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Abstract. Object detection is one of the major problems in computer
vision, and has been extensively studied. Most of the existing detection
works rely on labor-intensive supervision, such as ground truth bound-
ing boxes of objects or at least image-level annotations. On the con-
trary, we propose an object detection method that does not require any
form of human annotation on target tasks, by exploiting freely avail-
able web images. In order to facilitate effective knowledge transfer from
web images, we introduce a multi-instance multi-label domain adaption
learning framework with two key innovations. First of all, we propose an
instance-level adversarial domain adaptation network with attention on
foreground objects to transfer the object appearances from web domain
to target domain. Second, to preserve the class-specific semantic struc-
ture of transferred object features, we propose a simultaneous transfer
mechanism to transfer the supervision across domains through pseudo
strong label generation. With our end-to-end framework that simultane-
ously learns a weakly supervised detector and transfers knowledge across
domains, we achieved significant improvements over baseline methods on
the benchmark datasets.

Keywords: Object detection, domain adaptation, web knowledge trans-
fer.

1 Introduction

In recent years, with the advances of deep convolutional neural networks (DCNN),
object detection tasks have attracted significant attention and have achieved
great improvements in performance and efficiency. State-of-the-art works such as
Faster R-CNN [25], SSD [21], FPN [20] achieve high accuracy but require labour-
intensive bounding box annotations for training. To alleviate the large labour
cost for annotating ground truth bounding boxes, weakly supervised object de-
tection methods that only rely on image-level human annotations have also been
extensively studied [2–4, 8, 14, 15, 27, 16]. However, for large-scale multi-object
detection problem, even annotating just image-level labels could deem to be too
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Fig. 1. Overall idea of object detection without human annotations. First of all, we
mine freely available web images through automatic retrieval with respect to a given set
of object categories. Our framework then facilitates knowledge transfer from these web
images to the target task using a multi-stream network with three major components:
1) a weakly supervised detection stream (WSD) to train the detection model from web
images; 2) an instance-level domain adaptation (DA) stream to minimize the feature
discrepancy across domains at instance-level feature space; 3) a simultaneous transfer
(ST) stream that learns to discriminate unsupervised target examples by transferring
supervision from web detection model. These three streams are trained simultaneously
to effectively transfer the learning of web images to the target task.

expensive. This motivates us to develop an object detection method with no
human annotations involved. Our basic idea is to transfer knowledge from free
web resources to the target tasks.

With the similar motivation, zero-shot learning (ZSL) problem has been pro-
posed for unsupervised learning. Many works [17, 18, 10, 24, 11, 1] have been
proposed to utilize side information such as attributes, Wikipedia or WordNet
to jointly encode semantic space and image feature space for solving zero-shot
recognition problems. However, although textual side information could help
zero-shot object recognition with exploiting the intrinsic semantic relations be-
tween categories, it is hard to learn a class-specific object detector that can
accurately differentiate objects from the background as well as different objects
with just semantic descriptions. In contrast, our direction is to exploit freely
available web images as a much stronger side information to solve the object
detection problem without human annotations, considering that there are huge
amount of image resources from the web and plenty of works studying the au-
tomatic collection of these web imagery resources [19, 7, 34, 28].

One baseline approach for learning detectors with web images is to simply
use the web images and their image “labels” (essentially the pre-defined labels
used as search phrases to retrieve the images) to train a web object detector us-
ing some weakly supervised detection (WSD) methods and apply them on target
images. This naive learning scheme is referred as webly supervised learning in
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previous works [9, 6]. However, directly applying the web models to the tar-
get data produces poor results. The major reason is that it ignores the domain
discrepancies between web images and target images. As shown in Fig. 1, web
images from image search engines are mostly studio-shot images, which are sim-
ple, clear and unblocked. In contrast, the target images (e.g. Pascal VOC images)
usually contain multiple objects of different classes that are often occluded with
cluttered scenes. Hence it is necessary to properly transfer the models learned
from web images to the target images.

To address this domain discrepancy problem, we need to adapt the source
(i.e. web domain) and target domain object appearances, for which unsuper-
vised domain adaptation is the common way [29, 12, 22, 30, 5]. Although many
unsupervised domain adaptation methods have been proposed, they all focus
on image-level domain adaptation for image classification problems. What we
consider here is the domain adaptation at instance level (i.e. object proposal
level), which is non-trivial to solve. Inspired by the recent adversarial domain
adaptation works [29, 12, 30], we propose an instance-level adversarial domain
adaptation network to reduce the domain discrepancies particularly at instance
level. Our adversarial domain adaptation network includes a domain discrimina-
tor that differentiates object features from web domain and target domain, and
a feature generator that projects source and target objects to the same manifold
in the feature space so that the discriminator can no longer tell their differences.

In addition, we introduce an innovative component in our domain adapta-
tion network: attention on foreground objects. As weakly supervised detection is
essentially a multi-instance multi-label learning problem, each image actually is
a bag of instances, where each instance corresponds to a bounding box proposal.
Equally treating all proposals in each image when training adversarial domain
adaptation network will lead to sub-par results, as we care more about propos-
als containing objects than proposals that are largely background. Therefore, we
introduce an attention mechanism to emphasize the transfer of object proposals
and suppress the transfer of background proposals.

However, the introduced instance-level domain adaptation network brings in
a side effect, i.e. the feature generator is likely to ignore the semantic structure
of different object classes, since there is no class-specific constraint. As a result,
it not only brings features from different domains together to the same mani-
fold, but also mixes up the sub-manifolds from different classes. For example,
the “cow” from web domain will be confused with the “sheep” from target do-
main through the domain adaptation. To address this issue, we further introduce
simultaneous learning towards class-specific pseudo labels to preserve the seman-
tic structure during the domain adaptation. This component compensates the
side effect of the domain adaptation component so that the domain shift will be
guided in a class-specific manner. In this way, our overall architecture including
the web object detector, the domain adaptation component and the simultane-
ous transfer component significantly boosts up the object detection results on
unsupervised target data.
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We would like to highlight that the rationale of studying this problem lies
in that such detector can be trained without any human labour and therefore
the whole process could be fully automated. Different from fully supervised and
weakly supervised object detection, our object detector allows the training of
the detection models to be highly scalable in term of categories. For example, in
the Pascal VOC dataset, if we want to add the object class “keyboard”, which
exists in some of the images but is not annotated, we need to re-annotate all
the images in the training data by providing respective labels at bounding box
level (for supervised detector) or image level (for weakly supervised detector).
Another example is that if we want to further break down the “bird” class into
multiple classes such as “parrot”, “goose”, “hawk” and etc, we also need to revise
the annotations for all images containing “bird” objects. In contrast, our solution
can automatically search the web and progressively transfer the web knowledge
to learn the detector without any human intervention or any modification in the
target domain dataset. The training of such detector can be a completely self-
taught process. Hence, we think this problem is highly meaningful and worth to
be studied.

Overall, the main contributions of our work can be summarized as follows:

– We propose a new problem of knowledge transfer in object detection for un-
supervised data, which enables learning an object detector from free web
images and alleviates any forms of human annotations for target domain.
By studying this problem, the learning of object detectors can be fully au-
tomated and highly scalable with categories.

– We propose an instance-level domain adaptation method to transfer web
knowledge to unsupervised target dataset. The proposed domain adaptation
framework includes: 1) an instance-level adversarial domain adaptation net-
work with attention on foreground objects; 2) a simultaneous transfer stream
to preserve the semantic structure of classes by transferring the pseudo labels
obtained from the web domain detector to the target domain detector.

– Our method significantly reduces the gap between unsupervised object de-
tection (i.e. train a detector using only web images and then directly apply
it on target images) and the upper bound (i.e. train a detector using image-
level labels of target data) by 3.6% in detection mAP.

2 Related Works

Our work is related to a few computer vision and machine learning areas. We
will review these related topics in this section.

Weakly supervised object detection: Recent works on weakly supervised
object detection aim to reduce the intensive human labour cost by using only
image-level labels instead of bounding box annotations [2, 3, 8]. They are more
cost-effective than the fully supervised object detection methods since image-
level labels are easier to obtain compared with the bounding box annotations.
These works formulate the weakly supervised object detection task as a multi-
instance learning (MIL) problem in which the model will be learned alternatively
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Fig. 2. The proposed network branches into three streams after the proposal feature
learning layers. The first stream (in blue) is the weakly supervised detection (WSD)
network which is further divided into recognition and localization streams. The middle
stream (in yellow) is the instance-level domain adaptation (DA) stream that optimizes
an adversarial loss to enforce domain invariant feature representation. The last stream
(in purple) is the simultaneous transfer (ST) stream to preserve semantic structure of
target data with pseudo labels.

to recognize the object categories and to find the object locations of each cate-
gory. The recent work [4] is the first one introducing an end-to-end network with
two separate branches for object recognition and localization respectively. Later,
[15] introduced context information to the weakly supervised detection network
in the localization stream. [27] proposed online classifier refinement to refine the
instance classification based on image-level labels.

Our work is related to these works as the web data will be trained in a weakly
supervised way with their weak labels. In this paper, we use WSDDN in [4] as
the base model for our work.

Learning from web data: Web data is a free source of training samples
that can be collected automatically for various tasks [6, 9, 35, 26]. Previous works
[6, 9, 35] study the web data collection approaches and further evaluate their data
collection methods by training those web data for different tasks. They focus on
reducing the effects of noises from web images and thereby construct robust
and clean web datasets. While learning for the target tasks, these prior works
simply treat the web dataset as the substitute of the training dataset in the
target task without considering the domain shifts between web data and target
data, which is similar as our baseline approach. Apart from that, web data are
often used as complementary data to improve the training of target dataset. In
[33], web images are used to produce pseudo masks for pre-training the semantic
segmentation network. In [32], an object interaction dataset with web images is
created to facilitate the semantic segmentation task as additional data. In their
approaches, the image-level labels (in [33]) or pixel-level ground truth masks (in
[32]) of target images are required and web images are utilized as additional
knowledge to improve the segmentation model performance. In our work, we
attempt to solve the detection problem using only the web images without any
forms of annotations from target dataset.
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Domain adaptation: Our work is also closely related to the domain adap-
tation works [29, 12, 30, 5, 36]. [12] introduced the domain adversarial training of
neural networks. The domain adaptation is achieved by introducing a domain
classifier to classify features to their corresponding domains and applying a gra-
dient reversal layer between the feature extractor and the domain classifier. With
this reversal layer, when the domain classifier learns to distinguish the features
from different domains, the feature extractor learns in the reverse way to make
the feature distributions as indistinguishable as possible. Hence, this domain
adversarial training can result in a domain-invariant feature representation. [29]
also uses a similar method for domain transfer in image classification task. In
[29], a domain classification loss and a domain confusion loss influence the train-
ing in an adversarial manner. They also added a soft label layer while learning
the source examples in order to transfer correlations between classes to the target
examples. Later, [30] proposed to untie the weight sharing between two domains.
These previous works have validated the effectiveness of the adversarial domain
adaptation methods in the image classification problem. In our work, we follow
the principles of the end-to-end adversarial methods but for our zero-annotation
detection task with the domain transfer of proposal-level features to reduce the
domain mismatch between web data and target data.

3 Problem Definition and Notations

In this section, we formally define our problem of zero-annotation object detec-
tion with web knowledge transfer. Essentially, we define this problem as an un-
supervised multi-instance multi-label domain adaptation problem. Specifically,
we consider two domains, the web domain Dw representing web images and
target domain Dt representing target tasks (e.g. Pascal VOC and MS COCO).
The source data {Xw

j , yj}
nw

j=1 is sampled from Dw, where Xw
j is the j-th image,

yj ∈ ❘
C sampled from label space Y is the corresponding C dimensional binary

label vector and nw is the number of source images. For object detection prob-
lems, it is natural to decompose each image to a bag of instances, i.e., object
proposals, through dense sampling or objectness techniques. Thus, Xw

j can be

represented as Xw
j = {xw,j

i }
mw

j

i=1, where x
w,j
i is the i-th proposal in Xw

j and mw
j is

the number of total proposals of Xw
j . Similarly, the target data sampled from Dt

can be denoted as {Xt
j}

nt

j=1, and Xt
j = {xt,j

i }
mt

j

i=1. Note that since we do not have
annotations for target data, effective knowledge transfer from the web domain
is necessary.

Traditional domain adaptation methods usually optimize an objective func-
tion f : Xw, Xt → Y , which jointly learns a classifier for source/web domain
and transfers the knowledge to target domain at image-level. However, for ob-
ject detection, we need to go deeper to instance-level. In particular, we need to
learn f : xw, xt → Y . Therefore, we will need a backbone structure to learn from
image-level labels and propagate knowledge to instances, and an effective way to
transfer knowledge from the web domain to the target domain at instance-level.
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4 Methodology

Fig. 2 shows the diagram of the proposed framework for zero-annotation ob-
ject detection with web knowledge transfer. The entire framework branches into
three streams after feature representation, including WSD, DA, and ST. In the
following, we describe each stream one by one.

4.1 Weakly supervised detection trained on web images

Our weakly supervised detection backbone is based on the basic WSDDN [4]
(blue region in Fig. 2). Note that other end-to-end WSD methods can be easily
applied as well. Specifically, for WSSDN, the proposal features xi ∈ ❘

d are
obtained through an ROI pooling layer on the feature map of the image, followed
by two fully connected layers, similar to Fast-RCNN [13]. Then we represent each
image X as the concatenation of its proposal features, i.e., X = concat(xi), ∀i ∈
[1,m], thus X ∈ ❘m×d, where m denotes the number of proposals in the image.
Note that here we abuse the notation xi to represent both proposal and its
corresponding feature, and X to represent both image and its corresponding
concatenated feature matrix.

Following the proposal feature learning, the WSD network breaks into two
branches of fully connected (fc) layers to produce two score matrices Scls and
Sloc ∈ ❘m×C , where C is the number of object classes. Then Scls and Sloc

are passed to two softmax layers with different axes, i.e. Scls is normalized in
the class dimension to produce the class probability of each proposal and Sloc

is normalized in the proposal dimension to find the most responsive proposal
for each class among all candidate proposals. For proposal i and class c, we
respectively denote the outputs of these two softmax layers as pclsi,c and ploci,c ,
which are defined as

pclsi,c =
es

cls
i,c

∑C

k=1 e
scls
i,k

, ploci,c =
es

loc
i,c

∑m

k=1 e
sloc
k,c

(1)

Then the detection probability pi,c of each proposal can be computed by
element-wise products of the normalized probabilities from the two branches:

pi,c = pclsi,c · ploci,c . (2)

The image classification probability pc is calculated by summing up the detection
probabilities of all proposals:

pc =

m∑

i=1

pi,c. (3)

Finally, the multi-class cross entropy loss is adopted as the loss function of WSD,
which is defined as

LWSD = −

C∑

c=1

[y(c)log(pc) + (1− y(c))log(1− pc)] (4)
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Fig. 3. Instance-level domain adaptation stream with foreground attention. We visual-
ize the attended image regions produced by the foreground attention mechanism. The
examples show that the foreground object regions are well attended and the background
regions are suppressed during domain adversarial learning.

where y(c) ∈ {0, 1} is the web image label for class c.
Note that since we do not have any label in the target domain, this WSD

loss is only optimized by training with web images.

4.2 Instance-level adversarial domain adaptation

The purpose of this instance-level domain adaptation (DA) stream (yellow re-
gion in Fig. 2) is to close the feature discrepancies between the two domains.
Fig. 3 gives the detailed structure of this DA stream. In particular, it includes
two players with adversarial goals: a discriminator trained to differentiate the
domains where input features come from, and a feature learner shared with the
WSD stream trained to align features from both domains so as to confuse the
discriminator.

In particular, the proposed discriminator consists of a fully connected layer
fcd that classifies the input proposal features xi in i-th row ofX to their domains
yti ∈ {0, 1}. Here we define yti = 0 for xi from the web domain Dw and yti = 1
for xi from target domain Dt. Through a softmax operation, we can compute
the domain probability as pti, i.e prob(yti = 1). The adversarial loss can then be
written as

min
φw
f

max
φfcd

❊x∼Dt [log(pt)] +❊x∼Dw [log(1− pt)],

❊x∼Dt [log(pt)] =
∑

i

✶[yti = 1]log(pti),

❊x∼Dw [log(1− pt)] =
∑

i

✶[yti = 0] log(1− pti),

(5)

where φw
f denotes the parameters of the feature learner, φfcd denotes the pa-

rameters of the discriminator fcd, and ✶[] is the indication function.
The optimization of the minimax domain adversarial loss in (5) is achieved

by training alternatively between the following two steps. First, we update φfcd

to distinguish proposal features from Dw and Dt to seek for maximizing the loss.
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Fig. 4. Simultaneous transfer stream with pseudo ground truth generation.

Then we fix φfcd and learn the feature representation φw
f to minimize the loss so

as to confuse the discriminator. In practice, we only shift the web domain Dw

towards the target domain and φw
f is updated by training only web images.

Moreover, unlike the existing domain adaptation works for image classifica-
tion [29, 12], which focus on aligning image-level features, here we need to align
instance-level features instead, especially for important instances that are more
likely to contain objects. Specifically, while adapting the instance-level features,
we care more about the foreground features than those background features in
order to learn common object appearances. Therefore, we introduce an attention
mechanism to focus on the adaptation of foreground features and suppress the
effects for background features. As shown in Fig. 3, our foreground attention
model uses the detection scores from the WSD stream and computes the fore-
ground probability p

f
i for proposal i by summing up pi,c in (2) over all the classes

(i.e.
∑C

c=1 pi,c) followed by a softmax operation for the normalization over all
the proposals. This is to find out the most responsive proposals regardless which
object classes they belong to, and the responsive proposals with high pf scores
are highly likely to be foreground. Finally, we use the foreground probability as
the attention weight, and modify the minimax adversarial loss as

min
φw
f

max
φfcd

❊x∼Dt [pf · log(pt)] +❊x∼Dw [pf · log(1− pt)]. (6)

4.3 Simultaneous transfer by pseudo supervision

Ideally, the domain adaptation stream should produce domain invariant features
and improve the detection results while applying on the target dataset. However,
it is observed that it fails to perform domain shift with class-specific directions.
Specifically, it could encourage the features to be indistinguishable across not
only domains but also classes. This ill effect of DA stream eventually makes
features to be non-discriminative. Therefore, to preserve the semantic structure
across different categories, we introduce the simultaneous transfer (ST) stream
(purple part in Fig. 2) and use the pseudo labels generated from the WSD
network as the supervision to preserve or even enhance the discriminative power
of the learned features. The network details are shown in Fig 4.

To generate the pseudo ground truth for each target image, we use the de-
tection scores pi,c in (2) from the WSD stream. We select to highest scoring
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proposal for each object class c, denoted as ic = argmaxi pi,c. We set a threshold
t to determine the presence of a class in an image. If pic,c >= t, the correspond-
ing proposal ic is selected as the pseudo ground truth bounding box. Given the
pseudo ground truth boxes, we then sample the boxes with large overlaps with
the pseudo ground truth boxes as positive examples and randomly sample a few
background examples from the remaining bounding boxes.

Finally, we use the softmaxloss as the ST loss function:

LST = −
∑

i∈P

C∑

c=0

✶[yST
i = c]log(pST

i,c ), (7)

where yST ∈ {0, 1, 2, ...C} are the class labels (0 is the class label of background),
P is the set of the selected proposals, and pST

i,c is the class probability output
from the fully connected layer fct followed by a softmax operation.

Conditional adversarial loss is also a common way in GAN to enable class-
specific domain adaptation. However, here the conditions are instance-level pseudo
labels, which are noisy labels. It will be more stable to detach the class condi-
tional learning with the domain adversarial learning.

5 Experiments

In this section, we conduct various experiments to evaluate the effectiveness of
our proposed zero-annotation object detection with web knowledge transfer.

5.1 Datasets and experiment setup

We evaluate our method on two object detection benchmark datasets: Pascal
VOC 2007 and 2012. These two datasets contain images of 20 object classes.
The web images we used are from the STC dataset [33], whose images can be
freely obtained from Internet without human labour. Similar as most supervised
detection works, mean average precision (mAP) is used as the evaluation metric.
Following the common standard, the IoU threshold is set to be 0.5 between
ground truths and correctly predicted boxes.

Implementation details. Our method is built upon two pre-trained net-
works on imagenet: VGG M and VGG 16. We use selective search [31] to generate
proposals for source and target images. In the WSD stream, we follow the de-
tails in the basic model of WSDDN as described in Section 4.1. The ROI features
from the web domain are passed to the WSD stream to optimized the WSD loss
whereas the ROI features from the target domain are only forwarded up to the
detection score layer to generate foreground attention weights for the DA stream
and pseudo labels for the ST stream. The DA stream takes the inputs from both
source and target domains. It alternates between training the discriminator and
the feature generator each time after training 5000 images. Lastly, the ST stream
takes the inputs from the target domain and uses the detection scores generated
from the WSD stream to generate pseudo ground truths as described in Section
4.3.
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5.2 Baseline and upper bound

Table 1. Baseline(wt.web data) and upper-bound(wt.VOC labels) on VOC 2007.

Method mAP

WSD(wt.web data)-VGG M 21.5
WSD(wt.web data)-VGG16 21.8

WSD(wt.VOC labels)-VGG M 30.2
WSD(wt.VOC labels)-VGG16 29.3

The baseline of our method is the basic WSD network [4] trained using only
web images with web image labels. As shown in Table 1, due to the domain
mismatch, the results are only 21.5 for VGG M and 21.8 for VGG16.

The upper bound of our method is to train the basic WSD network with VOC
image-level labels similar as [4]. Our obtained upper bound result for VGG M
is quite close to that reported in [4] with selective search proposals, while our
result of 29.3 for VGG16 is higher than that of 24.3 reported in [4] with selective
search proposals. Also, we have the same finding as [4] that VGG 16 performs
slightly worse than VGG M. This could be because the image level labels might
not give sufficient supervision for a very deep network for the MIL problem.

Overall, there are significant gaps between the results without VOC labels
and those with VOC labels. We aim to reduce the gap between the unsupervised
and weakly supervised detection by transferring the knowledge of web domain
to target domain with our proposed method.

5.3 Detailed results and analysis

Table 2 shows the detailed detection results of different combinations of the three
streams developed in our method on VOC2007 test set. All of these methods are
evaluated against the baseline,‘WSD(Baseline)’, that uses web images to train
the WSD network alone. Before training the DA and ST streams, we train the
WSD for one epoch first. This will give a more stable initialization to get the
foreground attention weights for DA and pseudo labels for ST.

From Table 2, we can see that adding DA alone, ‘WSD+DA’, results in a
slight drop in mAP. As discussed in Section 4.2, DA could result in an unexpected
feature confusion among object classes with similar appearance, such as vehicle
classes and animal classes. Only for classes that are different from all the other
classes, such as “tv monitor”, DA shows its contribution to the detection results.

It can be seen that by further adding the ST stream, ‘WSD+DA+ST’, the
detection results improve significantly, by 2.7% for VGG M and 3.2% for VGG16,
compared with the baselines. In addition, inspired by the idea of [27], we also
evaluate the performance of adding multiple pseudo label transfer streams one
by one. Specifically, the pseudo labels generated by the first ST stream are used
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Table 2. Average precision results (%) of different component combinations on
VOC2007 test set.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

WSD(Baseline)-VGG M 31.1 27.1 18.6 10.0 9.1 29.9 37.7 21.5 2.7 15.8 21.5 27.8 30.0 35.7 10.8 9.9 17.6 28.9 23.1 21.1 21.5
WSD+DA-VGG M 30.3 24.1 15.6 13.8 9.1 32.7 39.0 21.4 2.9 19.0 26.4 25.5 24.7 32.9 4.3 8.2 15.6 28.7 24.5 25.1 21.2

WSD+DA+ST-VGG M 33.3 31.5 16.9 13.8 10.8 39.5 36.2 30.8 8 19.9 33.4 18.4 26.4 37.8 8.3 13.1 15.5 32.1 25.0 33.8 24.2
WSD+DA+2ST-VGG M 34.3 31.3 18.5 9.4 10.6 39.6 37.7 17.9 10.2 16.7 34.7 19.8 31.8 40.7 7.4 12.5 18.6 33.0 26.8 34.6 24.3
WSD+DA+3ST-VGG M 35.6 31.3 18.2 7.7 9.1 40.4 38.4 23.8 9.7 20.1 33.4 22.5 30.9 41.4 9.8 10.8 18.7 28.7 27.1 34.7 24.6

WSD(Baseline)-VGG16 45.8 28.2 11.1 8.5 2.5 42.8 41.5 25.9 4.2 15.9 13.0 16.9 28.0 40.8 3.6 5.5 11.0 38.5 28.4 23.2 21.8
WSD+DA-VGG16 33.8 22.4 13.1 13.4 9.1 38.1 36.5 25.8 9.2 20.1 12.6 19.8 19.9 34.4 4.4 10.8 13.8 30 26.8 25.1 21.0

WSD+DA+ST-VGG16 43.7 30.8 15.7 10.6 13.4 41.3 39.5 23.9 12.8 20.7 27.9 13.9 23.4 39.7 10.3 12.7 21.3 39.6 28.1 30.7 25.0
WSD+DA+2ST-VGG16 44.7 31.0 12.1 15.7 11.8 38.8 40.6 29.1 12.0 17.9 32.2 9.1 24.1 42.8 7.6 13.7 17.0 33.4 30.6 33.5 24.9
WSD+DA+3ST-VGG16 40.6 30.1 17.8 15.9 6.4 42.9 40.5 31.5 11.4 20.3 27.4 15.7 24.1 43.8 8.9 12.2 17.7 37.3 32.1 31.0 25.4

Table 3. Average precision results (%) on VOC2012 test set.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

WSD(Baseline)-VGG M 39.7 25.4 12.6 5.8 2.3 32.3 25.0 20.7 1.6 17.9 9.6 29.0 24.3 42.4 3.8 4.6 10.6 16.6 22.5 11.4 17.9
WSD+DA+3ST-VGG M 44.3 29.8 15.6 6.6 6.0 34.4 24.2 25.1 5.7 20.3 22.3 24.9 29.1 45.2 7.8 9.4 12.4 21.4 22.6 26.0 21.7

WSD(Baseline)-VGG16 47.9 29.2 14.8 7.9 3.5 39.6 27.3 24.6 2.3 15.9 4.9 18.3 25.5 47.5 3.8 4.3 9.4 22.2 19.3 16.0 19.2
WSD+DA+3ST-VGG16 48.8 32.8 16.6 6.3 7.7 39.0 26.2 32.6 7.8 18.3 12.4 22.1 29.7 45.9 9.6 9.0 14.5 24.0 26.8 28.1 22.9

as the supervision of the second ST stream, whose generated pseudo labels are
then used as the supervision of the third ST stream. The results of appending
multiple ST streams, ‘WSD+DA+2ST’ and ‘WSD+DA+3ST’, are also shown
in Table 2. We can see that adding one additional ST stream generally leads
to slight improvements. Overall, by adding the ST streams, our method brings
up the results for most categories, especially difficult classes such as “chairs”
and “dining tables”. These classes are usually in cluttered scenes and the single
WSD learned from clean web images can hardly capture the objects from the
environment.

The overall performance gains from the best combinations are 3.1% for
VGG M and 3.6% for VGG16. These results show that our proposed method
improves the baseline webly supervised detection model significantly by intro-
ducing the DA and ST streams. In VGG16, it brings up the unsupervised re-
sults to 25.4% without any labels from the target dataset, much closer to the
weakly supervised result of 29.3% that requires image-level labels from the target
dataset.

In addition to the mAP results for detection, we also measured the correct
localization (CorLoc) result on the VOC 2007 trainval set (see Table. 5 ) and
compare it with the best reported CorLoc results of the WSD works [3, 4, 27].
Note that all of these WSD methods use image labels of VOC trainval set during
the training and CorLoc is measured on these training images. In our method,
we do not include any VOC training labels and we can still achieve a good
localization model, 44.3% images are with correctly localized objects, which is
even better than [3].

5.4 Ablation experiments

In the following sections, we analyze the effectiveness of each component, includ-
ing the domain adaptation stream and the simultaneous transfer streams.
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Fig. 5. Visualization of features in 2D space by t-SNE [23]. We randomly sample some
object proposals from target and web domains and extract fc7 features (VGG M) using
different methods. Then we use PCA and t-SNE to reduce the dimension to 2. We plot
the scatter diagrams for all mammal animal classes. Left: WSD (baseline). Middle:
WSD+DA. Right: WSD+DA+3ST.

Analysis of the DA stream. To further verify the effects of the DA stream,
we visualizing the feature distributions of ‘WSD+DA’ in 2D space by t-SNE [23]
in Fig. 5. Although this visualization of high dimensional features in 2D space
may not be accurate, we can still have some ideas that the DA stream does help
shift the features closer to the same region across domains.

We further examine the results by removing the DA stream from the over-
all structure. As shown in Table 4, the WSD with the ST streams only cannot
achieve as high detection mAP as our overall network with the DA stream, which
demonstrates the contribution of DA to the overall network. In Table 4, we also
evaluate the effectiveness of the foreground attention mechanism (FA) for the DA
stream. It can be seen that the result of DA without FA, ‘WSD+DA(w/o.FA)+3ST’,
is even worse than of no DA, ‘WSD+3ST’, which suggests that treating all pro-
posals equally during DA does not help.

Table 4. Comparing the results (mAP
in %) on VOC 2007 test set with dif-
ferent settings of the DA stream.

Method mAP

WSD+3ST-VGG M 23.5
WSD+DA(w/o.FA)+3ST-VGG M 23.3
WSD+DA+3ST-VGG M 24.6

Table 5. CorLoc results on VOC 2007
compared with WSD methods.

Method CorLoc

Bilen et al [3] 43.7
Bilen et al [4] 56.1
Tang et al [27] 60.6
WSD+DA+3ST-VGG16 44.3

Analysis of the ST stream. We also visualized the features of WSD+DA+3ST
in 2D space in Fig. 5. It can be seen that by adding both DA and ST, we are
able to move the cross-domain features closer while making the classes in target
domain more separable.
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We would like to point out that the incremental gains of our method with
multiple ST streams are not as much as [27] that also use multiple refinement
streams. This is due to the following reason. In [27], the positive samples are
selected by image-level labels of target dataset and their purpose is to refine
the instance classifier for multiple times. However, our method does not use
the image labels of VOC dataset and our purpose is to prevent the unexpected
distribution shift among similar classes. In other words, the gain of pseudo label
transfer in our scenario is mainly from the effects of preserving the semantic
structure among classes rather than refining the instance classifiers again and
again.

One insight of the ST stream is that our framework trains the WSD model
from web domain and selects pseudo ground truth samples of target domain
based on the current WSD model at the same time. In other words, the ST
stream is trained simultaneously with the WSD stream. In this way, it shares
the feature learning between the WSD stream for web image training and the
ST stream for target dataset training. An alternative way of transferring the
pseudo labels is to train on the two datasets in an isolated way. In particular,
we can first pre-train the WSD using web images, then use this pre-trained
WSD model to generate the pseudo ground truths for the target dataset and
finally use these pseudo ground truths to train a detector for target dataset.
We conduct the experiment using such isolated method and obtain an mAP of
22.5%. This implies that the simultaneous weights sharing is important for the
learning transfer across domains.

5.5 More results

We also evaluate our method on VOC 2012 dataset and the results are shown
in Table 3. The baseline result shows that the detection model trained using
only web images gives poor results for VOC 2012 test images. By adding our
DA stream and ST streams, the results are largely improved for most classes.
Overall, we achieve significant increases of 3.8% and 3.7% in mAP with VGG M
and VGG16 respectively for VOC 2012 dataset.

6 Conclusion

In conclusion, we introduced an annotation-free object detection method by
learning from web image resources. Particularly, to solve the domain mismatch
problem between the web domain objects and the target domain objects, we
proposed an instance-level domain adaptation stream with foreground atten-
tion, together with a simultaneous transfer stream that simultaneously learns
target data from pseudo labels. Through these novel components, we achieved
significant improvements in detection results and successfully reduced the per-
formance gap between the baseline detectors trained with and without human
annotations.
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