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Abstract. Most existing techniques in map computation (e.g., in the
form of feature or dense correspondences) assume that the underlying
map between an object pair is unique. This assumption, however, eas-
ily breaks when visual objects possess self-symmetries. In this paper, we
study the problem of jointly optimizing symmetry groups and pair-wise
maps among a collection of symmetric objects. We introduce a lifting
map representation for encoding both symmetry groups and maps be-
tween symmetry groups. Based on this representation, we introduce a
computational framework for joint symmetry and map synchronization.
Experimental results show that this approach outperforms state-of-the-
art approaches for symmetry detection from a single object as well as
joint map optimization among an object collection.
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1 Introduction

Establishing maps across visual objects is a long standing problem in visual
computing with rich applications in structure-from-motion [3, 9], joint segmen-
tation [48, 49], and label/attribute transfer [2, 31, 50], among others. While early
works focus on computing maps between pairs of objects in isolation (c.f. [21]),
a recent trend is to jointly compute consistent maps across a collection of ob-
jects [19, 16, 17, 42, 20, 24, 37, 38, 5, 66, 67, 51, 29]. This is motivated from the fact
that (i) many applications (e.g., multi-view structure-from-motion [54, 8] and
co-segmentation [60, 56]) require consistent correspondences, and (ii) optimizing
consistent maps enables us to improve maps computed between pairs of objects
in isolation (c.f. [16]). The promise of these approaches is that pairwise maps be-
tween dissimilar objects can often be improved by composing maps along paths
of similar objects.

However, all existing joint map optimization techniques place the assumption
that there is only one underlying map between two visual objects. It turns out
this assumption does not hold in many scenarios. In particular, when the un-
derlying objects are symmetric, there are multiple plausible maps between each
object pair. This introduces issues both for map computation between pairs of
objects and for optimizing consistent maps across multiple objects. To address
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Fig. 1. Category specific reconstruction from internet images. (a) Subset of input im-
ages with matched edge feature points [12]. (b) Reconstruction using our approach.
Color-coding highlights the recovered symmetry group.

this issue, a straightforward approach is to detect the underlying self-symmetry
group of each object first, and then perform matching in factored or quotient
spaces (c.f.[39]). This approach, however, is not optimal, since symmetry detec-
tion is quite challenging (especially for images where the symmetric parts may
be occluded), and errors introduced in the symmetry detection phase cannot be
recovered in the joint matching phase.

In this paper, we consider the problem of jointly optimizing the underly-
ing symmetry groups and consistent pairwise maps. We call this problem joint
symmetry and map synchronization. The motivation comes from the fact that
symmetry detection and map computation are highly correlated. Besides the
fact that computing the underlying symmetry groups facilitates map computa-
tion, maps can also propagate symmetry groups across objects, allowing us to
rectify a noisy symmetry group computed from one object by propagating clean
symmetry groups computed from other objects.

To formulate joint symmetry and map synchronization, we propose a rep-
resentation that encodes symmetry groups and pair-wise maps using the prod-
uct operator (also known as lifting in the literature [27][18][23, 58]). We prove
that for many symmetry groups in our physical world (e.g., reflection symme-
try and n-fold rotational symmetry among others), this representation admits
exact symmetry group decoding. In addition, we show that the computational
cost incurred by the product operator can be effectively addressed via reduced
functional basis [38]. Using this representation, we introduce a continuous op-
timization formulation for joint symmetry and map synchronization. The input
consists of symmetry groups and pair-wise maps independently computed us-
ing off-the-shelf techniques in each domain. The output consists of consistent
symmetry groups and pair-wise maps. Our approach exhibits a few appealing
properties. First, the input symmetry groups and pair-wise maps may be noisy
and incomplete (e.g., one input self-symmetry for a subset of objects and one
object map per pair among a subset of object pairs), and our approach automat-
ically rectifies, propagates and completes symmetry groups and pair-wise maps.
Moreover, when we have sufficient data, we do not need to specify the type of the
underlying symmetry group. It can be automatically determined by the input
data, i.e., by aggregating self-symmetries among the input objects.
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We evaluated our approach on a diverse set of object collections ranging
from 2D images to 3D models. Experimental results show that our approach
outperforms state-of-the-art methods in joint map computation from an object
collection and symmetry group detection from each object in isolation.

2 Related Works

Map synchronization. An emerging focus in object matching is to optimize
maps jointly among an object collection. The intuition is that the map between
a pair of dissimilar objects can be obtained by composing maps along a path
of similar object pairs. A way to formalize this intuition is through the cycle-
consistency constraint, i.e., composite maps along cycles should be identity maps.
This has led to the problem of map synchronization, which takes as input maps
computed between pairs of objects in isolation and outputs improved maps that
are consistent along cycles. In [16], Huang and Guibas established a connec-
tion between the cycle-consistency constraint and the fact that data matrices
that store cycle-consistent pair-wise maps in blocks are low-rank and/or posi-
tive semi-definite. This work has stimulated several recent works that formulate
map synchronization as low-rank matrix recovery using convex optimization [16,
5] and non-convex optimization [20, 67, 51, 7]. Our approach also falls into this
category. However, the focus is on establishing a matrix representation for joint
map and symmetry synchronization.
Co-symmetry detection and matching. Symmetry detection can be con-
sidered a variant of shape matching, which seeks to compute self-maps that
preserve extrinsic [36, 44, 22, 52] or intrinsic [40, 28, 65, 46, 45, 25, 64, 63, 62] dis-
tances. In this regard, symmetry detection shares a similar limitation with pair-
wise matching, namely, existing methods tend to break when the underlying
symmetries become more and more approximate. To address this issue, we pro-
pose to optimize symmetry groups jointly among an object collection to improve
the resulting symmetry group on each object. To the best of our knowledge, ex-
isting works on this topic have focused on individual pairs of objects so far. [33]
proposed to detect a reflection symmetry axis for boosting the performance of
correspondence computation. [39] introduced the first approach for factorizing
out the underlying symmetry group when establishing shape maps. However, the
approach only considers a pair of objects and does not utilize lifting. In addition,
the formulation requires specifying the underlying symmetry group, or in other
words, it does not perform joint inference of symmetries and maps. [57] devel-
oped an approach for joint structure recovery and matching of man-made 3D
shapes. The approach is based on graph matching, and thus requires part-based
representations as input.
Matching via lifting. Our symmetry group encoding scheme is motivated from
the idea of lifting for convex relaxations of second-order MAP inference [27, 18].
When using indicators associated with the first-order potential functions, the
second-order potential functions become quadratic in these indicator variables.
The idea of lifting is to introduce an additional variable for each quadratic term.
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Fig. 2. This figure is better viewed in color. Corresponding points have the same colors.
(Left) This input consists of one self-map per-shape and one pair-wise map per-pair.
Here we show one shape among 20 shapes and one pair among 380 pairs. (Right) The
output of our algorithm on the same shape and shape pair, respectively. Note that
our approach not only improves symmetry groups and pair-wise maps, but we also
complete the missing ones by propagating self-symmetries and maps.

Using these additional variables (which form the lifted space), the objective
function becomes linear and easy to solve. The lifting idea has also been used for
object matching [23, 14, 58]. The novelty of our representation includes (1) the
decoding scheme, (2) the types of symmetry groups that can be exactly recovered
(to be introduced later), and (3) various properties of this encoding scheme,
which will be used in formulating joint map and symmetry synchronization.

3 Problem Statement and Approach Overview

This section formally states the joint map and symmetry synchronization prob-
lem that is studied in this paper and presents an overview of our approach.
Problem statement. Suppose we are given n relevant objects S1, · · · , Sn. In
this paper, we focus on the case where objects are discrete point sets (e.g., image
pixels [32] and feature/sample points extracted from images [34] or shapes [30]),
and where a map or a self-map is given by a set of point-wise correspondences.

We assume these objects are generated from an underlying universal object
S0 (also a point set), which possesses a symmetry group. The generation pro-
cess consists of taking a subset and/or deformation. This setting covers many
practical scenarios. For example, {Si} could be partial observations of an un-
derlying object (e.g., in multi-view structure from motion). As another example,
{Si} could also be objects that fall into the same category (See Figure 2). The
input to our approach consists of noisy pair-wise maps P in

ij : Si → Sj , (i, j) ∈ E
computed using off-the-shelf methods along a pre-computed edge set E . In par-
ticular, E includes self loops, each of which is associated with a pre-computed
self-map P in

ii : Si → Si. The output of our approach consists of the universal
object S0, its symmetry group G (we write G instead of G0 to make the notations
uncluttered), and an embedding map Pi0 : Si → S0 for each object Si. As we
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will see later, the pairwise maps from Si to Sj are induced from {Pi0, 1 ≤ i ≤ n}
and G.

An important feature of our approach is that it takes as input incomplete
observations (e.g., one pair-wise map per object pair despite the fact that the
underlying symmetry group suggests multiple plausible pair-wise maps). The
promise of our approach comes from the fact that when looking at the input
maps among an object collection as a whole, each element of the underlying
symmetry group and the corresponding all pair-wise maps are densely sampled,
providing sufficient observations for recovery.
Approach overview. The main idea of our approach is to develop a matrix
representation of symmetry groups and maps, which allows us to formulate joint
map and symmetry synchronization as optimizing matrices. A simple approach
is to use a binary correspondence matrix to encode correspondences in symme-
try groups and pair-wise maps. As we will discuss later, this representation is
insufficient when the size of a symmetry group is bigger than 2. To address this
issue, we propose to use the product operator for encoding. We show that our
proposed encoding is lossless for many symmetry groups. Using the same idea,
we then show how to define and encode embedding maps Pi0, 1 ≤ i ≤ n and pair-
wise maps Pij , 1 ≤ i, j ≤ n. Based on this encoding, we propose an optimization
framework for recovering the underlying embedding maps Pi0, 1 ≤ i ≤ n and
self-symmetry group G. To address the computational overhead incurred by the
tensor operator, we show how to perform joint map and symmetry synchroniza-
tion using reduced basis (c.f. [38]).

4 Symmetry and Map Representation via Lifting

In this section, we show how to effectively encode symmetry groups and pair-
wise maps under the point-based representation. Section 4.1 describes how to
encode symmetry groups. Section 4.2 introduces how to encode maps between
symmetric objects that are partially similar.

4.1 Symmetry Groups

Consider an object S that consists of m points. A self-map is given by a per-
mutation P ∈ [0, 1]m×m, where each row and column has exactly one non-zero
entry. With Pm we denote the space of all permutations. Let G ⊂ Pm denote a
symmetry group associated with S. For a thorough introduction to symmetry
groups, we refer to [11] for more details.

In this paper, we are interested in symmetry groups where the largest orbit
size is equal to the group size:

Definition 1. Let oG(i) ⊂ {1, · · · ,m} denote the orbit3 of the i-th element un-
der a symmetry group G. We call G a cyclic group if

|G| = max
1≤i≤m

|oG(i)|. (1)

3 Intuitively, the orbit collects correspondences induced from a symmetry group.
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Note that cyclic groups cover a rich family of symmetry groups in our physical
world. For example, standard reflection, n-fold rotational symmetry, and trans-
lation symmetries (both in the intrinsic and extrinsic sense) can be described as
cyclic groups under suitable placements of samples.

When considering matrix representations of G, a straight-forward approach
is to use a correspondence matrix (of dimension m × m) to encode all corre-
spondences induced from the symmetry group. The downside of this encoding,
however, is that when |G| > 2, there may exist multiple symmetry groups that
correspond to the same encoding. One such example is given in Appendix A.
To address this issue, we propose to consider the following encoding using the
tensor operator:

Q :=
∑

P∈G
P ⊗ P ∈ {0, 1}m

2×m2

. (2)

A key property of Q is that when G is a cyclic group, then it can be recovered
from the elements of Q:

Proposition 1. If a symmetry group G is a cyclic group, then it can be exactly
recovered from the elements of Q.

To prove Prop. 1 (details are deferred to Appendix B.2) and for later usage,
we define the following linear operator that shuffles the elements of Q:

Definition 2. Consider a matrix A ∈ R
m2

1×m2
2 . Let Aa,b denote (a, b)-th element

of matrix A. Define F : Rm2
1×m2

2 → R
m1m2×m1m2 as

F(A)i1m2+i2,j1m2+j2 = Ai1m1+j1,i2m2+j2 , 0 ≤ i1, j1 ≤ m1−1, 0 ≤ i2, j2 ≤ m2−1.

It is easy to check that F(Q) is low-rank:

Fact 1. Let vec(P ) = (pT
1 , · · · ,p

T
m)T ∈ R

m2

be the vector that unfolds the
columns of P = (p1, · · · ,pm) ∈ R

m×m. Then

F(Q) =
∑

P∈G
vec(P ) · vec(P )T . (3)

Proof. See Appendix B.1.

4.2 Maps between Symmetry Groups

We proceed to define and encode maps between symmetry objects. To handle
the case, where two objects being matched are subsets of an underlying complete
object, we first define maps from a partial object to a complete object. Later,
we show how to extend this setting to properly defined maps between partially
similar objects.

Let us consider a source object S1 and a target object S0 (which denotes the
underlying universal object in this paper). To define the map from S1 to S0, we
introduce a latent object S1 that is (i) a superset of S1, and (ii) a copy of S0,
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i.e., |S1| = |S0|, and the symmetry group G1 of S1 is isomorphic to G of S0. Our
goal is to define the map from S1 to S0 through the inclusion map E1 : S1 → S1

and a properly defined map from S1 to S0:

Definition 3. Let f1 : G → G1 be the group isomorphism. We say a map P 10 :
S1 → S0 is proper if

P 10 · f1(P ) = P · P 10, ∀P ∈ G. (4)

In other words, P 10 is proper if it is consistent with the underlying symmetry
groups. It is clear that each map P 10 induces an equivalence class {PP 10, P ∈ G}.
Now we are ready to define proper maps from S1 to S0:

Definition 4. We say a map P10 : S1 → S0 is proper if there exist S1 ⊃ S1

and a proper map P 10 : S1 → S0 such that

P10 = P 10 · E1. (5)

Note that P10 also induces an equivalent class M10 := {PP10, P ∈ G}.
We again use the product operator to encode M10:

Q10 =
∑

P10∈M10

P10 ⊗ P10. (6)

Similar to symmetry groups, we have the following recovering condition:

Proposition 2. When G is a cyclic group and S1 contains one element of a
maximal orbit of S1, then M10 can be exactly recovered from the elements of
Q10 described in (6).

The proof is similar to that of Proposition 1 and is deferred to Appendix B.3.
Now we are ready to define maps between a partially similar object pair (S1, S2):

Definition 5. We say a map P12 : S1 → S2 is proper, if there exist proper maps
Pi0 : Si → S0, so that

P12 = PT
20P10. (7)

Note that each proper map P12 induces an equivalence class

M12 := {PT
20PP10, P ∈ G}. (8)

It is easy to check that M12 is independent of the particular choice of Pi0, 1 ≤
i ≤ 2.

Again, we encode M12 using the tensor product:

Q12 :=
∑

P12∈M12

P12 ⊗ P12
(8)
= (P20 ⊗ P20)

TQ00(P10 ⊗ P10). (9)

Finally, we introduce a property of F(Q12), which we will use later:
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Proposition 3. When |oG(i)| = |G|, 1 ≤ i ≤ m, then each vec(P12) is an eigen-
vector of F(Q12), i.e.,

F(Q12)vec(P12) = ‖vec(P12)‖
2 · vec(P12), ∀P12 ∈ M12. (10)

The proof is straight-forward, as two different members of M12, their non-
zero entries do not overlap. In practice, the number of elements where |oG(i)| <
|G| remains small (e.g., points on 1D reflection axis versus points on the entire
image). This means (10) is at least approximately satisfied.

5 Functional-Based Joint Map and Symmetry

Synchronization

In this section, we introduce a computational framework for joint map and sym-
metry synchronization. Section 5.1 describes a generalized representation for
symmetry groups and maps using reduced basis. Section 5.2 then introduces an
efficient approach using this reduced representation.

5.1 Symmetry and Map Representation Using Reduced Basis

Laplacian reduced basis.We begin with reviewing the reduced basis represen-
tation for encoding maps between discrete objects [38, 61, 47]. Consider an object
S with m points, we associate S with an orthogonal matrix B ∈ R

m×k, which
projects S onto the feature space spanned by the columns of B. Following [38,
61], we use the first k eigenvectors of Laplacian matrices, e.g., graph Laplacian
for images and Laplace-Beltrami for 3D meshes. Note that it is possible to use
other basis computation methods such as partial functional map [47]. We leave
this as a future work.

Given two objects S1 and S2 and the associated basis B1 and B2, we represent
a map from S1 to S2 in the feature space as a matrix X12 ∈ R

k×k (called
functional map in the literature ([38]). Given a point-based map P12 : S1 → S2,
we can derive the corresponding functional map as

X12 := argmin
X

‖XBT
1 −BT

2 P12‖
2
F = BT

2 P12B1. (11)

In the other direction, we convert a functional map X12 into a point-map P12

via nearest neighbor query with respect to rows of B1 and B2. More pre-
cisely, for the i-th point of S1, we compute the index of its target point as
j⋆ = argmin

j

‖BT
2 P12ej −X12B

T
1 ei‖,

4 where Aei extracts the i-th column of A.

Given the underlying point-based map P12, this functional map encoding
scheme is accurate if there exists a linear map X12 such that BT

2 P12 ≈ X12B
T
1 .

4 It is also possible to enforce injectivity by solving a linear assignment.
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In our experiments, we found using k = 25 Laplacian basis provides a fairly
accurate encoding between discrete objects. We will also analyze the effects of
varying k in the supplemental material.
Encoding using reduced functional basis. Using reduced basis to encode
symmetry groups and maps between symmetry groups is quite similar to that
in the point-based representation. Let B0 be a basis of S0 (As we see later,
our algorithm will recover both S0 and the reduced basis B0. With X00 =
BT

0 PB0, X10 = BT
0 P10B

T
1 and X12 = BT

2 P12B1 we denote the functional map
representations of P , P10 and P12, respectively. With this setup, we rewrite the
functional representations of (2), (6) and (9) as

Y00 :=
∑

P∈G
(X00 ⊗X00), Y10 :=

∑

P10∈M10

(X10 ⊗X10), (12)

Y12 := (X20 ⊗X20)
TY00(X10 ⊗X10). (13)

Encoding using reduced Laplacian basis shares many properties as using the
point-based representation. As discussed in Proposition 3, vec(P12) is approx-
imately an eigen-vector of Q12. We find that under mild conditions (See Ap-
pendix B.5 for a discussion), this property also holds under the reduced basis:

F(Y12)vec(X12) ≈ ‖vec(X12)‖
2vec(X12). (14)

Decoding via alternating minimization.Once we have obtained an encoding
Yi0 under reduced basis, we recover the underlying functional maps and point-
based maps via alternating minimization (c.f. [38]). Motivated from Fact 1, the
functional maps are forced to lie within the leading eigenspace of F(Yi0). Due
to space constraint, the details are left in Appendix C.

5.2 Joint Map and Symmetry Synchronization

In this section, we describe our approach for joint map and symmetry synchro-
nization using the representation developed above. At this stage, we assume we
have computed reduced basis Bi, 1 ≤ i ≤ n. We also assume we have computed
initial functional maps X in

ij , (i, j) ∈ E along an edge set E . Both the input maps
and the edge set are specified by off-the-shelf approaches, and we will discuss
them in Section 6. Our goal is to recover the underlying universal object S0, its
symmetry group G0, and the maps Pi0 : Si → S0. Our approach consists of a
synchronization step and an extraction step.
Synchronization. We introduce a n × n block matrix Y ∈ R

nk2×nk2

that
encodes each Yij in the block of Y , i.e., Yij corresponds to j-th row and i-th
column of Y . Similar to the point-based representation, Y is low-rank. To see

this, we introduce Zi = Y
1
2

00(Xi0 ⊗ Xi0), 1 ≤ i ≤ n. Let Z = (ZT
1 , · · · , Z

T
n )

T .
Then (13) gives rise to

Y = ZZT . (15)

We propose to utilize numerical optimization to obtain Y and Z. Specifi-
cally, by combing (15) and (14), we arrive at the following objective function for
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recovery:

min
Y,Z

∑

(i,j)∈E

‖F(Yij)vec(X
in

ij )− ‖vec(X in

ij )‖
2vec(X in

ij )‖+ λ‖Y − ZZT ‖2F (16)

where F is the Frobenius norm. Note that we use the block-wise L1-norm to
suppress the noise in the input. We set λ = 1√

n
in our experiments. In this

paper, we combine spectral initialization and reweighted non-linear least squares
to solve (16). The details are deferred to Appendix D.
Decoding. Since our goal is to recover the underlying object S0, merely recov-
ering pair-wise maps Yij is insufficient. In contrast, we seek to recover Xi0, 1 ≤
i ≤ n and Y00. Let Z

⋆ be the optimal solution to (16). If Z⋆ is an exact recovery,

then there exists V ∈ R
k2×k2

, so that

V · Z⋆
i
T = Xi0 ⊗Xi0, 1 ≤ i ≤ n, Y00 = V −1TV −1. (17)

For decoding, we set up the following objective function to recover V andXi0, 1 ≤
i ≤ n:

min
V,Xi0,1≤i≤n

n∑

i=1

‖V · Z⋆
i
T −Xi0 ⊗Xi0‖

2
F + µ‖V − Ik2‖2F (18)

where the second term is introduced to avoid obtaining the trivial solution V =
0, Xi0 = 0, 1 ≤ i ≤ n. In our experiment, we used µ = 10−3. We again perform
alternating minimization to solve (18). Please refer to Appendix E for details.

As Xi0 aligns the feature space associated with Si with that of the latent
universal object S0, we apply clustering on the columns of Xi0B

T
i , 1 ≤ i ≤ n to

recover B0, which also specifies S0. In our experiments, we used single-linkage
clustering and set the total number of clusters as m. We discard all clusters
whose size are smaller than 3. Each cluster center corresponds to one column
of B0. Finally, we apply the decoding scheme described in (20) to recover the
underlying symmetry group G.

6 Results

In this section, we evaluate our approach for joint map and symmetry synchro-
nization on 2D images (Section 6.1) and 3D shapes (Section 6.2).

6.1 Experimental Evaluations on 2D Images

Experimental Setup. As illustrated in Figure 1 and Figure 3, we consider the
application of reconstructing a generic sparse 3D pointcloud from multi-views of
similar but different objects [67, 4, 59] (i.e., category-specific reconstruction). A
crucial task for the reconstruction is to establish consistent feature correspon-
dences across multiple images. We share this general motivation in our experi-
ments, but focus on symmetric objects. In this regard, we collect two datasets.
The first dataset consists of 16 images of similar stool objects that possess a
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Fig. 3. Category specific reconstruction from internet images. (a) Subset of input im-
ages with matched edge feature points [12]. (b) Reconstruction using our approach.
Color-coding highlights the recovered symmetry group.

four-way rotational symmetry (See Figure 1). The second dataset consists of
16 images of similar trash container objects (See Figure 3). For both datasets,
we annotate keypoints for evaluating feature correspondences. The full datasets
and annotated feature correspondences are included in Appendix H. The same
as [67, 4, 59], we assume the underlying objects are segmented out. In addition,
we also evaluated on Sedan and SUV from [67]. We use these two datasets to
compare our approach against standard joint map optimization approaches that
do not explicitly consider the underlying symmetry group.

We follow the procedure described in [67], which applies structural forests [12]
and graph matching [6] to generate the feature points and perform pair-wise
matching, respectively. The reduced basis we utilize are the first k = 25 eigenvec-
tors of unnormalized graph Laplacian of the graphs used in pair-wise matching
(See [6] for more details). For Stool and TrashContainer, we also apply this pro-
cedure to match each image with itself, which gives a self-map. To test whether
the improvement of our algorithm on symmetry detection is consistent with
respect to different input symmetries, we also evaluated on applying [13] for
symmetry detection (we used the same procedure to exclude identity maps). Re-
garding the edge set E , we connect each image with 8-closest images in terms of
affinity scores for Stool and TrashContainer. The same as [67], we let E connect
all image pairs for Sedan and SUV.

We consider four state-of-the-art synchronization techniques [19, 66, 67, 7] for
baseline evaluation. In particular, [19] synchronizes consistent functional maps;
[66] optimizes point-based correspondences by enforcing three-cycles; [67] applies
a fast low-rank matrix recovery approach to optimize consistent point-wise cor-
respondences. [7] uses non-convex optimization to obtain consistent point-wise
correspondences. The same as [67], we report the percentage of feature correspon-
dences whose error with respect to annotated feature correspondences fall within
a varying threshold δ. Note that for Stool and TrashContainer, we evaluate with
respect to the closest map (in terms of cumulative feature correspondence error)
induced by the underlying symmetry group. This is in contrast to evaluating the
quality of each individual correspondence with respect to symmetric correspon-
dences, where the closest correspondences may be inconsistent with each other.
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Stool TC Sedan SUV Octop. Arma. Ant Bird Fish 4leg Glass. Hand Human Plane Mean

Sym-In 71.2 68.7 na na 52.4 72.9 69.1 59.3 54.5 64.0 78.2 55.1 89.3 61.2 67.0

Sym-Out 84.5 81.2 na na 76.1 91.2 81.0 67.2 71.3 79.2 90.1 69.2 94.5 73.2 79.7

SymII-In 65.9 63.1 na na 48.3 68.1 66.4 57.4 51.5 63.2 71.7 49.2 81.3 60.0 63.2

SymII-Out 79.8 77.4 na na 68.0 81.2 77.3 74.2 70.1 80.7 86.5 57.1 90.3 72.4 76.6

Input 60.7 58.5 na na 44.9 69.5 64.1 53.0 48.1 58.0 76.3 51.7 83.8 35.7 60.1

Huang14 68.2 60.6 na na 58.1 69.4 69.0 54.3 42.8 76.9 71.1 66.3 90.9 42.4 64.8

Zhou15a 63.2 59.8 na na na na na na na na na na na na na

Zhou15b 64.6 62.8 na na 56.5 70.1 71.1 51.3 43.7 71.9 66.7 68.1 86.1 44.4 63.7

Cosmo17 61.9 59.7 na na 54.9 68.2 71.6 51.8 42.8 71.9 64.7 67.0 86.4 44.4 63.2

Ours 80.6 75.2 na na 74.6 81.2 76.3 62.9 54.1 80.1 78.3 71.1 92.1 53.7 72.2

Input na na 78.7 77.6 na 65.7 47.8 39.8 45.6 56.6 54.1 47.5 69.4 30.2 50.7

Huang14 na na 85.9 87.1 na 69.6 59.0 52.2 42.3 76.5 59.3 66.2 90.9 39.4 61.7

Zhou15a na na 86.1 85.2 na na na na na na na na na na na

Zhou15b na na 87.7 86.2 na 68.2 59.3 47.6 46.1 70.3 59.2 59.7 88.1 38.5 59.7

Cosmo17 na na 84.5 83.4 na 67.1 61.4 44.9 42.8 71.3 57.9 61.4 85.8 37.9 58.9

Ours na na 91.2 90.8 na 74.9 64.1 54.8 51.2 83.2 65.7 68.2 93.2 38.0 65.9

Table 1. Comparisons with respect to human annotated feature points. We report
percentage of correspondences whose error are below 0.1d, where d = max(w, h) for
images and d is the shape diameter for 3D shapes, respectively. (Top) Symmetry de-
tection. Images:Sym-IN [6] and SymII-IN [13]. Shapes:Sym-IN [25] and SymII-IN [40].
(Middle) Evaluation of object maps after factoring out the underlying self-symmetry
group. Baseline approaches: Huang14:[19], Zhou15a:[66], Zhou15b:[67], Cosmo17:[7].
(Bottom). Evaluation of object maps in the original space.

Table 1 collects the statistics of each method when δ = 0.1max(w, h), where w

and h are width and height of an input image.

Joint map and symmetry detection improves symmetry detection. As
shown in Table 1(Top), our approach can drastically improve the input symme-
try detection. For the first set of input symmetries (i.e., using [6]), our approach
improves from 71.2% and 68.7% on Stool and TrashContainer, respectively, to
84.5% and 81.2%, respectively. For the second set of input symmetries (i.e.,
using [13]), our approach improves from 65.9% and 63.1% on Stool and Trash-
Container, respectively, to 79.8% and 77.4%, respectively. Figure 4(Left) shows
that the improvements are consistent when varying the error threshold.

Analysis of correspondence quality. Our approach outperforms baseline
approaches considerably. Specifically, on Stool and TrashContainer, our approach
achieved 80.6% and 75.2%, respectively. In contrast, the top-performing state-of-
the-art methods only had 68.2% (from [67]) and 62.8% (from [19]), respectively.
Figure 4(Middle) shows that the improvements are also consistent when varying
the error threshold. One explanation is that due to the underlying symmetry,
there are multiple plausible maps between each object pair. However, all existing
methods are forced to output a single consistent map. In this case, it turns
out their output tends to average multiple plausible maps, and the resulting
correspondences may not be consistent across different feature points from the
same image. It follows that their output may be far from the underlying map
even after factoring out the underlying symmetry group.

To see the usefulness of the output of our approach, we perform SFM on each
dataset of Stool and TrashContainer in isolation. Specifically, we run rigid recon-
struction from optimized feature correspondences with an orthographic camera
model and annotated viewpoints. As illustrated in Figure 1 and Figure 3, our
approach can recover 3D point clouds that reflect the overall shapes of the Stool
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Fig. 4. Quantitative evaluations of joint map and symmetry synchronization on 2D
images. (Left) Symmetry detection on Stool and TrashContainer. (Middle) Object
matching evaluation in the quotient space on Stool and TrashContainer. (Right) Object
matching evaluation in the original space on Sedan and SUV.

and TrashContainer. In contrast, the method of [67] was not successful on these
two datasets.

We proceed to quantitatively compare our approach with baseline approaches
on Sedan and SUV. In this case, we simply set the diagonal blocks as identity
matrices in our approach. As shown in Table 1 and Figure 4(Right), our ap-
proach outperforms existing approaches. The benefits come from the product
operator, which enables the joint matching procedure to detect consistent corre-
spondence pairs obtained in the graph matching phase. Similar to using pair-wise
consistency for boosting the performance of graph matching, these consistent
correspondence pairs enhance optimized correspondences.
Timing. Our approach is efficient. In average, the running time of our approach
on each dataset is 137.0s using a Matlab implementation on a single-core 3.2G
CPU with 32G memory. This includes 12.5s for converting point-based maps
into functional maps, 95.6s for joint map and symmetry optimization, and 28.9s
for converting functional maps back to the original point-based maps.

6.2 Experimental Evaluations on 3D Shapes

Experimental Setup. We perform experimental evaluation on SHREC07–
Watertight [15], which is a challenging dataset for evaluating shape maps. Specif-
ically, SHREC07-Watertight contains 400 shapes across 20 categories. Among
them, we choose 10 categories (i.e., Ant, Armadillo, Bird, Fish, Fourleg, Glasses,
Hand, Human, Plane, and Octopus) that are suitable for inter-shape mapping. In
particular, Octopus contains a non-trivial rotational symmetry group. Each other
category contains a reflection symmetry. All categories have human-annotated
correspondences for experimental evaluation. As for symmetry detection, we em-
ploy [25]. We also tested on [40] to see if the improvements are consistent with
respect to different input symmetries. For pair-wise maps, we employ blended
intrinsic maps [26]. We consider the same set of baseline approaches described
in Section 6.1 except [66], which is specifically designed for image matching.
In terms of evaluation protocol, we report the percentage of feature correspon-
dences whose geodesic errors fall into a varying threshold in [0, 0.1d], where d is
the diameter of each shape in geodesic distance.
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Fig. 5. Quantitative evaluations of joint map and symmetry synchronization on
SHREC07-Watertight. (Left) Symmetry detection. (Middle) Object matching evalu-
ation in the quotient space. (Right) Object matching evaluation in the original space.

Analysis of results. We first evaluate our approach on the performance of
symmetry detection. As show in Table 1, our approach improves the quality
of input symmetries obtained from [25], by 23.7% and 12.5% on Octopus and
remaining models, respectively. Replacing the input symmetries by the ones
computed from [40], the improvements become 19.7% and 13.3% on Octopus and
remaining categories, respectively. As shown in Figure 5(Left), the improvements
are also consistent when varying the cutoff threshold. This again shows the huge
potential of detecting symmetries jointly among an object collection.

Table 1 and Figure 5 compare our approach with baseline approaches for
joint map optimization. Our approach outperforms baseline approaches both in
the quotient space (i.e., after factoring out the self-symmetry) and in the orig-
inal space. In particular, the relative improvements between our approach and
baseline approaches in the quotient space are higher than those in the original
space. This justifies the promise of joint map and symmetry optimization.

Timing. We employ a full observation graph on each category. The average run-
ning time on the same Desktop for each category is 560.1s, where functional map
conversion, joint map and symmetry recovery and point-based map extraction
take 38.2s, 313.1s and 208.8s, respectively.

7 Conclusions

In this paper, we have described an approach for joint map and symmetry syn-
chronization. Our approach builds on a novel symmetry and map representa-
tion using the tensor operator. Based on the this representation, we introduce
a non-convex optimization scheme for recovering consistent symmetry groups
and pair-wise maps from noisy input. Experimental results demonstrate that
our approach is better than state-of-the-art methods for joint map synchroniza-
tion without symmetry detection and symmetry detection from each object in
isolation.
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