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Abstract. Recently developed object detectors employ a convolutional
neural network (CNN) by gradually increasing the number of feature
layers with a pyramidal shape instead of using a featurized image pyra-
mid. However, the different abstraction levels of CNN feature layers often
limit the detection performance, especially on small objects. To overcome
this limitation, we propose a CNN-based object detection architecture,
referred to as a parallel feature pyramid (FP) network (PFPNet), where
the FP is constructed by widening the network width instead of increas-
ing the network depth. First, we adopt spatial pyramid pooling and some
additional feature transformations to generate a pool of feature maps
with different sizes. In PFPNet, the additional feature transformation is
performed in parallel, which yields the feature maps with similar levels
of semantic abstraction across the scales. We then resize the elements of
the feature pool to a uniform size and aggregate their contextual infor-
mation to generate each level of the final FP. The experimental results
confirmed that PFPNet increases the performance of the latest version
of the single-shot multi-box detector (SSD) by mAP of 6.4% AP and
especially, 7.8% APsmall on the MS-COCO dataset.

Keywords: Real-Time Object Detection, Feature Pyramid.

1 Introduction

Multi-scale object detection is a difficult and fundamental challenge in computer
vision. Recently, object detection has achieved a considerable progress thanks to
a decade of advances in convolutional neural networks (CNNs).

The early CNN-based object detectors utilize a deep CNN (DCNN) model as
part of an object detection system. OverFeat [38] applies a CNN-based classifier
to an image pyramid in a sliding window manner [5, 7]. The regions with CNN
features (R-CNN) method [10] adopts a region-based approach (also known as a
two-stage scheme), where the image regions of object candidates are provided for
a CNN-based classifier. Recent region-based detectors such as Fast R-CNN [9]
and Faster R-CNN [35] utilize a single-scale feature map, which is transformed
by a DCNN model, as shown in Fig. 1(a) (top). In [35], using this single-scale
feature, a complete object detection system is formed as an end-to-end CNN
model and exhibits state-of-the-art performance.
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Fig. 1. Variant DCNN models that use a single-scale feature layer for visual recognition
and their extensions to feature pyramids: bottom-up DCNN models (a), hourglass
networks (b), and SPP-based networks (c); our network model (d) can be viewed as
an extended version of (c) for multi-scale object detection.

Inspired by the pyramidal shape of the DCNN feature layers, some researchers
have attempted to exploit multiple feature layers to improve the detection perfor-
mance [2,27]. As shown in Fig. 1(a) (bottom), the single-shot multi-box detector
(SSD) [27] utilizes a feature pyramid (FP), each level of which comprises DCNN
layers responsible for detecting objects within a certain size range. In addition,
SSD, a single-stage detector, is a region-free detector that does not require a re-
gion proposal process. By using the FP and a single-stage scheme, SSD exhibits
detection performance that is comparable to region-based detectors and high
computational efficiency competitive to YOLO [31], which uses a single-scale
feature map. However, the object detectors with this FP would poorly perform
on the lower feature layers because of their lack of object-level information.

It has been shown that the lower- and upper-level features are complemen-
tary to each other and their combinations are beneficial for segmentation [30],
keypoint estimation [29], and object detection [22]. In the hourglass model (see
Fig. 1(b)), to generate a single high-level feature map, the object knowledge con-
tained in the upper layer is forwarded to the lower layers by appending a top-
down module. The low-resolution of the upper layers can ensure invariance to
pixel variations, which is helpful for identifying object instances, but it can cause
difficulties in pixel-level tasks such as pixel labeling and box regression [13, 28].
Thus, the lateral connections are added between the bottom-up and top-down
layers to transfer the information on object details to the top-down layers. A
recent trend in single-stage methods is to bring such benefits of the hourglass
network into FP-based object detectors [8,20,23,25,43]. The deconvolutional sin-
gle shot detector (DSSD) [8] forms an hourglass structure that can exploit both
the object-level information insensitive to pose and appearance from the upper
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layers and the richer spatial information from the lower layers. By appending a
top-down module to SSD, DSSD can raise the performance of the region-free ob-
ject detectors to the level of region-based ones. However, the top-down modules
incur additional computational costs, so the speed of region-free methods is no
longer their advantage. In recent, the RetinaNet [25] and RefineDet [43] simplify
the feature layers of the top-down and lateral paths, and achieve state-of-the-art
performance while operating in real time.

In this study, we propose a parallel FP network (PFPNet) to construct an
FP by widening the network width instead of increasing its depth. As shown in
Fig. 1(d), we first employ the spatial pyramid pooling (SPP) [14] to generate a
wide FP pool with the feature maps of different sizes. Next, we apply additional
feature abstraction to the feature maps of the FP pool in parallel, which makes
all of them have similar levels of semantic abstraction. The multi-scale context
aggregation (MSCA) modules then resize these feature maps to a uniform size
and aggregate their contextual information to produce each level of the final FP.

To the best of our knowledge, PFPNet is the first attempt to apply the SPP
module to a region-free multi-scale object detector using a CNN-based FP. Pre-
vious studies have demonstrated that multi-scale representation using the SPP
module can greatly improve the performance in terms of object detection [14]
and segmentation [44]. These studies utilize the SPP module to produce a single
high-level feature vector with a fixed size or a feature map with a fine resolution
for making predictions as shown in Fig. 1(c). By contrast, we utilize the SPP
module to produce an FP where the predictions are independently made on each
level. In summary, this study makes three main contributions:

– We employ the SPP module to generate pyramid-shaped feature maps via
widening the network width instead of increasing its depth.

– By using the MSCA module similar to an inception module [41], our model
effectively combines the context information at vastly different scales. Since
the feature maps of our FP have a similar abstraction level, the difference
in performance among the levels of the FP can be effectively reduced.

– We obtained remarkable performance on the public datasets. Using an in-
put size of 512× 512, PFPNet achieved the mean average precision (mAP)
of 82.3% on the Pascal VOC 2007, 80.3% on the PASCAL VOC 2012, and
35.2% on the MS-COCO, thereby outperforming the state-of-the-art object
detectors. Using an input size of 320 × 320 and 512 × 512, PFPNet oper-
ates at 33 and 24 frames per second (FPS), respectively, on a single Titan
X GPU. For small-scale objects, PFPNet increases the performance of the
latest version of the SSD [26] by the AP of 7.8% on the MS-COCO dataset.

2 Parallel Feature-Pyramid Network

First, we explain our motivation for designing the proposed architecture for
object detection. In [34], Ren et al. stated that useful feature maps for robust
object detection should have the following properties: 1) the feature maps need to
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contain the fine details that represent the structure of objects well; 2) the feature
maps must be extracted by using a sufficiently deep transformation function, i.e.,
the high-level object knowledge should be encoded in the feature maps; 3) the
feature maps should have meaningful context information to support predictions
of the exact location and the class labels of “hard-to-detect” objects such as
occluded, small, blurred, and saturated objects.
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Fig. 2. Examples of input images (a) and their corresponding feature maps using
SSD [27] (b), FPN [23] (c), and PFPNet (d). All the models use VGGNet-16 as their
backbone network. The objects are detected at the visualized scales of the feature maps
(in the second row, the feature maps represent the scale of the beer bottles).

Let us recall FPs discussed in Section 1. The feature maps in the FP based
on the bottom-up DCNN might not satisfy the first property for the upper-level
feature maps obtained by the deep transformation functions; on the other hand,
the lower-level feature maps obtained by the shallow transformation functions
may not meet the second property, which impairs the detection performance on
small objects. Furthermore, each feature map is only responsible for the output
at its corresponding scale, so contextual information at different scales cannot
be effectively incorporated. A simple way to overcome these limitations is to
utilize the transformation functions with a proper depth to retain both the fine
spatial information and the high-level semantic object information. As shown in
Fig. 1(d), if the FP is arranged in a row, we can apply such transformation func-
tions with the same depth to generate every level of the FP. We then aggregate
different types of contextual information using the proposed MSCA modules to
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produce the final feature maps which satisfy the third property required for good
feature maps mentioned above.

Fig. 2 shows the images of objects with various sizes and their feature maps
at the scales corresponding to the objects. As discussed earlier, for SSD, the
visualized channels of the upper-level feature map for a plane are well activated,
but the activation values are not sparse, which could diminish the box regression
performance. For small bottles, fine details can be observed, but the activations
are not consistent despite the similar shape of the bottles. Some studies [20,42]
have shown that masking the activation values concentrated in the object regions
can improve the performance of visual recognition tasks. Thus, sparse channel
values on the object region can provide more accurate object information for
large objects. For FPN [23], which is an hourglass model, and PFPNet, the
visualized channels for a plane are well activated and sparser than those for SSD.
For small bottles, the channel values of FPN are more activated than those of
SSD, but the details somewhat disappear owing to the blurred information from
the top-down path. On the other hand, the visualized channels in PFPNet retain
not only the fine details of the objects, but also the consistent high activation
values overlapping with the exact object location. For the medium-sized objects
(the cats in the bottom row), all the feature channels of SSD, FPN, and PFPNet
have feature values that are well activated and concentrated in the object region.
This observation shows that the proper depth of the transformation function
can enhance the quality of feature representation, and the experimental results
in Section 3 demonstrate the effectiveness of the proposed structure. In the
following, we provide details of the proposed PFPNet.

Base Network. PFPNet is based on VGGNet-16 [40]. In PFPNet, the final
fully-connected (fc) layers in VGGNet-16 are replaced with convolutional (Conv)
layers by sub-sampling their parameters, and this modified VGGNet-16 were
pre-trained on the ILSVRC dataset [37].

Bottleneck Layer. For a feature transformation, we use bottleneck layers [16].
In the bottleneck layer, to improve the computational efficiency, a 1× 1 convo-
lution is applied prior to a 3× 3 convolution to reduce the number of channels.
The batch normalization [17] without scale/shift and the rectified linear unit
(ReLU) [12] are used for input normalization and activation. In the bottleneck
layer, the 1×1 convolution produces the feature maps with C/2 channels, where
C is the number of the output channels of the bottleneck layer.

FP Pool. The pooling [21] layer, which is widely used in visual classification
tasks [15,40,41], not only reduces the spatial size of the feature maps to a specific
size, but it can also aggregate the contextual prior in a sub-region. In [14, 44],
the SPP layer with various sizes of pooling sub-regions is utilized to construct
an FP for object detection and segmentation .

Inspired by these previous studies, we use the SPP layer to construct an FP
pool that is enriched with both the spatial information and multi-scale semantic
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Fig. 3. Overview of PFPNet with N = 3. For an input image (a), the base network is
employed to obtain the input for PFPNet. The high-dimensional FP pool (FH) (b) is
formed by using the SPP module, and the low-dimensional FP pool (FL) (c) is obtained
by applying the further transformation to the elements of (b). From these feature pools,
the MSCA modules generate the final FP (P ) (d) for multi-scale detection. Finally,
the FP is fed into the Conv prediction Subnets to obtain the detection results (e).

object-information. Fig. 3 illustrates the architecture of PFPNet for multi-scale
object detection. Let the base network produces the W ×H output feature map
having D output channels. By using the SPP module, we first form the high-

dimensional FP pool, FH = {f
(0)
H , f

(1)
H , · · · , f

(N−1)
H }, where f

(n)
H , the feature map

with a spatial size of W

2n × H

2n , denotes the nth level of FH, and N denotes the
number of pyramid levels. Thus, we obtain downsampled feature maps with the
channel number of CH = D by successively decreasing the spatial size by half. We

apply the bottleneck layers, denoted asH
(n)
L (·), to each level in parallel to further

extract the appropriate contextual feature for each scale and to reduce the chan-

nel number of contextual representation. We let FL = {f
(0)
L , f

(1)
L , · · · , f

(N−1)
L }

represent the low-dimensional FP pool, which is the output of the transforma-
tion of FH with a reduced channel number, CL = D/(N − 1).

MSCA. Incorporating context information at different scales can facilitate sev-
eral visual classification tasks [1,13,18,28]. Combining the feature maps by sum-
mation is a common approach for collecting contextual information from multiple
features [15]. However, Huang et al. [16] recently insisted that the summation
could weaken the information flow in a network. They introduced an alterna-
tive approach, which involves concatenating the feature maps directly to retain
the maximum information flow between feature layers. Several architectures for
object detection adopted this approach. For instance, in [1], higher-level DCNN
layers are fused into a single feature map via concatenation. In [18], multiple
feature-layers based on the DCNN or the hourglass network are concatenated as
well to exploit the contextual information at different scales.

PFPNet also use concatenation to collect the contextual information in the
FP pool. Fig. 4 shows an example of how the MSCA module produces a level
of the final FP, P = {p0,p1, · · · ,pN−1}. Consider that we generate the level n
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Fig. 4. Multi-scale context aggregation (MSCA) module.

of the FP, pn, with a size of W

2n × H

2n . We assume that the level n of the FP
pool contains primary information about the objects in pn, and the other levels
supplement the information for the objects as context priors at different scales.

Therefore, we bring f
(n)
H from the high-dimensional FP pool, FH, as the primary

information, while we gather the larger- and smaller-sized feature maps from the
low-dimensional FP pool, FL, as the supplementary information. To match the
sizes of the feature maps from FL, we directly upsample the feature maps with
smaller sizes (> n) via bilinear interpolation and downsample those with larger
sizes (< n) via non-overlapping average pooling. Finally, these feature maps are
combined via concatenation as described in [44]. The single feature map from
FH accounts for half the contents of the concatenated feature map and the N−1
feature maps in FL with D/(N − 1) channels comprise the other half, i.e., the
concatenated feature map has 2D channels. We utilize another transformation by

using bottleneck module or a series of 3× 3 convolutions, denoted as H
(n)
P

(·), to
refine and aggregate the collected information in the concatenated feature maps,
and finally obtain pn with CP channels. Since the MSCA modules reuse the
feature maps in FL, we can effectively exploit the multi-scale context information
with the improved use of computational resources.

In the MSCA module, the feature map from FH is combined with other fea-
ture maps of FL by using the skip connection. This can ease difficult optimization
process due to a wide and complex structure of the MSCA module having a num-
ber of parameters. We conducted an experiment in which the skip connection
was omitted and the concatenated feature map was built using only the feature
maps of FL. In this case, to form FL, we let the number of output channels of
HL(·) be 2D/N so that the concatenated feature maps have 2D channels. In
the experiment, this setting not only increased the number of parameters for
HL(·), but also decreased the performance of the proposed network slightly, as
we expected.

Details of PFPNet. We use 3 × 3 Conv layers to predict the locations of
objects and their class labels. For box regression sub-network (Subnet), a 3× 3
Conv layer with 4A filters is applied to each level of the FP to calculate the
relative offset between the anchor and the predicted bounding box, where A is
the number of anchors per location of the feature map. For classification, another
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3× 3 Conv layer with (K + 1)A filters followed by softmax is applied to predict
the probability of an object being present at each spatial position for each of
the A anchors and K object classes. Since we focus on the contribution of the
proposed FP to object detection, we use simple Subnets using a single-layer 3×3
convolution to ensure fair comparisons with SSD [27] and RefineDet [43].

The anchors allow us to allocate the output space to the multiple levels of the
FP. For fair comparisons with SSD and RefineDet, we employ two anchor types:
the pre-defined anchor boxes identical to those used in [26], denoted by a suffix
“-S”, and the anchor boxes predicted by the anchor refinement module (ARM)
presented in [43], denoted by a suffix “-R”. For PFPNet-S, we adopt most of
the settings presented in [26,27] such as anchor design, a matching scheme, and
input sizes. We use the input sizes of 300×300 and 512×512, which are denoted
as PFPNet-S300 and PFPNet-S512, respectively. For PFPNet-S, a bottleneck

module is used for a transformation function H
(n)
P

(·), and all of the new Conv
layers were initialized using the Gaussian filler with the standard deviation of
0.01. For PFPNet-R, we employ the ARM proposed in [43]. The ARM is a
prediction Subnet, which outputs the coordinate information and objectness of
the refined anchors. If the objectness of a refined anchor is larger than a threshold
θ (θ is empirically set to 0.01), the refined anchor is then used as an input anchor
for the final prediction Subnets; otherwise, it will be discarded. As described
in [43], we employ PFPNet with the input sizes of 320 × 320 and 512 × 512,
which are denoted as PFPNet-R320 and PFPNet-R512, respectively. The levels
of the final pyramid P has CP = 256 channels, and two 3×3 Conv layers followed

by ReLU are applied as a transformation function H
(n)
P

(·) for PFPNet-R. All of
the new Conv layers were initialized using the Xavier method [11].

We employ the multi-task loss defined in [27] for PFPNet-S and that in [43]
for PFPNet-R to optimize the model parameters. Following SSD, the smooth
L1 loss is used to calculate the loss function for bounding box regression. Our
experiments were conducted on a single NVIDIA Titan X GPU. For PFPNet-
S300 and PFPNet-R320, we use the stochastic gradient descent (SGD) with a
mini-batch size of 32 images, and for PFPNet with the size of 512, we employ
the SGD with a mini-batch size of 28 images owing to the memory limit. We use
a momentum of 0.9 and weight decay of 5×10−4.

3 Experiments

3.1 Datasets

We utilize three datasets, namely Pascal VOC 2007, VOC 2012 [6], and MS
COCO (COCO) [24] datasets. Both VOC 2007 and VOC 2012 datasets contain
20 object classes. VOC 2007 is divided into two subsets, trainval (5,011 images)
and test (4,952 images) sets, which are fully annotated with the ground truth
bounding boxes of objects. VOC 2012 comprises the trainval set (11,540 images),
which is annotated, and the test set (10,991 images), which has no disclosed label.
COCO has 80 object categories for object detection. In our experiments using
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COCO, we use the trainval35k subset [1] for training, which is a union of 80k
images from train and a random subset of 35k images from the 40k val images.
We present the results obtained using the test-dev subset of the COCO dataset.

3.2 Experimental Setup

We compare performance of PFPNet with state-of-the-art region-based detec-
tors, Faster R-CNN [35,36] and its variations [15,23,39], HyperNet [19], ION [1],
R-FCN [3], Deformable R-FCN [4], and CoupleNet [45], as well as some region-
free detectors, the YOLO [31], YOLOv2 [32], and SSD [27]. Note that, for SSD,
we use the versions of the latest implementations [26]. For comparisons with
the multi-scale region-free detector using the hourglass model, we employed
RON [20], R-SSD [18], DSSD [8], RetinaNet [25], and RefineDet [43]. The suffix
“+” represents the results obtained with a multi-scale testing.

3.3 PASCAL VOC 2007

Training and Evaluation Metric. In this experiment, the union of VOC
2007 trainval and VOC 2012 trainval sets denoted as VOC07+12 is used to
train all of the networks. For VOC 2007 test set, the detection performance is
evaluated using the mean AP (mAP) where a predicted bounding box is correct
if its intersection over union (IoU) with the ground truth bounding box is higher
than 0.5. We train our network for 110k iterations with an initial learning rate
of 10−3, which is divided by 10 at 80k iterations and again at 100k iterations.

Table 1. Impact of hyperparameters.

# pyramid levels (N) Reduced channel number (CL)
2 3 4 5 6 64 128 256

mAP (%) 79.08 80.08 80.72 80.68 80.15 80.16 80.34 80.72

Ablation Study for the impact of the hyperparameters We conduct
experiments to clarify the impact of the hyperparameters, N and CL. As shown
in Table 1, for the pyramid levels (with CL = 256), PFPNet shows the best result
of 80.72% where N = 4. For the reduced channel number of the low-dimensional
feature pool FL (with N = 4), CL = 256 shows the best mAP value.

Ablation Study for Wide FP and MSCA Module. To verify the effec-
tiveness of the wide FP and MSCA module, we conduct an experiment with or
without using the MSCA modules. The prediction Subnets are applied directly
to the feature maps of FL. As listed in Table 2, the wide FP obtained by us-
ing the SPP layer (i.e., the mAP of 77.9%) increases the performance by 1.7%
mAP as compared to the baseline. With the MSCA module, we find that mAP
is further increased from 77.9% to 78.5%.
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Table 2. Performance comparisons of different FPs.

Method PFPNet-R320 RefineDet320 FPN320 SSD (baseline)

ARM X X X

MSCA module X X

mAP (%) 80.7 78.5 77.9 80.0 77.3 79.6 77.6 76.2

Performance Comparisons with Other FPs. To demonstrate the effective-
ness of the proposed FP, we test four different FPs. For the FP based on the
bottom-up model, we use SSD [27] as a baseline. For the FP based on the hour-
glass model, we adopt two different models, the single-stage detector using the
feature pyramid network (FPN) [23] and RefineDet [43]. VGGNet-16 [40] is used
as a base network, where the input size was 320 × 320. For a fair comparison,
we use the same parameter settings. Every tested model has four pyramid levels
(N = 4), and the number of anchors was A = 3 where the aspect ratios { 1

2 , 1, 2}
are employed. Single-layer 3× 3 convolutions are utilized as prediction Subnets.
For the proposed FP and the FPs based on hourglass models, we additionally
evaluate the performance w/ or w/o ARM [43]. As shown in Table 2, PFPNet-
R, RefineDet, and FPN can effectively increase the mAPs as compared to the
baseline. Without ARM, FPN shows better performance than RefineDet (77.6%
vs. 77.3%). As indicated in [8,32], well designed anchors boost the performance
of object detectors. Since ARM adaptively refines the anchor boxes, it has in-
creased the performance of all the models by more than 2% points. Specifically,
the mAPs of PFPNet-R, RefineDet, and FPN are increased by 2.2%, 2.7%, and
2.0%, respectively. As a result, by using the ARM, the proposed FP exhibits the
best performance (80.7% mAP) among the compared models.

Results. Table 3 shows the performance of PFPNet and other conventional
detectors. Recent region-free methods based on the hourglass model such as R-
SSD512 [18], DSSD513 [8], and RefineDet512 [43] exhibit the performance com-
petitive to the region-based detectors on this set. For the input size of 300×300,
PFPNet-S300 shows the result similar to RefineDet320, which is the first method
achieving the mAP of above 80% with such a small-resolution input. PFPNet-
R320, i.e., PFPNet using the ARM which was also used in RefineDet, obtains
the mAP of 80.7%. Note that, for the larger input size of 512×512, PFPNet-S512
achieves the same result as RefineDet512. As shown in Table 3, PFPNet-R512
exhibits the best mAP among the region-free methods, and both PFPNet-R320
and PFPNet-R512 perform better than most of the region-based methods ex-
cept CoupleNet [45], which adopts the residual network (ResNet)-101 as its base
network and uses an larger input size (1000 × 600) as compared with PFPNet-
R512. Since the input size dramatically affects the detection performance, we
also tested PFPNet-R320+ and PFPNet-R512+, which utilizes the multi-scale
testing, to reduce the impact of input sizes. PFPNet-R320+ and PFPNet-R512+
achieves the mAPs of 83.5% and 84.1%, respectively. As compared with the real-
time object detectors such as SSD, YOLOv2, R-SSD, and RefineDet, PFPNet
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Table 3. Detection results on PASCAL VOC 2007 and VOC 2012 test sets.

Method Backbone Input resolution # Boxes FPS
mAP (%)

VOC 2007 VOC 2012
Faster R-CNN [35] VGGNet-16 ∼1000 × 600 300 5 73.2 70.4
HyperNet [19] VGGNet-16 ∼1000 × 600 100 0.9 76.3 71.4
Faster R-CNN [36] ResNet-101 ∼1000 × 600 300 2.4 76.4 73.8

ION* [1] VGGNet-16 ∼1000 × 600 4000 1.3 79.2 76.4
R-FCN [3] ResNet-101 ∼1000 × 600 300 9 80.5 77.6
CoupleNet [45] ResNet-101 ∼1000 × 600 300 8 82.7 80.4

YOLO [31] GoogleNet [41] 448 × 448 98 45 63.4 57.9
RON384 [20] VGGNet-16 384 × 384 30600 15 75.4 73.0
SSD300 [26] VGGNet-16 300 × 300 8732 46 77.2 75.8
R-SSD300 [18] VGGNet-16 300 × 300 8732 35 78.5 76.4
YOLOv2 [32] DarkNet-19 544 × 544 845 40 78.6 73.4
DSSD321 [8] ResNet-101 321 × 321 17080 10 78.6 76.3
SSD512 [26] VGGNet-16 512 × 512 24564 19 79.8 78.5
R-SSD512 [18] VGGNet-16 512 × 512 24564 17 80.8 -
DSSD513 [8] ResNet-101 513 × 513 43688 6 81.5 80.0
RefineDet320 [43] VGGNet-16 320 × 320 6375 40 80.0 78.1
RefineDet512 [43] VGGNet-16 512 × 512 16320 24 81.8 80.1
RefineDet320+ [43] VGGNet-16 - - - 83.1 82.7
RefineDet512+ [43] VGGNet-16 - - - 83.8 83.5

PFPNet-S300 VGGNet-16 300 × 300 8732 39 79.9 76.81

PFPNet-R320 VGGNet-16 320 × 320 6375 33 80.7 77.72

PFPNet-S512 VGGNet-16 512 × 512 24564 26 81.8 79.73

PFPNet-R512 VGGNet-16 512 × 512 16320 24 82.3 80.34

PFPNet-R320+ VGGNet-16 - - - 83.5 83.05

PFPNet-R512+ VGGNet-16 - - - 84.1 83.7
6

* ION adopted iterative bbox regression and voting, and regularizing with segmentation labels.
1 http://host.robots.ox.ac.uk:8080/anonymous/HUJBN7.html
2 http://host.robots.ox.ac.uk:8080/anonymous/GATL5Q.html
3 http://host.robots.ox.ac.uk:8080/anonymous/SNRWPN.html
4 http://host.robots.ox.ac.uk:8080/anonymous/GKGYPV.html
5 http://host.robots.ox.ac.uk:8080/anonymous/B5AKH8.html
6 http://host.robots.ox.ac.uk:8080/anonymous/M7K1BM.html

not only has the real-time speed, but also exhibits the best mAPs. The time
complexity and detection performance of PFPNet-S, even without using ARM,
are similar to those of RefineDet. PFPNet-R320 and PFPNet-R512 operate at
33 FPS and 24 FPS, respectively.

3.4 PASCAL VOC 2012

In this experiment, we used a subset, called VOC07++12, consisting of VOC
2007 trainval and test sets, and VOC 2012 trainval set, for a training, as de-
scribed in [27, 35]. Using the VOC07++12 set, we trained PFPNet for 240k
iterations in total. Starting with an initial learning rate of 10−3, the learning
rate is decreased by a factor of 10 at 160k and again at 200k iterations.

Table 3 shows the detection performance of PFPNet and other conventional
detectors based on the comp4 (outside data) track from the public leaderboard
on PASCAL VOC 2012. For the input size of 300 × 300, PFPNet-S300 obtains
the mAP of 76.8%, which is better than most of the region-based methods using
the input size of 1000 × 600 and region-free ones using the similar input size
to PFPNet-S300. PFPNet-R320 shows the mAP of 77.7%, which is better than
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the performance of most region-free detectors with similar input sizes except Re-
fineDet320 [43]. For the input size of 512×512, PFPNet-S512 and PFPNet-R512
exhibit the mAPs of 79.7% and 80.3%, respectively. PFPNet-R512 outperforms
other compared models except CoupleNet [45]. To reduce the impact of input
sizes for a fair comparison, the multi-scale testing is applied, and as can be seen
in Table 3, PFPNet-R320+ and PFPNet-R512+ yield the state-of-the-art mAPs
of 83.0% and 83.7%, respectively.

3.5 MS COCO

To validate PFPNet on a more challenging dataset, we conducted experiments
using the COCO dataset. The performance evaluation metric for the COCO
dataset is slightly different from that for the VOC dataset. The AP over differ-
ent IoU thresholds from 0.5 to 0.95 is denoted as AP50:95, to present the overall
performance of the detection models. The APs with IoU thresholds of 0.5 and
0.75 are denoted as AP50 and AP75, respectively. In addition, the MS COCO
evaluation server provides the AP for diverse scales. The object scales are deter-
mined by measuring the number of pixels in the object’s segmentation mask, S,
as follows: small objects (APS): S < 322; medium objects (APM): 322 < S < 962;
large objects (APL): S > 962. Using the COCO trainval35k sets, we trained our
model for 400k iterations in total, starting with an initial learning rate of 10−3,
and then decreasing it by a factor of 10 at 280k and again at 360k iterations.

Table 4. Detection results on MS COCO test-dev set.

Method Backbone Train set AP50:95 AP50 AP75 APS APM APL
Faster R-CNN [35] VGGNet-16 trainval 21.9 42.7 - - - -

ION* [1] VGGNet-16 train 33.1 55.7 34.6 14.5 35.2 47.2
R-FCN [3] ResNet-101 trainval 29.9 51.9 - 10.8 32.8 45.0
CoupleNet [45] ResNet-101 trainval 34.4 54.8 37.2 13.4 38.1 50.8
Faster R-CNN+++ [15] ResNet-101-C4 trainval 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w/ FPN [23] ResNet-101-FPN trainval35k 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w/ TDM [39] Inception-ResNet-v2-TDM trainval 37.3 57.8 39.8 17.1 40.3 52.1
Deformable R-FCN [4] Aligned-Inception-ResNet trainval 37.5 58.0 40.8 19.4 40.1 52.5

YOLOv2 [32] DarkNet-19 trainval35k 21.6 44.0 19.2 5.0 22.4 35.5
SSD300 [26] VGGNet-16 trainval35k 25.1 43.1 25.8 6.6 25.9 41.4
RON384++ [20] VGGNet-16 trainval 27.4 49.5 27.1 - - -
DSSD321 [8] ResNet-101 trainval35k 28.0 46.1 29.2 7.4 28.1 47.6
SSD512 [26] VGGNet-16 trainval35k 28.8 48.5 30.3 10.9 31.8 43.5
RefineDet320 [43] VGGNet-16 trainval35k 29.4 49.2 31.3 10.0 32.0 44.4
RetinaNet400 [25] ResNet-50 trainval35k 30.5 47.8 32.7 11.2 33.8 46.1
RetinaNet400 [25] ResNet-101 trainval35k 31.9 49.5 34.1 11.6 35.8 48.5
RefineDet320 [43] ResNet-101 trainval35k 32.0 51.4 34.2 10.5 34.7 50.4
RetinaNet500 [25] ResNet-50 trainval35k 32.5 50.9 34.8 13.9 35.8 46.7
RefineDet512 [43] VGGNet-16 trainval35k 33.0 54.5 35.5 16.3 36.3 44.3
DSSD513 [8] ResNet-101 trainval35k 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet500 [25] ResNet-101 trainval35k 34.4 53.1 36.8 14.7 38.5 49.1
RefineDet320+ [43] VGGNet-16 trainval35k 35.2 56.1 37.7 19.5 37.2 47.0
RefineDet512 [43] ResNet-101 trainval35k 36.4 57.5 39.5 16.6 39.9 51.4
RefineDet512+ [43] VGGNet-16 trainval35k 37.6 58.7 40.8 22.7 40.3 48.3
RefineDet320+ [43] ResNet-101 trainval35k 38.6 59.9 41.7 21.1 41.7 52.3

RetinaNet800** [25] ResNet-101-FPN trainval35k 39.1 59.1 42.3 21.8 42.7 50.2

RetinaNet800** [25] ResNeXt-101-FPN trainval35k 40.8 61.1 44.1 24.1 44.2 51.2
RefineDet512+ [43] ResNet-101 trainval35k 41.8 62.9 45.7 25.6 45.1 54.1

PFPNet-S300 VGGNet-16 trainval35k 29.6 49.6 31.1 10.6 32.0 44.9
PFPNet-R320 VGGNet-16 trainval35k 31.8 52.9 33.6 12.0 35.5 46.1
PFPNet-S512 VGGNet-16 trainval35k 33.4 54.8 35.8 16.3 36.7 46.7
PFPNet-R512 VGGNet-16 trainval35k 35.2 57.6 37.9 18.7 38.6 45.9
PFPNet-R320+ VGGNet-16 trainval35k 37.8 60.0 40.7 22.2 40.4 49.1
PFPNet-R512+ VGGNet-16 trainval35k 39.4 61.5 42.6 25.3 42.3 48.8
* ION adopted iterative bbox regression and voting, and regularizing with segmentation labels.
** RetinaNet800 was trained with scale jitter and for 1.5× longer than RetinaNet500.
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As shown in Table 4, PFPNet-S300 and PFPNet-R320 produce the APs
of 29.6% and 31.8%, which outperform the VGGNet-16-based models using an
input size of around 300. PFPNet-R320 even produces the better results than
R-FCN using ResNet-101 [15], and the similar results to RetinaNet400 using
ResNet-101 with the larger input size of 400 × 400. Without using the ARM,
PFPNet-S512 shows the comparable performance to the hourglass models using
the similar input size such as RetinaNet500 [23], DSSD513 [8], which are based on
ResNet-101, and RefineDet512 [43]. With the ARM, PFPNet-R512 achieves the
AP of 35.2%. By using VGGNet-16, ARM, and the same input sizes, PFPNet-
R320 and PFPNet-R512 increase the overall APs of RefineDet by 2.4% and
2.2%, respectively. As can be seen in Table 4, the performance of PFPNet-R512
is much better than the state-of-the-art region-free detectors with an input size
of around 512, and superior to most of the region-based detectors except Faster
R-CNN w/ FPN [23], Faster R-CNN w/ TDM [39], and Deformable R-FCN [39],
which use complex ResNet-based backbones with a large input size of 1000×600.
To reduce the impact of input sizes for a fair comparison, we also employed the
multi-scale testing on this set. PFPNet-R320+ obtains the even higher AP than
all of the compared region-based object detectors, and PFPNet-R512+ attains
the best AP of 39.4% among the compared object detection models based on
VGGNet. As compared with the detectors based on recent backbone networks,
PFPNet shows comparable detection performance, especially on small objects

Note that PFPNet-S512 and PFPNet-R512 show the particularly good AP
values at a small scale (16.3% and 18.7%) among the compared models. De-
tecting the small-scaled objects is one of the most challenging problem for both
the region-based and region-free methods. The experimental results demonstrate
that the feature representation power can be improved by using the proposed FP
architecture, especially at a small scale, as discussed in Section 2. As provided
in [24], more than 70% of COCO dataset is composed of objects, the sizes of
which are smaller than 10% of the input size (cf. the VOC dataset has less than
50% of objects with such sizes). In addition, the images of COCO dataset possess
more valuable contextual information than those of VOC dataset, which can be
estimated by investigating the average number of object categories per image
(3.4 vs. 1.4). Since the proposed MSCA modules aggregate the multi-scale con-
text, the COCO dataset has more information available than VOC dataset. As a
result, PFPNet has great advantages in detecting small-scale objects and utiliz-
ing the multi-scale context information, which yields a significant improvement
on COCO dataset.

Speed versus accuracy trade-off: Fig. 5 shows the speed versus AP of
single-stage detectors on COCO test-dev dataset. As compared with RetinaNet
and RefineDet models yielding similar APs to PFPNet, PFPNet operates more
than twice as fast. For the similar speed, PFPNet outperforms SSD [26], Re-
fineDet [43], and recently-released YOLOv3 [33].

In addition, we obtain the performance on VOC 2012 test set using the fine-
tuned models pretrained on COCO. The models were first trained on COCO
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Fig. 5. Speed (ms) versus accuracy (AP) of single-stage detectors on COCO test-dev.

trainval35k set, and then fine-tuned on VOC07++12 set. The mAP results of
PFPNet-R320 and PFPNet-R512 are 84.5% and 85.7%, respectively. With the
same backbone and train set, PFPNet-R320 and PFPNet-R512 increase the
mAPs of RefineDet [43] by 1.8% and 0.7%, respectively. By using the multi-scale
test scheme, PFPNet-R (87.8% mAP) was ranked 7th place on the leaderboard
among the overall architectures at the time of submission.

4 Conclusions

In this paper, we proposed an effective FP for object detection. In contrast to
the conventional FPs, we designed the FP having a wide structure. This allows
transformation functions to have a proper and uniform depth. Thus, all elements
of the FP could retain both the fine-structure of objects and the high-level
object knowledge. By using the proposed MSCA module, we efficiently reused
the elements in the FP pool to collect the various contextual information at the
different scale and produce the final FP. A single-shot object detection method
developed using the wide FP, called PFPNet, achieved 82.3% on the Pascal VOC
2007, 80.3% on the PASCAL VOC 2012, and 35.2% on the MS-COCO, in terms
of the mAP. By employing the multi-scale testing, PFPNet exhibits the state-
of-the-art performance. In particular, PFPNet has the advantage in detecting
small-scale objects with the APS of 18.7% on the MS-COCO dataset.

Although we concentrated on object detection, we believe that the feature
representation using the proposed wide FP will be beneficial for a variety of
other computer vision tasks.
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