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Abstract. We consider the problem of image-to-video translation, where
an input image is translated into an output video containing motions of
a single object. Recent methods for such problems typically train trans-
formation networks to generate future frames conditioned on the struc-
ture sequence. Parallel work has shown that short high-quality motions
can be generated by spatiotemporal generative networks that leverage
temporal knowledge from the training data. We combine the benefits of
both approaches and propose a two-stage generation framework where
videos are generated from structures and then refined by temporal sig-
nals. To model motions more efficiently, we train networks to learn resid-
ual motion between the current and future frames, which avoids learn-
ing motion-irrelevant details. We conduct extensive experiments on two
image-to-video translation tasks: facial expression retargeting and hu-
man pose forecasting. Superior results over the state-of-the-art methods
on both tasks demonstrate the effectiveness of our approach.3

Keywords: Video generation · Motion forecasting · Residual learning

1 Introduction

Recently, Generative Adversarial Networks (GANs) [7] have attracted a lot of
research interests, as they can be utilized to synthesize realistic-looking images or
videos for various vision applications [15,16,39,44,46,47]. Compared with image
generation, synthesizing videos is more challenging, since the networks need to
learn the appearance of objects as well as their motion models. In this paper,
we study a form of classic problems in video generation that can be framed as
image-to-video translation tasks, where a system receives one or more images
as the input and translates it into a video containing realistic motions of a
single object. Examples include facial expression retargeting [13,21,34], future
prediction [37,38,40], and human pose forecasting [5,6,39].

One approach for the long-term future generation [39,41] is to train a transfor-
mation network that translates the input image into each future frame separately

3 The project website is publicly available at https://garyzhao.github.io/FRGAN.

https://garyzhao.github.io/FRGAN
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Fig. 1.Method overview. Videos are (a) generated from conditions and then (b) refined.
Our framework consists of three components: a condition generator, motion forecasting
networks and refinement networks. Each part is explained in the corresponding section.

conditioned by a sequence of structures. It suggests that it is beneficial to in-
corporate high-level structures during the generative process. In parallel, recent
work [11,31,36,37,40] has shown that temporal visual features are important for
video modeling. Such an approach produces temporally coherent motions with
the help of spatiotemporal generative networks but is poor at long-term condi-
tional motion generation since no high-level guidance is provided.

In this paper, we combine the benefits of these two methods. Our approach
includes two motion transformation networks as shown in Figure 1, where the
entire video is synthesized in a generation and then refinement manner. In the
generation stage, themotion forecasting networks observe a single frame from the
input and generate all future frames individually, which are conditioned by the
structure sequence predicted by a motion condition generator. This stage aims to
generate a coarse video where the spatial structures of the motions are preserved.
In the refinement stage, spatiotemporal motion refinement networks are used for
refining the output from the previous stage. It performs the generation guided
by temporal signals, which targets at producing temporally coherent motions.

For more effective motion modeling, two transformation networks are trained
in the residual space. Rather than learning the mapping from the structural
conditions to motions directly, we force the networks to learn the differences
between motions occurring in the current and future frames. The intuition is
that learning only the residual motion avoids the redundant motion-irrelevant
information, such as static backgrounds, which remains unchanged during the
transformation. Moreover, we introduce a novel network architecture using dense
connections for decoders. It encourages reusing spatially different features and
thus yields realistic-looking results.

We experiment on two tasks: facial expression retargeting and human pose
forecasting. Success in either task requires reasoning realistic spatial structures
as well as temporal semantics of the motions. Strong performances on both tasks
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demonstrate the effectiveness of our approach. In summary, our work makes the
following contributions:

– We devise a novel two-stage generation framework for image-to-video transla-
tion, where the future frames are generated according to the spatial structure
sequence and then refined with temporal signals;

– We investigate learning residual motion for video generation, which focuses
on the motion-specific knowledge and avoids learning redundant or irrelevant
details from the inputs;

– Dense connections between layers of decoders are introduced to encourage
spatially different feature reuse during the generation process, which yields
more realistic-looking results;

– We conduct extensive experimental validation on standard datasets which
both quantitatively and subjectively compares our method with the state-
of-the-arts to demonstrate the effectiveness of the proposed algorithm.

2 Related Work

Deep learning techniques have improved the accuracy of various vision sys-
tems [23,24,32,33]. Especially, a lot of generative problems [8,25,26,35] have been
solved by GANs [7]. However, traditional frameworks fail to handle complicated
tasks, e.g., to generate fine-grained images or videos with large motion changes.
Recent approaches [16,42,43] prove that coarse-to-fine strategy can handle these
cases. Our model also employs this strategy for video generation.

Xiong et al. [42] proposed an algorithm to generate video in two stages,
but there are important differences between their work and ours. First, [42] is
proposed for time-lapse videos while we can generate general videos. Second,
we make use of structure conditions to guide the generation in the first stage
but [42] models this stage with 3D convolutional networks. Finally, we can make
long-term predictions while [42] only generates videos with fixed length.

Video Generation. Recent methods [17,38,39,41] solve image-to-video gen-
eration problem by training transformation networks that translate the input
image into each future frame separately, together with a generator predicting
the structure sequence which conditions the future frames. However, due to the
absence of pixel-level temporal knowledge during the training process, motion
artifacts can be observed from the results of these methods.

Other approaches explore learning temporal visual features from video with
spatiotemporal networks. Ji et al. [11] showed how 3D convolutional networks
could be applied to human action recognition. Tran et al. [36] employed spa-
tiotemporal 3D convolutions to model features encoded in videos. Vondrick et
al. [40] built a model to generate scene dynamics with 3D generative adversarial
networks. Our method differs from the two-stream model of [40] in two aspects.
First, our residual motion map disentangles motion from the input: the generated
frame is conditioned on the current and future motion structures. Second, we can
control object motions in future frames efficiently by using structure conditions.
Therefore, our method can be applied to motion manipulation problems.
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Fig. 2. Illustration of our motion condition generators designed for two tasks. Left : For
facial expression retargeting, 3D Morphable Model [4] is utilized as domain knowledge
to produce expression conditional sequence. Right : For human pose forecasting, the
pose is represented by the 2D positions of joints. The LSTM [6] observes a sequence of
human pose inputs and predicts the next several timesteps.

Dense Connections. Recent studies [9,10] used dense connections for image
classification. They have proven that dense connections for encoders strengthen
feature propagation and also encourage feature reuse. Instead, we introduce
dense connections for decoders. Compared with multi-scale feature fusion in [14]
where feature maps are only concatenated to the last layer of the network, our
dense connections upsample and concatenate feature maps with different scales
to all intermediate layers. Our approach is more efficient at feature re-use when
utilized for generation, which yields sharper and more realistic-looking results.

3 Method

As shown in Figure 1, our framework consists of three components: a motion
condition generator GC , an image-to-image transformation network GM for
forecasting motion conditioned by GC to each future frame individually, and
a video-to-video transformation network GR which aims to refine the video clips
concatenated from the output of GM . GC is a task-specific generator that pro-
duces a sequence of structures to condition the motion of each future frame. Two
discriminators are utilized for adversarial learning, where DI differentiates real
frames from generated ones and DV is employed for video clips. In the following
sections, we explain how each component is designed respectively.

3.1 Motion Condition Generators

In this section, we illustrate how the motion condition generators GC are im-
plemented for two image-to-video translation tasks: facial expression retarget-
ing and human pose forecasting. One superiority of GC is that domain-specific
knowledge can be leveraged to help the prediction of motion structures.
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Fig. 3. Illustration of our residual formulation. We disentangle the motion differences
between the input and future frames into a residual motion map mt+k and a residual
content map ct+k. Compared with the difference map directly computed from them,
our formulation makes the learning task much easier.

Facial Expression Retargeting. As shown in Figure 2, we utilize 3D Mor-
phable Model (3DMM) [4] to model the sequence of expression motions. Given
a video containing expression changes of an actor x, it can be parameterized
with αx and (βt, βt+1, . . . , βt+k) using 3DMM, where αx represents the facial
identity and βt is the expression coefficients in the frame t. In order to retarget
the sequence of expressions to another actor x̂, we compute the facial identity
vector αx̂ and combine it with (βt, βt+1, . . . , βt+k) to reconstruct a new sequence
of 3D face models with corresponding facial expressions. The conditional motion
maps are the normal maps calculated from the 3D models respectively.

Human Pose Forecasting. We follow [39] to implement an LSTM architec-
ture [6] as the human pose predictor. The human pose of each frame is repre-
sented by the 2D coordinate positions of joints. The LSTM observes consecutive
pose inputs to identify the type of motion, and then predicts the pose for the
next period of time. An example is shown in Figure 2. Note that the motion
map is calculated by mapping the output 2D coordinates from the LSTM to
heatmaps and concatenating them on depth.

3.2 Motion Forecasting Networks

Starting from the frame It at time t, our network synthesizes the future frame
It+k by predicting the residual motion between them. Previous work [16,28]
implemented this idea by letting the network estimate a difference map between
the input and output, which can be denoted as:

It+k = It +GM (It|Mt,Mt+k), (1)

where Mt is the motion map which conditions It. However, this straightforward
formulation easily fails when employed to handle videos including large motions,
since learning to generate a combination of residual changes from both dynamic
and static contents in a single map is quite difficult. Therefore, we introduce an
enhanced formulation where the transformation is disentangled into a residual
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Fig. 4. Architecture of our motion forecasting network GM . The network observes
the input frame It with its corresponding motion map Mt, and the motion map of
the future frame Mt+k. Through analogy learning, the network estimates the residual

motion between the current frame It and future frame It+k. Note that the dashed layers
upsample the inputs and connect them to the subsequent dense blocks.

motion map mt+k and a residual content map ct+k with the following definition:

It+k = mt+k ⊙ ct+k
︸ ︷︷ ︸

residual motion

+(1−mt+k)⊙ It
︸ ︷︷ ︸

static content

, (2)

where both mt+k and ct+k are predicted by GM , and ⊙ is element-wise multipli-
cation. Intuitively, mt+k ∈ [0, 1] can be viewed as a spatial mask that highlights
where the motion occurs. ct+k is the content of the residual motions. By sum-
ming the residual motion with the static content, we can obtain the final result.
Note that as visualized in Figure 3, mt+k forces GM to reuse the static part
from the input and concentrate on inferring dynamic motions.

Architecture. Figure 4 shows the architecture of GM , which is inspired by the
visual-structure analogy learning [27]. The future frame It+k can be generated
by transferring the structure differences from Mt to Mt+k to the input frame
It. We use a motion encoder fM , an image encoder fI and a residual content
decoder fD to model this concept. And the residual motion is learned by:

∆(It+k, It) = fD(fM (Mt+k)− fM (Mt) + fI(It)). (3)

Intuitively, fM aims to identify key motion features from the motion map con-
taining high-level structural information; fI learns to map the appearance model
of the input into an embedding space, where the motion feature transformations
can be easily imposed to generate the residual motion; fD learns to decode the
embedding. Note that we add skip connections [20] between fI and fD, which
makes it easier for fD to reuse features of static objects learned from fI .

Huang et al. [9,10] introduce dense connections to enhance feature propaga-
tion and reuse in the network. We argue that this is an appealing property for
motion transformation networks as well, since in most cases the output frame
shares similar high-level structure with the input frame. Especially, dense connec-
tions make it easy for the network to reuse features of different spatial positions
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when large motions are involved in the image. The decoder of our network thus
consists of multiple dense connections, each of which connects different dense
blocks. A dense block contains two 3 × 3 convolutional layers. The output of a
dense block is connected to the first convolutional layers located in all subse-
quent blocks in the network. As dense blocks have different feature resolutions,
we upsample feature maps with lower resolutions when we use them as inputs
into higher resolution layers.

Training Details. Given a video clip, we train our network to perform random
jumps in time to learn forecasting motion changes. To be specific, for every
iteration at training time, we sample a frame It and its corresponding motion
map Mt given by GC at time t, and then force it to generate frame It+k given
motion map Mt+k. Note that in order to let our network perform learning in the
entire residual motion space, k is also randomly defined for each iteration. On
the other hand, learning with jumps in time can prevent the network from falling
into suboptimal parameters as well [39]. Our network is trained to minimize the
following objective function:

LGM
= Lrec(It+k, Ĩt+k) + Lr(mt+k) + Lgen. (4)

Lrec is the reconstruction loss defined in the image space which measures the
pixel-wise differences between the predicted and target frames:

Lrec(It+k, Ĩt+k) = ‖It+k − Ĩt+k‖1, (5)

where Ĩt+k denotes the frame predicted by GM . The reconstruction loss intu-
itively offers guidance for our network in making a rough prediction that pre-
serves most content information of the target image. More importantly, it leads
the result to share similar structure information with the input image. Lr is an
L-1 norm regularization term defined as:

Lr(mt+k) = ‖mt+k‖1, (6)

where mt+k is the residual motion map predicted by GM . It forces the predicted
motion changes to be sparse, since dynamic motions always occur in local po-
sitions of each frame while the static parts (e.g., background objects) should
be unchanged. Lgen is the adversarial loss that enables our model to generate
realistic frames and reduce blurs, and it is defined as:

Lgen = −DI([Ĩt+k,Mt+k]), (7)

where DI is the discriminator for images in adversarial learning. We concatenate
the output of GM and motion map Mt+k as the input of DI and make the
discriminator conditioned on the motion [18].

Note that we follow WGAN [3,8] to train DI to measure the Wasserstein
distance between distributions of the real images and results generated from
GM . During the optimization of DI , the following loss function is minimized:

LDI
= DI([Ĩt+k,Mt+k])−DI([It+k,Mt+k]) + λ · Lgp, (8)
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Fig. 5. Architecture of our motion refinement network GR. The network receives tem-
porally concatenated frames generated by GM together with their corresponding condi-
tional motion map as the input and aims to refine the video clip to be more temporally
coherent. It performs learning in the residual motion space as well.

Lgp = (‖∇[Ît+k,Mt+k]
DI([Ît+k,Mt+k])‖

2
− 1)2, (9)

where λ is experimentally set to 10. Lgp is the gradient penalty term proposed

by [8] where Ît+k is sampled from the interpolation of It+k and Ĩt+k, and we
extend it to be conditioned on the motion Mt+k as well. The adversarial loss
in combination with the rest of loss terms allows our network to generate high-
quality frames given the motion conditions.

3.3 Motion Refinement Networks

Let Ṽt = [Ĩt+1, Ĩt+2, . . . , Ĩt+K ] be the video clip with length K temporally con-
catenated from the outputs of GM . The goal of the motion refinement network
GR is to refine Ṽt to be more temporally coherent, which is achieved by perform-
ing pixel-level refinement with the help of spatiotemporal generative networks.
We extends Equation 2 by adding one additional temporal dimension to let GR

estimate the residual between the real video clip Vt and Ṽt, which is defined as:

Vt = mt ⊙ ct + (1−mt)⊙ Ṽt, (10)

where mt is a spatiotemporal mask which selects either to be refined for each
pixel location and timestep, while ct produces a spatiotemporal cuboid which
stands for the refined motion content masked by mt.

Architecture. Our motion refinement network roughly follows the architectural
guidelines of [40]. As shown in Figure 5, we do not use pooling layers, instead
strided and fractionally strided convolutions are utilized for in-network down-
sampling and upsampling. We also add skip connections to encourage feature
reuse. Note that we concatenate the frames with their corresponding conditional
motion maps as the inputs to guide the refinement.

Training Details. The key requirement for GR is that the refined video should
be temporal coherent in motion while preserving the annotation information
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from the input. To this end, we propose to train the network by minimizing a
combination of three losses which is similar to Equation 4:

LGR
= Lrec(Vt, V̄t) + Lr(mt) + L̄gen, (11)

where V̄t is the output of GR. Lrec and Lr share the same definition with Equa-
tion 5 and 6 respectively. Lrec is the reconstruction loss that aims at refining
the synthesized video towards the ground truth with minimal error. Compared
with the self-regularization loss proposed by [29], we argue that the sparse reg-
ularization term Lr is also efficient to preserve the annotation information (e.g.,
the facial identity and the type of pose) during the refinement, since it force the
network to only modify the essential pixels. L̄gen is the adversarial loss:

L̄gen = −DV ([V̄t,Mt])−
1

K

K∑

i=1

DI([Īt+i,Mt+i]), (12)

where Mt = [Mt+1,Mt+2, . . . ,Mt+K ] is the temporally concatenated condition
motion maps, and Īt+i is the i-th frame of V̄t. In the adversarial learning term
L̄gen, both DI and DV play the role to judge whether the input is a real video
clip or not, providing criticisms to GR. The image discriminator DI criticizes
GR based on individual frames, which is trained to determine if each frame is
sampled from a real video clip. At the same time, DV provides criticisms to GR

based on the whole video clip, which takes a fixed length video clip as the input
and judges if a video clip is sampled from a real video as well as evaluates the
motions contained. As suggested by [37], although DV alone should be sufficient,
DI significantly improves the convergence and the final results of GR.

We follow the same strategy as introduced in Equation 8 to optimize DI .
Note that in each iteration, one pair of real and generated frames is randomly
sampled from Vt and V̄t to train DI . On the other hand, training DV is also
based on the WGAN framework, where we extend it to spatiotemporal inputs.
Therefore, DV is optimized by minimizing the following loss function:

LDV
= DV ([V̄t,Mt])−DV ([Vt,Mt]) + λ · Lgp, (13)

Lgp = (‖∇[V̂t,Mt]
DV ([V̂t,Mt])‖

2
− 1)2, (14)

where V̂t is sampled from the interpolation of Vt and V̄t. Note that GR, DI and
DV are trained alternatively. To be specific, we update DI and DV in one step
while fixing GR; in the alternating step, we fix DI and DV while updating GR.

4 Experiments

We perform experiments on two image-to-video translation tasks: facial expres-
sion retargeting and human pose forecasting. For facial expression retargeting,
we demonstrate that our method is able to combine domain-specific knowledge,
such as 3DMM, to generate realistic-looking results. For human pose forecast-
ing, experimental results show that our method yields high-quality videos when
applied for video generation tasks containing complex motion changes.
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4.1 Settings and Databases

To train our networks, we use Adam [12] for optimization with a learning rate of
0.0001 and momentums of 0.0 and 0.9. We first train the forecasting networks,
and then train the refinement networks using the generated coarse frames. The
batch size is set to 32 for all networks. Due to space constraints, we ask the
reader to refer to the project website for the details of the network designs.

We use the MUG Facial Expression Database [1] to evaluate our approach on
facial expression retargeting. This dataset is composed of 86 subjects (35 women
and 51 men). We crop the face regions with regards to the landmark ground truth
and scale them to 96 × 96. To train our networks, we use only the sequences
representing one of the six facial expressions: anger, fear, disgust, happiness,
sadness, and surprise. We evenly split the database into three groups according
to the subjects. Two groups are used for training GM and GR respectively, and
the results are evaluated on the last one. The 3D Basel Face Model [22] serves as
the morphable model to fit the facial identities and expressions for the condition
generator GC . We use [48] to compute the 3DMM parameters for each frame.
Note that we train GR to refine the video clips every 32 frames.

The Penn Action Dataset [45] consists of 2326 video sequences of 15 different
human actions, which is used for evaluating our method on human pose fore-
casting. For each action sequence in the dataset, 13 human joint annotations
are provided as the ground truth. To remove very noisy joint ground-truth in
the dataset, we follow the setting of [39] to sub-sample the actions. Therefore, 8
actions including baseball pitch, baseball swing, clean and jerk, golf swing, jump-
ing jacks, jump rope, tennis forehand, and tennis serve are used for training our
networks. We crop video frames based on temporal tubes to remove as much
background as possible while ensuring the human actions are in all frames, and
then scale each cropped frame to 64× 64. We evenly split the standard dataset
into three sets. GM and GR are trained in the first two sets respectively, while
we evaluate our models in the last set. We employ the same strategy as [39] to
train the LSTM pose generator. It is trained to observe 10 inputs and predict
32 steps. Note that GR is trained to refine the video clips with the length of 16.

4.2 Evaluation on Facial Expression Retargeting

We compare our method to MCNet [38], MoCoGAN [37] and Villegas et al. [39]
on the MUG Database. For each facial expression, we randomly select one video
as the reference, and retarget it to all the subjects in the testing set with different
methods. Each method only observes the input frame of the target subject, and
performs the generation based on it. Our method and [39] share the same 3DMM-
based condition generator as introduced in Section 3.1.

Quantitative Comparison. The quality of a generated video are measured by
the Average Content Distance (ACD) as introduced in [37]. For each generated
video, we make use of OpenFace [2], which outperforms human performance in
the face recognition task, to measure the video quality. OpenFace produces a
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Fig. 6. Examples of facial expression retargeting using our algorithm on the MUG
Database [1]. We show two expressions as an illustration: (a) happiness and (b) surprise.
The reference video and the input target images are highlighted in green, while the
generated frames are highlighted in red. The results are sampled every 8 frames.

Table 1. Video generation quality
comparison on the MUG Dataset [1].
We also compute the ACD-* score for
the training set, which is the reference.

Methods ACD-I ACD-C

MCNet [38] 0.545 0.322

Villegas et al. [39] 0.683 0.130

MoCoGAN [37] 0.291 0.205

Ours 0.184 0.107

Reference 0.109 0.098

Table 2. Average user preference score (the
average number of times, a user prefers our
result to the competing one) on the MUG
Dataset [1]. Our results own higher prefer-
ence scores compared with the others.

Methods Preference (%)

Ours / MCNet [38] 84.2 / 15.8

Ours / Villegas et al. [39] 74.6 / 25.4

Ours / MoCoGAN [37] 62.5 / 37.5

feature vector for each frame, and then the ACD is calculated by measuring
the L-2 distance of these vectors. We introduce two variants of the ACD in
this experiment. The ACD-I is the average distance between each generated
frame and the original input frame. It aims to judge if the facial identity is well-
preserved in the generated video. The ACD-C is the average pairwise distance
of the per-frame feature vectors in the generated video. It measures the content
consistency of the generated video.

Table 1 summarizes the comparison results. From the table, we find that our
method achieves ACD-* scores both lower than 0.2, which is substantially better
than the baselines. One interesting observation is that [39] has the worst ACD-I
but its ACD-C is the second best. We argue that this is due to the high-level
information offered by our 3DMM-based condition generator, which plays a vital
role for producing content consistency results. Our method outperforms other
state-of-the-arts, since we utilize both domain knowledge (3DMM) and temporal
signals for video generation. We show that it is greatly beneficial to incorporate
both factors into the generative process.
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We also conduct a user study to quantitatively compare these methods. For
each method, we randomly select 10 videos for each expression. We then ran-
domly pair the videos generated by ours with the videos from one of the compet-
ing methods to form 54 questions. For each question, 3 users are asked to select
the video which is more realistic. To be fair, the videos from different methods
are shown in random orders. We report the average user preference scores (the
average number of times, a user prefers our result to the competing one) in Ta-
ble 2. We find that the users consider the videos generated by ours more realistic
most of the time. This is consistent with the ACD results in Table 1, in which
our method substantially outperforms the baselines.

Visual Results. In Figure 6, we show the visual results (the expressions of
happiness and surprise) generated by our method. We observe that our method
is able to generate realistic motions while the facial identities are well-preserved.
We hypothesize that the domain knowledge (3DMM) employed serves as a good
prior which improves the generation. More visual results of different expressions
and subjects are given on the project website.

4.3 Evaluation on Human Pose Forecasting

We compare our approach with VGAN [40], Mathieu et al. [17] and Ville-
gas et al. [39] on the Penn Action Dataset. We produce the results of their
models according to their papers or reference codes. For fair comparison, we
generate videos with 32 generated frames using each method, and evaluate them
starting from the first frame. Note that we train an individual VGAN for differ-
ent action categories with randomly picked video clips from the dataset, while
one network among all categories are trained for every other method. Both [39]
and our method perform the generation based on the pre-trained LSTM provided
by [39], and we train [39] through the same strategy of our motion forecasting
network GM .

Implementation. Following the settings of [39], we engage the feature similar-
ity loss term Lfeat for our motion forecasting network GM to capture the ap-
pearance (C1) and structure (C2) of the human action. This loss term is added
to Equation 4, which is defined as:

Lfeat = ‖C1(It+k)− C1(Ĩt+k)‖
2

2 + ‖C2(It+k)− C2(Ĩt+k)‖
2

2, (15)

where we use the last convolutional layer of the VGG16 Network [30] as C1, and
the last layer of the Hourglass Network [19] as C2. Note that we compute the
bounding box according to the group truth to crop the human of interest for
each frame, and then scale it to 224× 224 as the input of the VGG16.

Results. We evaluate the predictions using Peak Signal-to-Noise Ratio (PSNR)
and Mean Square Error (MSE). Both metrics perform pixel-level analysis be-
tween the ground truth frames and the generated videos. We also report the
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Fig. 7. Comparison of state-of-the-arts using Peak Signal-to-Noise Ratio (PSNR) on
different human action categories from the Penn Action Dataset [45].

Table 3. Comparison of state-of-the-
art algorithms on the Penn Action
Database [45]. A smaller MSE score
means better performance.

Methods MSE MSE (GT)

VGAN [40] 0.047 -

Mathieu et al. [17] 0.041 -

Villegas et al. [39] 0.030 0.025

Ours 0.023 0.011

Table 4. Quantitative results of ablation
study. We report the ACD-* scores on the
MUG Database [1] and MSE scores on the
Penn Action Dataset [45].

Settings ACD-I ACD-C MSE

GM (Dense), GR 0.459 0.155 0.027

GM (Dense), GR 0.252 0.140 0.014

GM (Dense), GR 0.184 0.107 0.011

results of our method and [39] using the condition motion maps computed from
the ground truth joints (GT). The results are shown in Figure 7 and Table 3 re-
spectively. From these two scores, we discover that the proposed method achieves
better quantitative results which demonstrates the effectiveness of our algorithm.

Figure 8 shows visual comparison of our method with [39]. We can find
that the predicted future of our method is closer to the ground-true future.
To be speclfic, our method yields more consistent motions and keeps human
appearances as well. Due to space constraints, we ask the reader to refer to the
project website for more side by side visual results.

4.4 Ablation Study

Our method consists of three main modules: residual learning, dense connections
for the decoder and the two-stage generation schema. Without residual learning,
our network decays to [39]. As shown in Section 4.2 and 4.3, ours outperforms [39]
which demonstrates the effectiveness of residual learning. To verify the rest mod-
ules, we train one partial variant of GM , where the dense connections are not
employed in the decoder fD. Then we evaluate three different settings of our
method on both tasks: GM without dense connections, using only GM for gener-
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Fig. 8. Visual comparison of our method with Villegas et al. [39] on the Penn Ac-
tion Dataset [45]. Examples are sampled from the action of baseball (top) and tennis
(bottom) respectively. The results are taken every 5 frames.

ation and our full model. Note that in order to get rid of the influence from the
LSTM, we report the results using the conditional motion maps calculated from
the ground truth on the Penn Action Dataset. Results are shown in Table 4. Our
approach with more modules performs better than those with less components,
which suggests the effectiveness of each part of our algorithm.

5 Conclusions

In this paper, we combine the benefits of high-level structural conditions and
spatiotemporal generative networks for image-to-video translation by synthesiz-
ing videos in a generation and then refinement manner. We have applied this
method to facial expression retargeting where we show that our method is able
to engage domain knowledge for realistic video generation, and to human pose
forecasting where we demonstrate that our method achieves higher performance
than state-of-the-arts when generating videos involving large motion changes.
We also incorporate residual learning and dense connections to produce high-
quality results. In the future, we plan to further explore the use of our framework
for other image or video generation tasks.
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