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Abstract. We present Lambda Twist; a novel P3P solver which is accurate, fast

and robust. Current state-of-the-art P3P solvers find all roots to a quartic and dis-

card geometrically invalid and duplicate solutions in a post-processing step. In-

stead of solving a quartic, the proposed P3P solver exploits the underlying elliptic

equations which can be solved by a fast and numerically accurate diagonalization.

This diagonalization requires a single real root of a cubic which is then used to

find the, up to four, P3P solutions. Unlike the direct quartic solvers our method

never computes geometrically invalid or duplicate solutions.

Extensive evaluation on synthetic data shows that the new solver has better nu-

merical accuracy and is faster compared to the state-of-the-art P3P implementa-

tions. Implementation and benchmark are available on github.
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1 Introduction

Pose estimation from projective observations of known model points, also known as the

Perspective n-point Problem (PnP), is extensively used in geometric computer vision

systems. In particular, finding the camera pose (orientation and position) from obser-

vations of n 3D points in relation to a world coordinate system is often the first step

in visual odometry and augmented reality systems[12,7]. It is also an important part in

structure from motion and reconstruction of unordered images [1]. The minimal PnP

case with a finite number of solutions requires three (n = 3) observations in a nonde-

generate configuration and is known as the P3P problem (Figure 1).

We are concerned with the latency and accuracy critical scenarios of odometry on

low power hardware and AR/VR. Since both latency and localization errors indepen-

dently not only break immersion, but also cause nausea, accurate solutions and minimal

latency are crucial. As an example application, vision based localization for AR/VR

places a few markers/beacons on a target, which are then found using a high speed

camera. Ideally we would then solve the pose directly on chip without sending the

full image stream elsewhere, mandating minimal cost. Further, because the markers are

placed on a small area and the camera is of relatively low resolution, the markers are

close to each other, meaning numerical issues due to near degenerate cases are com-

mon and the algorithm must be robust. The experiments will show that we have made

substantial progress on both speed and accuracy compared to state-of-the-art.
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Surveying the literature we find that P3P solvers are either direct or triangulating.

Triangulating methods first triangulate the points in the camera coordinate system using

a pose invariant, leaving only distances as unknowns and then solve for the pose. In this

case the rotation is solved for as either a quaternion or R ∈ SO(3) depending on end

user preference. This allows the geometric feasibility constraints, i.e. each point must

lie in front of the camera, to limit the solutions prior to computing the pose. In contrast,

direct methods parametrize the pose in the input coefficients using a projective invariant.

Therefore, they have to apply the feasibility constraint after the solutions are found, as

a post processing step.

To our knowledge, all direct methods, including state-of-the-art [6,8], are based on

finding the four roots of a quartic. This requires complex arithmetics and root polish-

ing to achieve high numerical accuracy. In contrast, triangulating methods can find all

P3P solutions by diagonalizing a three by three matrix. Further, the methods by Kneip

and Ke output R ∈ SO(3), which if unit quaternion representation is desired requires

careful conversion. Thus, triangulating methods have a potential advantage in terms

of numerical complexity and accuracy. This motivates us to revisit the P3P problem.

To this end we derive a novel triangulating P3P solution designed to provide high nu-

merical accuracy and computational performance. Unlike earlier approaches based on

similar pose invariants, we use a novel solution path. This allows us to discard infeasible

and duplicate solutions at an earlier stage, thereby saving computation. We explicitly

exploit that only a single real root of the diagonalizing cubic is required. We find this

root using Newton’s method with an initializing heuristic. This improves the numerical

accuracy and again saves computation.

We believe that the main strength of our algorithm is the relative numerical stability

of solving for one root of a cubic compared to the multiple iterative solvers used in

the solution of a quartic. Note that while discarding invalid and duplicate solutions in

advance saves us time, there is another more subtle problem which our solution avoids.

Note that the numeric accuracy of quartic solver roots decrease severely with increasing

root multiplicity. Because such roots correspond to duplicate or near duplicate solutions

and because such duplicates are common see Section 4.4, this reduces the numerical

accuracy of the quartic based solvers beyond what might otherwise be expected. Further

this predicts the behavior seen in the experiments where a incorrect solution found by

Ke’s solver will be refined to a duplicate root with further iterations. Since we compute

the single root we need iteratively, the multiplicity of the cubic does not significantly

affect the numerical accuracy of our solver. Further, since the different roots of the

cubic do not correspond to different or duplicate solutions, higher multiplicities are

rare. Finally, the initialization used makes it very likely that the root we converge to is

the one with the best numerical properties.

Although grounded in geometry, the proposed method is derived using methods

from linear algebra. The method is parameterized simply in the signed distance to the

three 3D points. Although difficult to compare, we believe that the proposed approach

is comparatively simple to understand.

Through extensive experiments we show that our solver achieves superior compu-

tational and significantly better numerical performance over prior state of the art.
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P = [R, t]

y1

y2

y3

x1

x2

x3

Fig. 1. The P3P setup, where each pair {x1,y1}, {x2,y2} and {x3,y3} are used in the calcula-

tion of the camera pose P = [R, t].

1.1 Related Work

Several methods for solving P3P can be found in the literature. The first solution for

P3P was published 1841 by Grunert [4], which demonstrated that P3P has up to 4

feasible solutions. Since then, a large number of solvers have been published, which

improve the original formulation in various ways. An overview of several of the relevant

P3P algorithms until 1991 is presented in the paper by Haralick et al. [5]. More recent

methods can be found in the work by Gao et al. [2], Kneip et al. [8], and by Ke et al. [6].

A common theme in a majority of P3P solvers is that each valid solution is asso-

ciated with a root of a quartic. What differs between the solvers is how this quartic is

formulated from the known data, and how the solution are associated with the roots. To

find all valid solutions to P3P these methods thus need to find all real roots to a quartic.

A few of the proposed methods, e.g. the one by Finsterwalder, accounted for by

Haralick et al. [5], and the one by Grafarend et al. [3], have observed that pairs of P3P

solutions can be associated with the roots of a cubic. This observation has not been

given much attention in the literature on P3P. In particular, it has not been discussed in

the more recent P3P methods.

In this paper we present a novel P3P solver that, while it shares the projective invari-

ant beginnings with Grafarend et al. [9], follows a different solution path which enables

an efficient implementation

2 Problem Formulation

Given a calibrated pinhole camera, three 3D points xi = (xi, yi, zi), and corresponding

homogeneous image coordinates yi ∼ (ui, vi, 1) such that |yi| = 1, then:

λiyi = Rxi + t, i ∈ {1, 2, 3}, (1)

where the rotation R ∈ SO(3) together with the translation t ∈ IR3 define the pose of

the camera. In short a P3P solver is a function [Rk, tk] = P3P(x1:3,y1:3). Depending

on the configuration of the points, P3P has up to four solutions.
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2.1 Requirements

It is well known that a necessary condition to assure a finite set of solutions, is that nei-

ther the 3D points nor the 2D points are collinear[5]. In addition there are two specific

requirements any solution should meet. First, they should be real. Second, since the

parameters λk is the signed distance from the camera center for each 3D point, λ1, λ2,

and λ3 are required to be positive and real. This is a geometric feasibility condition on

the solutions, which implies that all three 3D points are “in front of” the camera.

3 Lambda Twist Derivation

In this section we derive the the proposed algorithm for solving P3P. The starting point

is (1), and the first step is to eliminate t and R, leaving only the signed distance pa-

rameters λi as unknowns. More precisely, they have to solve a system of three inhomo-

geneous quadratic equations. As we will see, the solutions to the three inhomogeneous

equations can be determined by first reducing the problem to a pair of homogeneous

quadratic equations. Solving these homogeneous quadratic equations is isomorphic to

finding the intersection of two ellipses in the plane. We diagonalize the elliptic equa-

tions by finding a rank 2 linear combination of the constraints. Finding this rank 2

combination requires a single root of a cubic polynomial. In general, this root gives us

up to four sets of positive (λ1, λ2, λ3), corresponding to a vector Λ ∈ IR3, an element

of the “lambda-space”. Finally, for each geometrically feasible set of Λk parameters,

we determine a corresponding camera pose (Rk, tk).

3.1 Pose Invariant Constraints

In principle, the homogeneous image coordinates yi in (1) can be multiplied by an

arbitrary non-zero scalar. By doing so, the parameters λi have to scale inversely. If the

scaling is positive, each λi then represents a scaled depth, but the sign rules described

in Section 2.1 still apply. In the following, we scale each yi such that ‖yi‖ = 1.

We begin the elimination with the translation t, by taking the pairwise differences

of the three equations in (1), then taking into account that R ∈ SO(3) and ‖yi‖ = 1:

λiyi − λjyj = R(xi − xj), =⇒ (2)

|λiyi − λjyj |
2 = |xi − xj |

2 def
= aij , =⇒

λ2
i + λ2

j − 2bij = aij , (3)

bij
def
= yT

i yj .

This leaves us with only λi as free variables to be determined from the three non-trivial

ij i.e. {12, 13, 23}. This is what we will do next.

3.2 Three Inhomogeneous Quadratic Polynomials

The constraints on the scaled depth parameters λi in (3) can be formulated in a more

compact way as

Λ⊤M12Λ = a12, Λ⊤M13Λ = a13, Λ⊤M23Λ = a23, (4)
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where

M12 =





1 −b12 0
−b12 1 0
0 0 0



 , M13 =





1 0 −b13
0 0 0

−b13 0 1



 , M23 =





0 0 0
0 1 −b23
0 −b23 1



 .

There is a geometric interpretation of the variables: bij = yT
i yj is the cosine of the

angle between the projection rays of image point i and j, and aij is the squared distance

between 3D points xi and xj . Since we require that the 3D points are not collinear, it

follows that aij > 0, ∀ ij.

Some observations can be made from (4). First, we see that if Λ solves these three

equations, then so does −Λ. However as mentioned in Section 2.1 only solutions where

all λi > 0 are of interest. A second observation is that the set of Λ which solves

an equation in (4) forms an elliptic cylinder centered on each of the three axes in the

lambda-space. Each solution Λ is a point where all three cylinders intersect each other.

In general there are 8 such points, taking the sign flip of Λ into account, though some

of these intersection points may be complex. As mentioned in Section 2.1, we want to

remove complex Λ and also any Λ which does not lie in the “positive octant” of the

lambda-space, where λ1, λ2, λ3 > 0.

3.3 Two Homogeneous Quadratic Polynomials

A linear combination of Eqn (4) provide a set of homogeneous polynomials which are

compactly formulated as

D1 = M12a23 −M23a12 =
(
d11d12d13

)
, (5)

D2 = M13a23 −M23a13 =
(
d21d22d23

)
, (6)

Λ⊤DiΛ = 0, ∀i ∈ {1, 2}, (7)

where dij is column j of the matrix Di.

Since (7) are homogeneous polynomials, any requirement on the norm of Λ is lost.

By substituting the solution into one of the equations in (4) the proper scale is found.

The equations in (7) specify two ellipses in (λ1, λ2) if λ3 = 1. Thus the solution repre-

sents the intersections of the ellipses.

3.4 The Cubic Polynomial

We now turn to the problem of finding Λ that solves (7). For now we assume that D1

and D2 are indefinite as the rare cases when this is not true is either trivial or degenerate.

In Eq (7), each quadratic form has a solutions set in the form of an elliptic double cone

in the lambda-space. These two cones intersect along, at most, four lines. This is true for

any quadratic form specified as a linear combination of D1 and D2 as well. A special

case of such a double cone is a pair of planes, where each plane intersects with two of

the lines. Such a degenerate case occurs precisely when the linear combination has rank

2. A plane which includes Λ is then an extra linear constraint in addition to the previous
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quadratic relations. This observation is key for the proposed solver, and we will next

consider how to determine these planes, and how they can be used to find all valid Λ.

We form D0 = D1 + γD2 that has a corresponding solution space which is simple

to determine. We find this D0 by solving

0 = det(D0) = det(D1 + γD2). (8)

This corresponds to a cubic polynomial in γ:

c3γ
3 + c2γ

2 + c1γ + c0. (9)

The four coefficients are given by

c =







c3
c2
c1
c0







=








det(D2)

dT
21(d12×d13) + dT

22(d13×d11) + dT
23(d11×d12)

dT
11(d22×d23) + dT

12(d23×d21) + dT
13(d21×d22)

det(D1)








. (10)

In the special case that either of D1 or D2 are semi-definite, or indefinite with one

eigenvalue equal to zero, we get c0 = 0 or c3 = 0. In this case, is not necessary to form

and solve this cubic, we simply set D0 = D1 or D0 = D2. In the general case, we

may still want to avoid being close to a case where c3 ≈ 0, as the cubic then becomes

numerically unstable. In this case the real root of the inverse polynomial, i.e. µ = γ−1,

is found instead. In practice these are near non-existent cases and the polynomial is well

conditioned.

In general, we can assume that neither c3 nor c0 vanish, and the cubic polynomial is

well-defined and has one, two, or three distinct roots. Diagonalizing D0 requires only

one real root γ0 which can be found with any of several standard methods. With γ0 at

hand, we set D0 = D1 + γ0D2.

We recall that D0 specifies two planes, each intersecting with two distinct lines that

includes Λ solving (7). In the case of four such lines, there are three ways to specify

the two planes. Therefore we should expect the problem of finding the degenerate cone,

specified by D0, to have three solutions. As we have seen, finding this D0 can be formu-

lated as finding a root of a cubic. Although additional roots provide more constraints on

Λ, we will in the next step see that one case of D0 is sufficient for finding all solutions

to P3P.

3.5 Diagonalization of D0

An eigenvalue decomposition of D0 results in

D0 = ESE⊤, where E =





e0 e1 e2
e3 e4 e5
e6 e7 e8



 =
(
e1, e2, e3,

)
. (11)

The matrix E holds an orthogonal basis of IR3 in its columns ei, and S holds the corre-

sponding eigenvalues in its diagonal. Since det(D0) = 0, at least one of the eigenvalues
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are zero, and we can assume S to have the following form:

S = ETD0E =





σ1 0 0
0 −σ2 0
0 0 0



 , (12)

and σ1 > 0, σ2 ≥ 0. The fact that there is at least one non-zero eigenvalue, and that if

there is more than one they have opposite sign, is a general observation. This property

holds when a rigid transform relates the observations.

We exploit that we know one eigenvalue of D0 is zero for a efficient eigenvalue

decomposition in Algorithm 2. This algorithm also reorders the eigenvectors to ensure

that |σ1| ≤ |σ2|. This improves numerical performance in later steps.

3.6 Solving for Λ

We use the eigenvalue decomposition of D0 to solve ΛTD0Λ = 0 by first solving the

simpler equation pTSp = 0 using the substitution p = ETΛ where p = (p1, p2, p3)
T .

With p1 = sp2 we find that s = ±
√

−σ2

σ1

for any p3.

Each solution of s gives us a linear relation between λ1, λ2, λ3 using p = ETΛ:

e1Λ = p1 = sp2,

e2Λ = p2, =⇒

se2Λ = sp2, =⇒

e1Λ− se2Λ = 0, =⇒

λ1 =
e3 − se4

se1 − e0
︸ ︷︷ ︸

w0

λ2 +
e6 − se7

se1 − e0
︸ ︷︷ ︸

w1

λ3 = w0λ2 + w1λ3. (13)

The two solutions for s gives two possible expressions for λ1 in Eqn (13).

Next let: λ3 = τλ2. This implies τ > 0 since we only seek the solutions where

λi > 0 which satisfy the geometric feasibility constraint. Inserting λ3 = τλ2 and

Eqn (13) in e.g. ΛD1Λ = 0 gives

λ2
2





w0 + τw1

1
τ





⊤

D1





w0 + τw1

1
τ



 = 0. (14)

This leads to a quadratic equation in τ : aτ2 + bτ + c = 0 with coefficients:

a = ((a13 − a12)w
2
1 + 2a12b13w1 − a12),

b = (2a12b13w0 − 2a13b12w1 − 2w0w1(a12 − a13)), (15)

c = ((a13 + a13 − a12)w
2
0 − 2a13b12w0).

In summary, for each of the two possible values of s, we get two solutions for τ . This

gives up to four solutions. Complex and negative τ are discarded at this point since
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they will never lead to real and geometrically feasible poses. We denote the surviving

solutions as τk.

Next we determine λ2k for each τk using λ3k = τkλ2k and Eqn (4). Specifically we

use ΛTM23Λ
T = a12 because it does not depend on λ1. The result is

λ2
2k

(
1
τk

)T (
1 −b23

−b23 1

)(
1
τk

)

= a23, λ2k > 0, (16)

which is solved by λ2k =
√

a23

τk(b23+τk)+1 . This gives us a λ2k for each τk. Note that

a23 > 0 and (τk(b23 + τk) + 1) > 0 since |b23| ≤ 1.

Finally we compute λ3k = τkλ2k and λ1k from Eqn (13). To summarize, for each

τk we get a Λk. So far we have only guaranteed that λ2 and λ3 are positive. If λ1k < 0
then Λk is discarded. This ensures that the remaining Λk are geometrically feasible.

3.7 Recovering R and t

At this point we have a set of up to four geometrically feasible solutions Λk. For each

Λk, it remains to determine the corresponding camera pose (Rk, tk). The rotation Rk

can be recovered from ij ∈ {12, 13, 23} in (2), but since the differences of the 3D points

that appear in the right hand sides of these equations are linearly dependent, these three

equations are of rank two. To increase the rank, we can take the cross product of the

entries in the left hand side of the first two equations. This must equal the cross product

of the corresponding entries in the right hand side:

z1 × z2 = R

(

(x1 − x2)× (x2 − x3)

)

, (17)

where z1 = λ1y1 − λ2y2 and z2 = λ2y2 − λ3y3.

The first two equations in (2) together with (17) gives:

Y = RX, (18)

Y =
(
z1, z2, z1 × z2

)
, (19)

X =
(
x1−x2, x2−x3, (x1−x2)× (x2−x3)

)
, (20)

R = YX−1. (21)

This solution only provides R ∈ SO(3) if the correspondences are exact. This is guar-

anteed by Eqn (1).

Finally, the translation part of the pose can be solved from any of the three equations

in (1):

t = λiyi −Rxi. (22)

In the end, this produces one pose (Rk, tk) that solves (1) for each feasible vector Λk

that is generated by the previous step.

If desired, the corresponding unit quaternions qk can be extracted given the two 3D

correspondences in (17), see Appendix A.2. We use the rotation matrix representation

to make the algorithm more closely comparable to the alternatives.
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Algorithm 1 Lambda Twist P3P

1: function MIX(n,m) =
(

n, m, n×m
)

2: function P3P(y1:3,x1:3)

3: Normalize yi = yi/|yi|
4: Compute aij and bij according to (3)

5: Construct D1 and D2 from (5) and (6)

6: Compute a real root γ to (8)-(10) of the cubic equation

7: D0 = D1 + γD2

8: [E, σ1, σ2] = EIG3X3KNOWN0 (D0). See Algorithm 2

9: s = ±
√

−σ2

σ1

10: Compute the τk > 0, τk ∈ R for each s using Eqn (14) with coefficients in Eqn (15)

11: Compute Λk according to Eqn (16), λ3k = τkλ2k and Eqn (13), λ1k > 0
12: Xinv = (mix(x1 − x2,x1 − x3))

−1

13: for each valid Λk do

14: Gauss-Newton-Refine(Λk), see Section 3.8

15: Yk = MIX(λ1ky1 − λ2ky2, λ1ky1 − λ3ky3)
16: Rk = YkXinv

17: tk = λ1ky1 −Rkx1

18: Return all Rk, tk

3.8 Implementation Details

We find the diagonalizing γ as a root of the cubic in Eqn (9) by using Newton-Raphson’s

method initialized using a simple heuristic.

Once the Λk have been computed they are also refined in accordance with stan-

dard praxis[13]. Specifically, we refine the solution using a few verified steps of Gauss-

Newton optimization on the sum of squares of Eqn (4). A similar refinement is used in

the P3P solver by Ke et al. Note that for both algorithms the accuracy rarely improves

after 2 iterations.

This concludes the Lambda Twist P3P algorithm, summarized in Algorithms 1 and 2.

4 Experiments

We have performed three experiments: one to evaluate the numerical accuracy of the

proposed method, and two to evaluate the execution time. In order to demonstrate the

performance of the proposed method, the experiments were performed on random syn-

thetic data. The proposed method is implemented in C++ and is compared to the state-

of-the-art P3P solver by Ke et al. [6], and the P3P solver Kneip et al. [8]. The publicly

available C++ implementations of the two state-of-the-art methods have been used. The

method by Ke et al. [6] is available as part of OpenCV[10] and the method by Kneip et

al. [8] is available at [11]. These solvers both show that they provide superior computa-

tional and numerical performance compared to earlier work. The algorithms are com-

piled with gcc using the same optimization settings as part of the same program. The

numerical and time benchmarks are available along with the code on the main authors
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Algorithm 2 eig3x3known0

1: function GETEIGVECTOR(m, r )

2: c = (r2 +m1m5 − r(m1 +m5)−m2

2)
3: a1 = (rm3 +m2m6 −m3m5)/c
4: a2 = (rm6 +m2m3 −m1m6)/c
5: v =

(

a1 a2 1
)

6: Return v/|v|

7: function EIG3X3KNOWN0(M)

8: b3 = M(:, 2)×M(:, 3);
9: b3 = b3/|b3|

10: m = M(:)
11: p1 = m1 −m5 −m9

12: p0 = −m2

2 −m2

3 −m2

6 +m1m5 +m9 +m5m9

13: [σ1, σ2] as the roots of σ2 + p1σ + p0 = 0
14: b1 = GETEIGVECTOR(m, σ1)
15: b2 = GETEIGVECTOR(m, σ2)
16: if |σ1| > |σ2| then

17: Return
(

[b1, b2, b3], σ1, σ2

)

18: else

19: Return
(

[b2, b1, b3], σ2, σ1

)

github page. The comparison is performed using a Intel Core i7-6700 3.40 GHz CPU

and the code compiled using gcc 4.4 on ubuntu 14.04 with the compile options: -O3

and -march=native.

The implementations by Ke and by Kneip always output four solutions, not all of

which are correct. The user must determine which of these are valid. Thus we extend

these implementations with a minimal post-processing step. This removes solutions

which do not satisfy the geometric feasibility constraint, i.e λi > 0. We also remove

solutions which contains NaN or do not approximately contain rotation matrices, i.e.

| det(R) − 1| < 10−6 and |RTR − I|L1 < 10−6. This step takes a total of 40ns per

sample. This cost is included in the timings since this step must always be performed

before the result can be used. Table 1 shows that there is approximately 1.7 unique

valid solutions on average per sample. Note that the solutions output by our algorithm

intrinsically fulfill these criterion by construction.

We time the system in two ways. First we time the computation of each sample

resulting in a time distribution graph. Second we take the total runtime over the same

samples providing an average time without the overhead of per sample timing. The

timing is performed using high resolution stable timers.

4.1 Synthetic Data

We generate random rigid transforms and random reasonably distributed observations.

There are two goals with the sampling. First, the samples should uniformly cover both

the image, and the set of rotations. Second, we want substantial depth and translation

direction variation within reasonable limits. This resembles data found in the recon-

struction of unordered images, a challenging application. Specifically we generate a
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P3P observation as follows: The rotation R is represented by a unit quaternion q ∈ IR4.

Each sample of q is drawn from a isotropic Gaussian distribution in IR4, before being

normalized to unit norm and then converted to a matrix. This assures that the rotations

have a uniform distribution in SO(3)[9]. The translation components t are sampled

from a normal distribution with σ = 1. Combined, [Rgen, tgen] is the generating pose

of the sample. Observations are generated by a uniform sampling of the normalized im-

age coordinates (ui, vi) in the range [-1,1], and the corresponding 3D point is computed

as xi = RT (yiz − t) for a uniform random positive depth z ∈ [0.1, 10].

Note that P3P is algebraically complete in the sense that it has the same number

of constraints as there are free parameters, i.e. it is a minimal solver. Therefore there

is no coherent interpretation of adding noise to the observations. We do not remove

near degenerate data but instead rely on their presence to strain the algorithms. Strictly

degenerate cases, i.e. exactly collinear samples, are removed. It is worth pointing out

that this dataset strains the algorithms far more than the ”near degenerate” samples

experiment of Ke et al., which fails to find the problem cases we find.

The resulting data set consists of 107 samples, and the same set is used in all experi-

ments. The experiments are performed sequentially but caching cannot occur due to the

size of the dataset. Note, one sample is 104Byte and the full dataset is therefore 1GB.

4.2 Experiment 1: Numerical Accuracy

The numerical accuracy is evaluated by letting the three methods determine their solu-

tions for each sample. Each valid solution [Rk, tk] is then compared to the generating

pose [Rgen, tgen] of the sample. For each algorithm, the total pose error ‖tgen−tk‖L1+
‖Rgen−Rk‖L1 of the solution with the error are compared. We are primarily interested

in the error in R but add the translation error to avoid hiding errors in the computation

of t. The matrix differences are used to avoid the angle conversion from contaminating

the comparison. Similarly the L1 norm is used to reduce numerical error in the norm

computation and provide a fair comparison for the smaller errors. Larger errors above

10−6 simply indicate failure. The numerical ranking of the algorithms does not change

if the L2 norm, or the delta angle, is used. The latter case favors our solution since the

R to quaternion conversion can be avoided in using the method in Appendix A.2.

Figure 2a shows the numerical errors of the three methods. The graph shows that

lower errors are more likely with our method than either of the other methods. The num-

ber of successes, shown in Table 1, is the number of samples with an error ≤ 10−6. The

table support that failures are significantly less likely with our method. It also shows

that the rate of outright failure is far less likely with our algorithm than either of the

other two. In particular its interesting to note that Kneip’s algorithm has fewer extreme

failures than the method by Ke et al. It also turns out the algorithm by Kneip et al. occa-

sionally returns NaN rather than any correct solution. NaNs are replaced by a error of 1

and partially explain the increase at the end of Figure 2a for Kneip’s algorithm. Finally

we note that for every single sample our error is lower than the errors of both Ke and

Kneip. In short, the numerical performance of our solver is substantially better than the

other two methods.
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4.3 Experiment 2: Execution Time Comparison

We provide each algorithm with identical sequences of synthetic data. Since timing

a function interferes with performance, we have sampled both a total time and each

sample separately. Figures 2a-2b and Table 1 show that the new method is faster than

the method by Ke et al., and that both methods are substantially faster than the method

by Kneip et al. Note that excluding the post processing step does not change the ranking.

In order to show that the timings are stable the primary comparison has been repeated

1000 times on the same data while keeping the computer otherwise idle. The result is

shown in Table 2.

Table 1. Output statistics over 107 samples.

Method Mean[ns] Successes Failures Unique

Lambda Twist 278 9999968 32 16934510

Ke et al. 2 iters 342 9995790 4210 16924141

Ke et al. 10 iters 435 9996105 3895 16925025

Kneip et al. 1042 9994973 5027 16909306

Table 2. Timing statistics over 107 samples iterated 1000 times.

Method Median[ns] Min[ns] Max[ns]

Lambda Twist 277 271 289

Ke et al. 2 iters 341 335 353

4.4 Solutions and Successes

First and foremost, Table 1 shows that we have less than one hundredth the number

of failures for this data. Further Table 1 shows that we find more unique solutions, i.e.

where |Ri − Rj |L1 > 10−6 and Ri,Rj ∈ SO(3), than either of the other methods.

This is largely, but not entirely, due to the samples for which the other algorithms do not

find any accurate solution. It is worth mentioning that we do not find duplicate solutions,

unlike Ke et al. Their algorithm finds about 0.3% duplicates and 36% incorrect solu-

tions in the standard configuration with two root refinement iterations. Interestingly, if

the number of root refinement iterations are increased, Ke’s methods only finds slightly

more solutions. Instead it refines solutions, which otherwise would not satisfy the solu-

tion criteria, into duplicates which do. This results in a duplicate ratio of 36%. Arguably,

duplicates should be removed in most applications, but this step was not added to the

post-processing as they are technically correct.
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Fig. 2. a Solver numerical precision likelihoods. b Time comparison over 107 samples.

We make two additional observations: First, any sample which results in a failure

for our method, results in a failure for both other methods, i.e. we are never worse.

Second: Every failure for our algorithm and the algorithm of Ke et al. are near known

degenerate cases. This is not the case for the algorithm by Kneip et al where a rare

cancellation of terms causing a division by zero can occur in a nondegenerate case.

When Ke’s algorithm fails, the most common reason is that the method does not

ensure that the output matrix is in SO(3) due to numerical noise after the quartic root.

The benchmark by Ke et al unfortunately hides this error as it normalizes/converts the

resulting rotation matrix to a unit quaternion as part of the evaluation. This step is costly

and not included in their timing measurements. The degradation of performance seen

here compared to their work is because our metric does not hide this issue. While we

understand the appeal of a geometrically interpretable error, we conclude that for the

estimation of numerical accuracy, the measure which minimizes error estimation error

is preferable.

5 Conclusions

We have presented a novel P3P method with substantially better numerical performance

that is faster than previous state-of-the-art. We believe that both the speed and the accu-

racy are a result of avoiding the quartic and instead going for a cubic. We have shown

the performance of the method using extensive synthetic tests. The test stresses the al-

gorithms sufficiently to find failures. Further, the method lets the user select if a unit

quaternion or R ∈ SO(3) rotation is desired as output without conversion. The method

and the benchmark will be available at:

https://github.com/midjji/lambdatwist-p3p.

https://github.com/midjji/lambdatwist-p3p
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A Appendix

A.1 Degeneracy of (7)

The two equations in (7) become degenerate when D1 is a scalar multiplied with D2, in

which case the set of solutions is infinite. Taking into account that aij > 0, a straight-

forward inspection of the two matrices in (5)-(6) shows that the degenerate case implies

D1 = D2. This happens if and only if

b12 = b13 = b23 = 0, and a23 = 0. (23)

This means that degeneracy requires a23 = 0, which in turn implies that the 3D points

are collinear.

A.2 Quaternion from two 3D Correspondences

The rotation can be found as a unit quaternion q given the two 3D correspondences

ai, bi:

ai = Rbi ⇐⇒

(
0
ai

)

= q ∗

(
0
bi

)

∗ qc = QBiq
c ⇐⇒

QTai = Biq
c ⇐⇒ Aiq

c = Biq
c =⇒

(Ai −Bi)q
c def

= Ziq = 0 =⇒

(
Z1 Z2

)
(
Z1

Z2

)

q
def
= Kq = 0

q is then extracted from K using a specialized solver which exploits that K has exactly

one zero singular value.
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