3) outperforms ZDDA2 (E2), which is consistent
with our intuition because the source representation in ZDDA2 is constrained
by the L2 loss, while the counterpart in ZDDA3 is learned without the L2 con-
straint given the simulated target representation. The fully supervised method
in RGB domain (E6) outperforms the baseline of the domain adaptation (E4)
and ZDDA2 (E5) because E6 has access to the T-R RGB training data which
is unavailable for E4 and E5. The performance improvement from E4 to E5 is
caused by ZDDA2’s training procedure as well as the extra T-I RGB-D training
pairs. E3 and E7 perform similarly, which supports that the simulated target
representation in ZDDA3 is similar to the real one.
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Table 9. Validation of ZDDA’s performance with different base network architec-
tures in scene classification. The reported numbers are classification accuracy (%). The
definition of PRGB-D and the representation of the cell color in each column are the
same as those in Table 7

training testing base network architecture
method modality modality GoogleNet [38] AlexNet [26] SqueezeNet v1.1 [23]

BNA D D 51.84 49.74 48.68
ZDDA2 D+PRGB-D D 59.74 51.05 56.32
ZDDA3 D+PRGB-D D 63.16 51.05 56.32

BNA D RGB 31.58 30.26 26.58
ZDDA2 D+PRGB-D RGB 43.16 40.00 35.79

BNA RGB RGB 63.68 59.47 57.37

ZDDA3 D+PRGB-D RGB-D 63.16 51.84 56.05

To test the consistency of the performance of ZDDA compared to that of the
baseline, we perform the following three experiments. First, we conduct 5-fold
cross validation with different training/testing splits for the 10-scene classifica-
tion. Second, we perform 10-fold validation with different selections of classes for
the 9-scene classification (leave-one-class-out experiment out of the 10 selected
scenes introduced in Sec. 4.1). Third, we validate ZDDA’s performance with d-
ifferent base network architectures. The results of the first two experiments are
presented in Table 8, and the result of the third experiment is shown in Table 9.
The results of Table 7, Table 8, and Table 9 are consistent.

In Table 7, Table 8, and Table 9, the classification accuracy is reported un-
der the condition of noise-free training and testing data. To let ZDDA be more
robust to noisy input, we train ZDDA3 step 3 with noisy training data (we use
ptrain = 20 as explained in Sec. 4.2), and evaluate the classification accuracy
under different noise conditions for both RGB and depth testing data. The re-
sult is presented in Fig. 4, where ZDDA3 (Fig. 4b) outperforms the naive fusion
method (Fig. 4a) under most conditions, and the performance improvement is
shown in Fig. 4c. Both Fig. 4a and Fig. 4b show that the performance degra-
dation caused by the noisy depth testing data is larger than that caused by the
noisy RGB testing data, which supports that the trained RGB-D classifier relies
more on the depth domain. Traditionally, training a fusion model requires the
T-R training data in both modalities. However, we show that without the T-R
training data in the RGB domain, we can still train an RGB-D fusion model, and
that the performance degrades smoothly when the noise increases. In addition
to using black images as the noise model, we evaluate the same trained joint
classifier in ZDDA3 using another noise model (adding a black rectangle with a
random location and size to the clean image) at testing time, and the result also
supports that ZDDA3 outperforms the naive fusion method. Although we only
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(a) naive fusion (b) ZDDA3 (c) accuracy diff. ((b)-(a))

Fig. 4. Performance comparison between the two sensor fusion methods with black
images as the noisy images. We compare the classification accuracy (%) of (a) naive
fusion and (b) ZDDA3 under different noise levels in both RGB and depth testing data.
(c) shows that ZDDA3 outperforms the naive fusion under most conditions

use black images as the noise model for ZDDA3 at training time, we expect that
adding different noise models can improve the robustness of ZDDA3.

6 Conclusion and Future Work

We propose zero-shot deep domain adaptation (ZDDA), a novel approach to
perform domain adaptation (DA) and sensor fusion with no need of the task-
relevant target-domain training data which can be inaccessible in reality. Rather
than solving the zero-shot DA problem in general, we aim at solving the problems
under the assumption that task-relevant source-domain data and task-irrelevant
dual-domain paired data are available. Our key idea is to use the task-relevant
source-domain data to simulate the task-relevant target-domain representations
by learning from the task-irrelevant dual-domain pairs. Experimenting on the
MNIST [27], Fashion-MNIST [46], NIST [18], EMNIST [9], and SUN RGB-D [36]
datasets, we show that ZDDA outperforms the baselines in DA and sensor fusion
even without the task-relevant target-domain training data. In the task adapting
from MNIST [27] to MNIST-M [13], ZDDA can even outperform several state-
of-the-art DA methods which require access to the MNIST-M [13] training data.
One industrial use case which we plan to apply ZDDA to in our follow-up work
is training an RGD object classifier given only the textureless CAD models of
those objects. In this case, depth and RGB images are source and target domains,
respectively. The depth images can be rendered from the provided CAD models,
and publicly available RGB-D datasets can serve as the task-irrelevant RGB-D
data. We believe that ZDDA can be straightforwardly extended to handle other
tasks of interest by modifying the loss functions in Fig. 2 step 2 and step 3.
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