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Abstract. Compressive video sensing is the process of encoding multi-
ple sub-frames into a single frame with controlled sensor exposures and
reconstructing the sub-frames from the single compressed frame. It is
known that spatially and temporally random exposures provide the most
balanced compression in terms of signal recovery. However, sensors that
achieve a fully random exposure on each pixel cannot be easily realized
in practice because the circuit of the sensor becomes complicated and in-
compatible with the sensitivity and resolution. Therefore, it is necessary
to design an exposure pattern by considering the constraints enforced
by hardware. In this paper, we propose a method of jointly optimiz-
ing the exposure patterns of compressive sensing and the reconstruction
framework under hardware constraints. By conducting a simulation and
actual experiments, we demonstrated that the proposed framework can
reconstruct multiple sub-frame images with higher quality.

Keywords: Compressive sensing, video reconstruction, deep neural net-
work

1 Introduction

Recording a high-frame video with high spatial resolution has various uses in
practical and scientific applications because it essentially provides more infor-
mation to analyze the recorded events. Such video sensing can be achieved by
using a high-speed camera [1] that shortens the readout time from the pixel by
employing a buffer for each pixel and reducing the analog-to-digital (AD) con-
version time by using parallel AD converters. Since he mass production of these
special sensors is not unrealistic, several problems remain unresolved with re-
gard to the replacement of standard complementary metal-oxide-semiconductor
(CMOS) sensors. As an example of hardware related problems, a fast readout
sensor is larger than a standard sensor because it is assembled with additional
circuits and transistors. To make a high-frame sensor more compact, a smaller
phototransistor must be used to lower the sensitivity.
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Fig. 1. Compressive video sensing. A process of encoding multiple sub-frames into
a single frame with controlled sensor exposures, and reconstructing the sub-frames from
a single compressed frame.

A feasible approach consists of capturing video by using compressive sensing
techniques [2—6], i.e., by compressing several sub-frames into a single frame at
the time of acquisition, while controlling the exposure of each pixel ’ s position.
In contrast to the standard images captured with a global shutter, where all
pixels are exposed concurrently, a compressive video sensor samples temporal
information and compresses it into a single image, while randomly changing
the exposure pattern for each pixel. This non-continuous exposition enables the
recovery of high-quality video. Formally, compressive video sensing is expressed
as follows:

y = ¢x (1)

where x is the high-frame video to be compressed, ¢ is the measurement matrix
(exposure patterns), and y is the compressed single image. The following tasks
are included in compressive video sensing: reconstruct a high-frame video x from
a single image y by using pattern ¢; optimize the pattern that enables high-
quality video reconstruction (Figure 1).

Under the assumption that random (theoretically optimal) patterns can be
implemented without hardware sensor constraints, numerous studies have in-
vestigated a method of reconstructing (decoding) from a single image based
on sparse coding [3-5]. In signal recovery theory, the best exposure pattern is
random sampling from a uniform distribution. However, this is not an optimal
pattern in terms of practical image sensing, because a practical scene does not
always maintain the sparsity assumed in compressive sensing theory. Few exist-
ing studies [6] have investigated scene adaptive exposure patterns in the context
of a target scene.

However, implementing such completely random exposures with a practical
CMOS sensor is not realistic, owing to hardware limitations. Achieving compat-
ibility between these special sensors and the sensitivity and resolution is difficult
because these sensors typically have more complicated circuits in each pixel, and
this decreases the size of the photo-diode [7]. Additionally, standard commer-
cial CMOS sensors, e.g., three-transistor CMOS sensors, do not have a per-pixel
frame buffer on the chip. Thus, such sensors are incapable of multiple exposure in
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a non-destructive manner [3]. There exists an advanced prototype CMOS sensor
[2] that can control the exposure time more flexibly. However, its spatial control
is limited to per line (column and row) operations. Therefore, it is necessary
to optimize the exposure patterns by recognizing the hardware constraints of
actual sensors.

Contribution. In this paper, we propose a new pipeline to optimize both the
exposure pattern and reconstruction decoder of compressive video sensing by
using a deep neural network (DNN) framework [8]. To the best of our knowledge,
ours is the first study that considers the actual hardware sensor constraints
and jointly optimizes both the exposure patterns and the decoder in an end-to-
end manner. The proposed method is a general framework for optimizing the
exposure patterns with and without hardware constraints. We demonstrated that
the learned exposure pattern can recover high-frame videos with better quality
in comparison with existing handcrafted and random patterns. Moreover, we
demonstrated the effectiveness of our method with images captured by an actual
sensor.

2 Related studies

Compressive video sensing consists of sensing and reconstruction: sensing per-
tains to the hardware design of the image sensor for compressing video (sub-
frames) to a single image. Reconstruction pertains to the software design for
estimating the original subframes from a single compressed image.

Sensing. Ideal compressive video sensing requires a captured image with ran-
dom exposure, as expressed in Equation 1 and shown in Figure 1. However,
conventional charge-coupled device (CCD) and CMOS sensors either have a
global or a rolling shutter. A global shutter exposes all of the pixels concur-
rently, while a rolling shutter exposes every pixel row/column sequentially. A
commercial sensor capable of capturing an image with random exposure does
not exist. Therefore, most existing studies have only evaluated simulated data
[5] or optically emulated implementations [3].

Many studies have investigated the development of sensors for compressive
sensing [9]. Robucci et al. [10] proposed the design of a sensor that controls the
exposure time by feeding the same signal to pixels located in the same row, i.e.,
row-wise exposure pattern coding is performed at the sensor level. In an actual
sensor implementation, analog computational coding is used before the analog-
to-digital (A/D) converter receives the signals. The proposed sensor type is a
passive pixel sensor that is not robust to noise, in comparison with an active
pixel sensor that is typically used in commercial CMOS image sensors. Dadkhah
et al. [11] proposed a sensor with additional exposure control lines connected
to the pixel block arrays, each of which was composed of several pixels. The
pixel block array shared the same exposure control line. However, each pixel
inside the block could be exposed individually. Although the block-wise pattern
was repeated, from a global point of view, this sensor could generate a random
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exposure pattern locally. Because the number of additional exposure control
lines was proportional to the number of all pixels in the sensor, the fill factors
remained similar to those of a standard CMOS sensor.

Majidzadeh et al. [12] proposed a CMOS sensor with pixel elements equipped
with random pattern generators. Because the generator was constructed from a
finite state machine sequence, the fill factor of this sensor was extremely low, and
this resulted in lower sensor sensitivity. Oike et al. [13] proposed a sensor wherein
all pixels were exposed concurrently, as in a regular CMOS image sensor. The
exposure information was read out as a sequential signal, which was cloned and
blanched to several multiplexers, in a parallel manner. The sequential signal was
encoded by using different random patterns.

Through parallel A/D converters, several random measurements, incoherent
to each other, can be obtained with a single shot. Relevant studies [10-13] have
mainly focused on super-resolution. Because the measured spatial resolution can
be reduced, the frame rate can be increased within a certain bandwidth. High
frame rate acquisition has not been demonstrated in any actual experiments
conducted by these studies.

There have been fewer attempts to implement sensors for compressive video
sensing. Spinoulas et al. [14] have demonstrated on-chip compressive sensing.
They used an inexpensive commercial development toolkit with flexible readout
settings to perform non-uniform sampling from several captured frames in com-
bination with pixel binning, region of interest (ROI) position shifting, and ROI
position flipping. Note that this coding was not performed on the sensor chip,
but rather during the readout process.

Sonoda et al. [2] used a prototype CMOS sensor with exposure control ca-
pabilities. The basic structure of this sensor was similar to that of a standard
CMOS sensor, although separate reset and transfer signals controlled the start
and end time of the exposure. Because the pixels in a column and row shared the
reset and transfer signal, respectively, the exposure pattern had row and column
wise dependency. These researchers also proposed to increase the randomness
of the exposure pattern. However, the method could not completely solve the
pattern * s row and column wise dependency.

Reconstruction. There are various methods to reconstruct a video from a single
image captured with compressive sensing. Because the video output rank (x in
Equation 1) is higher than the input (y), it is impossible to reconstruct the video
deterministically.

One of the major approaches consists of adopting sparse optimization, and
assuming that the video x, can be expressed by a linear combination of sparse
bases D, as follows: x, = Dov = a1 Dy + ao Do + - - - + oy Dy,

where o = [, .., o] T are the coefficients, and the number of coefficients k&
is smaller than the dimension of the captured image. In the standard approach,
the D bases are pre-computed, e.g., by performing K-SVD [15] on the training
data. From Equation 1, we obtain the following expression:

¥p = ¢pDav. (2)
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Fig. 2. Examples of exposure patterns under hardware constraints: (a) random expo-
sure sensor, (b) single bump exposure (SBE) sensor [3], (c) row-column wise exposure
(RCE) sensor [2]

Because yp, ¢p, and D are known, it is possible to reconstruct videos by solving
a, e.g., by using the orthogonal matching pursuit (OMP) algorithm [16, 3] that
optimizes the following equation:

a = argmin ||a||o subject to |[[¢pDa — ypll2 < o (3)
(e

To solve the sparse reconstruction, L; relaxation has been used because Lg
optimization is hard to compute and also computationally expensive. LASSO
[17] is a solver for the L; minimization problem, as expressed in Equation 4, and
has also been used in the sparse reconstruction of the video.

min|[¢Dar — yyla subject to ||l < o (4)

Yang et al. [4] proposed a reconstruction method based on Gaussian Mixture
Models (GMM). They assumed that the video patch {x,} could be represented
as follows:

K
xp~ > AN (%p | ik, 1) (5)
k=1
where N is the Gaussian distribution and K, £, and Ay are the number of GMM
components, mean, covariance matrix, and weight of the k;, Gaussian component
(Ax > 0 and Zszl Ar = 1). Therefore, the video could be reconstructed by
computing the conditional expectation value of x,,.

Very recently, Iliadis et al. [5] proposed a decoder based on a DNN. The net-
work was composed by fully connected layers and learned the non-linear mapping
between a video sequence and a captured image. The input layer had the size of
the captured image, while the hidden and output layers had the size of the video.
Because this DNN-based decoder only calculated the convolution with learned
weights, the video reconstruction was fast.

3 Hardware constraints of exposure controls

As already discussed in Section 2, there exist hardware constraints that prevent
the generation of completely random exposure patterns, which are a theoretical
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requirement of compressive video sensing, as shown in Figure 2a. In this paper,
we describe two examples of hardware constraints, which have been suggested by
[3] and fabricated to control pixel-wise exposures [2] on realistic sensors. In this
section, we detail the hardware constraints resulting from sensor architecture.

Hitomi et al. [3] suggested that CMOS modification is feasible. However, they
did not produce a modified sensor to realize pixel-wise exposure control as shown
in Figure 3a. Existing CMOS sensors have row addressing, which provides row-
wise exposure such as that of a rolling shutter. These researchers proposed to add
a column addressing decoder to provide pixel-wise exposure. However, a typical
CMOS sensor does not have a per-pixel buffer, but does have the characteristic
of non-destructive readout, which is only a single exposure in a frame, as shown
in Figure 4a. The exposure should have the same duration in all pixels because
the dynamic range of a pixel is limited. Therefore, we can only control the start
time of a single exposure for each pixel, and cannot split the exposure duration
to multiple exposures in one frame, even though the exposure time would be
controllable. Here, the main hardware restriction is the single bump exposure
(SBE) on this sensor, which is termed as the SBE sensor in this paper. Figure
2b shows an example of the SBE sensor ’ s space-time exposure pattern.
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(a) Architecture of single bump  (b) Architecture of row-column
exposure (SBE) CMOS image wise exposure (RCE) CMOS
sensor [3] image sensor [2]

Fig. 3. Architecture of single bump exposure (SBE) and row-column wise
exposure (RCE) image sensors. The SEB image sensor in (a) has a row and column
address decoder and can be read out pixel-wise. However, it does not have a per-pixel
buffer and can perform single-bump exposure (Figure 4). The RCE image sensor shown
in (b) has an additional transistor and exposure control signal line, and can perform
multi-bump exposure. However, it only has row addressing, which provides row wise
exposure, such as that of a rolling shutter.
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Fig. 4. Exposure bump. Single-bump means that the sensor is exposed only once
during the exposure. Conversely, multi-bump means that the sensor is exposed multiple
times during the exposure.

Sonoda et al. [2] used the prototype CMOS sensor with additional reset and
transfer signal lines to control the exposure time. The sensor ~ s architecture is
shown in Figure 3b. This figure shows the top left of the sensor with a block
structure of 8 x 8 pixels. These signal lines are shared by the pixels in the
columns and rows. The reset signal lines are shared every eighth column, and the
transfer signal lines are shared every eighth row. Therefore, the exposure pattern
is cloned block wise. The sensor had a destructive readout and the exposure
was more uniquely controllable such that we could use multiple exposures and
their different durations in a frame. However, the exposure patterns depended
spatially on the rows or columns of the neighboring pixels. In this paper, we
termed this sensor as the row-column wise exposure (RCE) sensor. Figure 2-c
shows an example pattern of the RCE sensor.

Few previous methods [6] of designing and optimizing exposure patterns for
compressive video sensing have been reported. However, none of them can be
applied to realistic CMOS architectures, because all of these previously reported
methods have assumed that exposure is fully controllable. Hence, we propose a
new method to optimize patterns under hardware constraints, although we also
considered unconstrained sensors in this study.

4 Joint optimization for sensing and reconstruction
under hardware constraints

In this section, we describe the proposed optimization method of jointly opti-
mizing the exposure pattern of compressive video sensing, and performing re-
construction by using a DNN. The proposed DNN consists of two main parts.
The first part is the sensing layer (encoding) that optimizes the exposure pat-
tern (binary weight) under the constraint imposed by the hardware structure, as
described in Section 3. The second part is the reconstruction layer that recovers
the multiple sub-frames from a single captured image, which was compressed by
using the optimized exposure pattern. The overall framework is shown in Figure
5.

Training was carried out in the following steps:
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Fig. 5. Network Structure. Proposed network structure to jointly optimize the ex-
posure pattern of compressive video sensing, and the reconstruction. The left side
represents the sensing layer that compresses video to an image by using the expo-
sure pattern. The right side represents the reconstruction layer that learns non-linear
mapping between the compressed image to video reconstruction.
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Fig. 6. Binary weight update. Binary weight updated with the most similar patterns
in the precomputed binary weights. The similarity between the continuous-value weight
and the precomputed binary pattern is computed by the normalized dot product.

1. At the time of forward propagation, the binary weight is used for the sensing
layer, while the reconstruction layer uses the continuous weights.

2. The gradients are computed by backward propagation.

3. The continuous weights of sensing and reconstruction layers are updated
according to the computed gradients.

4. The binary weights of the sensing layer are updated with the continuous
weights of the sensing layer.

4.1 Compressive sensing layer

We sought an exposure pattern that would be capable of reconstructing video
frames with high quality when trained along with the reconstruction (decod-
ing) layer. More importantly, the compressive sensing layer had to be capable
of handling the exposure pattern constraints imposed by actual hardware ar-
chitectures. Because implementing nested spatial pattern constraints (Section
3) in the DNN layer was not trivial, we used a binary pattern (weight) chosen
from the precomputed binary weights at forward propagation in the training.
The binary weight was relaxed to a continuous value [18] to make the network
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differentiable by backward computation. Next, the weight was binarized for the
next forward computation by choosing the most similar patterns in the precom-
puted binary weights. The similarity between the continuous-value weight and
the precomputed binary pattern was computed by the normalized dot product
(Figure 6).

The binary patterns can be readily derived from the hardware constraints.
For the SBE sensor [3], we precomputed the patterns from all possible combi-
nations of the single bump exposures with time starting at t =0,1,2,---, T —d,
where d is the exposure duration.

For the RCE sensor, the possible patterns were computed as follows: (1)
generate the possible sets by choosing the reset combinations (8 bits) and transfer
(8 Dbits) signals; (2) simulate the exposure pattern for all signal sets.

For the unconstraint sensor, we applied the same approach to prepare all pos-
sible patterns, and then chose the nearest pattern. We used simple thresholding
to generate binary patterns, as has been done by Iliadis et al. [6] in experiments,
seeing as this approach is not computationally effective.

4.2 Reconstruction layer

The reconstruction layer decodes high-frame videos from a single image com-
pressed by using the learned exposure pattern, as was described in the previous
section. This decoding expands the single image to multiple sub-frames by non-
linear mapping, which can be modeled and learned by a multi-layer perceptron
(MLP). As illustrated in Figure 5, the MLP consisted of four hidden layers
and each layer was truncated by rectified linear unit (ReLU). The network was
trained by minimizing the errors between the training videos and the recon-
structed videos. We used the mean squared error (MSE) as the loss function
because it was directly related with the peak signal-to-noise ratio (PSNR).

5 Experiments

5.1 Experimental and training setup

The network size was determined based on the size of the patch volume to be
reconstructed. We used the controllable exposure sensor [2], which exposes the
8 pixel block. Therefore, the volume size of W), x H, x T was set to 8 x 8 x
16 in the experiments. The reconstruction network had four hidden layers. We
trained our network by using the SumMe dataset, which is a public benchmarking
video summarization dataset that includes 25 videos. We choose 20 videos out
of the available 25. The selected videos contained a relative variety of motion.
We randomly cropped the patch volumes from the videos and augmented the
directional variety of motions and textures by rotating and flipping the cropped
patches. This resulted in 829,440 patch volumes. Subsequently, we used these
patches in the end-to-end training of the proposed network to jointly train the
sensing and reconstruction layers. In the training, we used 500 epochs with a
minibatch size of 200.



10 M.Yoshida A.Torii M.Okutomi K.Endo Y.Sugiyama R.Taniguchi H.Nagahara

NN R

e oo
oI ini- Jypil o= = i=iaai Elj=s

B IR
lst znd 3rd 4th 15th 16th th 15th leth

Handcraft exposure pattern Optimized exposure pattern

Fig. 7. Handcraft and optimized exposure pattern. (a)(b) single bump exposure
(SBE) sensor [3] (c¢)(d) row-column wise exposure (RCE) sensor [2] (e)(f) unconstraint
sensor

Spatial dimension Spatial dimension

c > c >
° ©
@ @ - |
c c
[ [
© © ]
g E 1
= =

(a) Handcraft exposure pattern b) Optimized exposure pattern

Fig. 8. Comparison of exposure patterns. The optimized exposure pattern indi-
cates more smooth and continuous exposures after the training.

5.2 Simulation experiments

We carried out simulation experiments to evaluate our method. We assumed
three different types of hardware constraints for the SBE, RCE, and unconstraint
sensors. The details of the SBE and RCE sensor constraints are described in
Section 3. The exposure pattern for an unconstrained sensor can independently
control the exposure for each pixel and achieve perfect random exposure, which
is ideal in signal recovery. The handcrafted pattern for the unconstrained sensors
was random.

Figure 7a shows the handcraft exposure pattern of the SBE sensor. The
exposure patterns indicates an exposed pixel in white color and an unexposed
pixel in black color. Note that [3] used a patch volume size of 7 x 7 x 36, and an
exposure pattern. Instead, we used a size of 8 x 8 x 16 to make a fair comparison
with [2] under the same conditions. Figure 7b shows the optimized exposure
pattern of the SBE sensor after training. This pattern still satisfies the constraint
by which each pixel has a single bump with the same duration as that of other
pixels.

Figure 7c shows the handcrafted exposure pattern of the RCE sensor. Figure
7d shows the optimized exposure pattern after training. The optimized pattern
satisfied the constraints. Figure 8 compares the exposure patterns. We reshaped
the 8 x 8 x 16 exposure patterns to 64 x 16 to better visualize the space vs. time
dimensions. The horizontal and vertical axes represent the spatial and temporal
dimension, respectively. The original handcrafted pattern of the RCE sensor
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indicates that the exposure was not smooth in the temporal direction, while the
optimized exposure pattern indicates more temporary, smooth, and continuous
exposures after the training. Similar results have been reported by [6], even
though our study considered the hardware constraints in pattern optimization.

Figure 7e shows the random exposure pattern, and Figure 7f shows the opti-
mized exposure pattern of the unconstraint sensor. The optimized patterns were
updated by the training and generated differently than the random exposure
patterns, which were used as the initial optimization patterns.

We generated a captured image simulated for the SBE, RCE, and uncon-
straint sensors. We input the simulated images to the reconstruction network to
recover the video. We quantitatively evaluated the reconstruction quality by us-
ing the peak signal to noise ratio (PSNR). In the evaluation, we used 14 256 x 256
pixel videos with 16 sub-frames. Figure 9 shows two example results, which are
named Car and Crushed can. The upper row (Car) of Figure 9 shows that, in our
result, the edges of the letter mark were reconstructed sharper than in the result
of the handcrafted exposure pattern. Additionally, the bottom row (Crushed
can) shows that the characters were clearer in the optimized exposure pattern
results, in comparison with the results of the handcrafted exposure pattern. The
reconstruction qualities were different in each scene. However, the qualities in
the optimized exposure pattern were always better than those of the handcrafted
exposure pattern, regardless of whether SBE, RCE, or unconstraint sensors were
assumed. Hence, the proposed framework effectively determined better exposure
patterns under different hardware constraints and jointly optimized the recon-
struction layer to suit these patterns. Table 1 shows the average PSNRs of the
handcrafted and optimized results for the SBE, RCE, and unconstraint sensors.
Owing to the pattern ’ s joint optimization and the reconstruction layers, the
proposed method always outperformed the original handcrafted patterns.

Table 1. Average peak signal-to-noise ratio (PSNR) of video reconstruction with dif-
ferent noise levels.

Noise|Handcraft|Optimized|Handcraft |Optimized | Ramdom|Unconstraint
Level| SBE SBE RCE RCE
DNN | O 29.41 30.05 28.51 29.45 29.17 29.99
(Ours)| 0.01 | 29.09 29.70 26.76 27.46 28.47 28.88
0.05 25.61 25.95 19.85 20.22 23.08 22.05
GMM| 0 27.69 29.63 28.18 28.82 29.05 29.81
[4] |0.01 27.54 29.29 26.27 26.57 28.13 28.09
0.05 24.58 25.50 19.18 19.23 22.13 21.25
OMP| 0 24.66 26.22 22.96 24.22 24.27 25.83
[3] |0.01 24.46 26.02 22.46 23.46 24.09 25.39
0.05 21.56 23.32 17.59 17.42 21.21 20.54

We compared our DNN approach with the dictionary-based (OMP) [3] and
GMM based [4] approaches. We trained the dictionary for OMP and GMM with
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Fig. 9. Reconstruction results of 3rd sub-frame (DNN).

the same data used by the DNN, and set the number of dictionary elements to
5,000 for OMP, and the number of components in GMM to 20. These parameters
were selected based on preliminary experiments. Additionally, we evaluated the
video recovery from a noisy input to validate robustness. We added white Gaus-
sian noise to the simulated captured image with different variances (the mean
value was 0). Table 1 shows the average PSNR value between the ground truth
video and the reconstructed video for the variances of 0, 0.01, and 0.05. Figure
10 shows the reconstruction results with different noise levels, as obtained by the
DNN, GMM, and OMP. We did not add noise to the training of the DNN. Fig-
ure 10 shows that the images were degraded, while the PSNRs decreased when
the noise increased by any method. The proposed DNN decoder was affected by
the noise, but still achieved the best performance in comparison with the other
decoders.

5.3 Real experiments

We conducted real experiments by using the real compressive image captured
by the camera with the sensor reported by [19,2]. Figure 11 shows the camera
image used in the real experiment. The compressed video was captured with 15
fps. We set 16 exposure patterns per frame. Thus, the reconstructed video was
equivalent to 240 fps after recovering all of the 16 sub-frames. We set the exposure
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Fig. 10. Reconstruction results of 3rd sub-frame with different noise levels by the deep
neural network (DNN), Gaussian mixture models (GMM), and orthogonal matching
pursuit (OMP) (exposure pattern: optimized RCE)

Fig.11. Camera used in real experiment.

pattern obtained by the sensing layer of the proposed network after the training.
Moreover, we reconstructed the video from the captured image by reconstructing
the layer of the proposed network. The sensor had a rolling shutter readout and
temporal exposure patterns, which were temporally shifted according to the
position of the image s row. The shifted exposure pattern was applied every 32
rows (four blocks with a 8 patch), in the case where the resolution of the sensor
was 672 x 512 pixels and the number of exposure patterns was 16 in one frame.
For example, the actual sub-exposure pattern was applied to the first four blocks
as the 0-15 sub-exposure pattern, the second four blocks were applied as the 1-
15, 0 pattern, the third four blocks were applied as the 2-15, 0, 1 pattern, and so
on. Hence, we trained 16 different reconstruction networks to apply the variety
of shifted exposure patterns. We used these different reconstruction networks
every 32 rows in an image. Figure 12 shows the single frame of the real captured
image and three of the 16 reconstructed sub-frames. The upper row shows that
a moving pendulum appeared at a different position in the reconstructed sub-
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Fig. 12. Reconstruction results. The left column shows the captured image; left of
the second column are the 3rd, 9th, and 15th frames of the reconstructed video.

frames, and the motion and shape were recovered. The second row shows the
blinking of an eye, and the bottom row shows a coin dropped into water. Our
method successfully recovered very different appearances; namely, the swinging
pendulum, closing eye, and moving coin. Because the scene was significantly
different from the videos included in the training dataset, these results also
demonstrate the generalization of the trained network.

6 Conclusion

In this paper, we first argued that real sensor architectures for developing con-
trollable exposure have various hardware constraints that make non-practical
the implementation of compressive video sensing based on completely random
exposure patterns. To address this issue, we proposed a general framework that
consists of sensing and reconstruction layers by using a DNN. Additionally, we
jointly optimized the encoding and decoding models under the hardware con-
straints. We presented examples of applying the proposed framework to two
different constraints of SBE, RCE, and unconstraint sensors. We demonstrated
that our optimal patterns and decoding network realized the reconstruction of
higher quality video in comparison with handcrafted patterns in simulation and
real experiments.
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