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Abstract. We present an approach to infer a layer-structured 3D representation

of a scene from a single input image. This allows us to infer not only the depth

of the visible pixels, but also to capture the texture and depth for content in the

scene that is not directly visible. We overcome the challenge posed by the lack

of direct supervision by instead leveraging a more naturally available multi-view

supervisory signal. Our insight is to use view synthesis as a proxy task: we enforce

that our representation (inferred from a single image), when rendered from a novel

perspective, matches the true observed image. We present a learning framework

that operationalizes this insight using a new, differentiable novel view renderer.

We provide qualitative and quantitative validation of our approach in two different

settings, and demonstrate that we can learn to capture the hidden aspects of a

scene. The project website can be found at https://shubhtuls.github.

io/lsi/.

1 Introduction

Humans have the ability to perceive beyond what they see, and to imagine the structure

of the world even when it is not directly visible. Consider the image in Figure 1. While

we can clearly see a street scene with objects such as cars and trees, we can also reason

about the shape and appearance of aspects of the scene hidden from view, such as the

continuation of the buildings behind the trees, or the ground underneath the car.

While we humans can perceive the full 3D structure of a scene from a single im-

age, scene representations commonly used in computer vision are often restricted to

modeling the visible aspects, and can be characterized as 2.5D representations [17].

2.5D representations such as depth maps are straightforward to use and learn because

there is a one-to-one mapping between the pixels of an input image and the output

representation. For the same reason, they also fail to allow for any extrapolation beyond

what is immediately visible. In contrast, a robot or other agent might wish to predict the

appearance of a scene from a different viewpoint, or reason about which parts of the

scene are navigable. Such tasks are beyond what can be achieved in 2.5D.

In this work, we take a step towards reasoning about the 3D structure of scenes

by learning to predict a layer-based representation from a single image. We use a

representation known as a layered depth image (LDI), originally developed in the

computer graphics community [22]. Unlike a depth map, which stores a single depth

value per pixel, an LDI represents multiple ordered depths per pixel, along with an
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Fig. 1: Perception beyond the visible. On the left is an image of a street scene. While some parts

of the scene are occluded, such as the building behind the tree highlighted by the red box, humans

have no trouble reasoning about the shape and appearance of such hidden parts. In this work we

go beyond 2.5D shape representations and learn to predict layered scene representations from

single images that capture more complete scenes, including hidden objects. On the right, we show

our method’s predicted 2-layer texture and shape for the highlighted area: a,b) show the predicted

textures for the foreground and background layers respectively, and c,d) show the corresponding

predicted inverse depth. Note how both predict structures behind the tree, such as the continuation

of the building.

associated color for each depth, representing the multiple intersections of a ray with

scene geometry (foreground objects, background behind those objects, etc.) In graphics,

LDIs are an attractive representation for image-based rendering applications. For our

purposes, they are also appealing as a 3D scene representation as they maintain the

direct relationship between input pixels and output layers, while allowing for much more

flexible and general modeling of scenes.

A key challenge towards learning to predict such layered representations is the lack

of available training data. Our approach, depicted in Figure 2, builds on the insight that

multiple images of the same scene, but from different views, can provide us with indirect

supervision for learning about the underlying 3D structure. In particular, given two views

of a scene, there will often be parts of the scene that are hidden from one view but visible

from the second. We therefore use view synthesis as a proxy task: given a single input

image, we predict an LDI representation and enforce that the novel views rendered using

the prediction correspond to the observed reality.

In Section 3, we present our learning setup that builds on this insight, and describe

a training objective that enforces the desired prediction structure. To operationalize

this learning procedure, we introduce an LDI rendering mechanism based on a new

differentiable forward splatting layer. This layer may also be useful for other tasks at

the intersection of graphics and learning. We then provide qualitative and quantitative

validation of our approach in Section 4 using two settings: a) analysis using synthetic

data with known ground truth 3D, and b) a real outdoor driving dataset.

2 Related Work

Single-view Depth/Surface Normal Prediction. Estimating pixel-wise depth and/or

surface orientation has been a long-standing task in computer vision. Initial attempts
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Fig. 2: Approach overview. We learn a CNN that can predict, from a single input image, a

layered representation of the scene (an LDI). During training, we leverage multi-view supervision

using view synthesis as a proxy task, thereby allowing us to overcome the lack of direct super-

vision. While training our prediction CNN, we enforce that the predicted representation, when

(differentiably) rendered from a novel view, matches the available target image.

treated geometric inference as a part of the inverse vision problem, leveraging primarily

learning-free optimization methods for inference [23,4]. Over the years, the use of

supervised learning has enabled more robust approaches [14,21], most recently with

CNN-based methods [3,7,28], yielding impressive results.

We also adopt a learning-based approach, but go beyond commonly used 2.5D

representations that only infer shape for the visible pixels. Some recent methods, with a

similar goal, predict volumetric 3D from a depth image [24], or infer amodal aspects of a

scene [6]. However, these methods require direct 3D supervision and are thus restricted

to synthetically generated data. In contrast, our approach leverages indirect multi-view

supervision that is more naturally obtainable, as well as ecologically plausible.

Depth Prediction via View Synthesis. The challenge of leveraging indirect supervision

for inference has been addressed by some recent multi-view supervised approaches. Garg

et al. [9] and Godard et al. [12] used stereo images to learn a single-view depth prediction

system by minimizing the inconsistency as measured by pixel-wise reprojection error.

Subsequent works [26,33] further relax the constraint of having calibrated stereo images,

and learn a single-view depth model from monocular videos.

We adopt a similar learning philosophy, i.e. learning using multi-view supervision

via view synthesis. However, our layered representation is different from the per-pixel

depth predicted by these approaches, and in this work we address the related technical

challenges. As we describe in Section 3, our novel view rendering process is very

different from the techniques used by these approaches.

Multi-view Supervised 3D Object Reconstruction. Learning-based approaches for

single-view 3D object reconstruction have seen a similar shift in the forms of supervision

required. Initial CNN-based methods [5,11] predicted voxel occupancy representations

from a single input image but required full 3D supervision during training. Recent
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approaches have advocated alternate forms of supervision, e.g. multi-view foreground

masks [19,32,25] or depth [25].

While these methods go beyond 2.5D predictions and infer full 3D structure, they

use volumetric-occupancy-based representations that do not naturally extend to general

scenes. The layered representations we use are instead closer to depth-based represen-

tations often used for scenes. Similarly, these methods commonly rely on cues like

foreground masks from multiple views, which are more applicable to isolated objects

than to complex scenes. In our scenario, we therefore rely only on multiple RGB images

as supervision.

Layered Scene Representations. Various layer-based scene representations are popular

in the computer vision and graphics communities for reasons of parsimony, efficiency

and descriptive power. Single-view based [14,15,20] or optical flow methods [29] often

infer a parsimonious representation of the scene or flow by grouping the visible content

into layers. While these methods do not reason about occlusion, Adelson [1] proposed

using a planar layer-based representation to capture hidden surfaces and demonstrated

that these can be inferred using motion [27]. Similarly, Baker et al. [2] proposed a

stereo method that represents scenes as planar layers. Our work is most directly inspired

by Shade et al. [22], who introduced the layered depth image (LDI) representation to

capture the structure of general 3D scenes for use in image-based rendering.

We aim for a similar representation. However, in contrast to classical approaches

that require multiple images for inference, we use machine learning to predict this

representation from a single image at test time. Further, unlike previous single-view

based methods, our predicted representation also reasons about occluded aspects of the

scene.

3 Learning LDI Prediction

Our aim is to predict a 3D representation of a scene that includes not only the geometry

of what we see, but also aspects of the scene not directly visible. A standard approach to

geometric inference is to predict a depth map, which answers, for each pixel the question:

‘how far from the camera is the point imaged at this pixel?’. In this work, we propose to

predict a Layered Depth Image (LDI) [22] representation that, in addition to the question

above, also answers: ‘what lies behind the visible content at this pixel?’.

As we do not have access to a dataset of paired examples of images with their

corresponding LDI representations, we therefore exploit indirect forms of supervision to

learn LDI prediction. We note that since an LDI representation of a scene captures both

visible and amodal aspects of a scene, it can allow us to geometrically synthesize novel

views of the same scene, including aspects that are hidden to the input view. Our insight

is that we can leverage view synthesis as a proxy target task. We first formally describe

our training setup and representation, then present our approach based on this insight.

We also introduce a differentiable mechanism for rendering an LDI representation from

novel views via a novel ‘soft z-buffering’-based forward splatting layer.
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3.1 Overview

Training Data. We leverage multi-view supervision to learn LDI prediction. Our

training dataset is comprised of multiple scenes, with images from a few views available

per scene. We assume a known camera transformation between the different images

of the same scene. This form of supervision can easily be obtained using a calibrated

camera rig, or by any natural agent which has access to its egomotion. Equivalently,

we can consider the training data to consist of numerous source and target image pairs,

where the two images in each pair are from the same scene and are related by a known

transformation.

Concretely, we denote our training dataset of N image pairs with associated cam-

eras as {(Ins , I
n
t ,K

n
s ,K

n
t ,R

n, tn)}Nn=1. Here Ins , I
n
t represent two (source and target)

images of the same scene, with camera intrinsics denoted as Kn
s ,K

n
t respectively. The

relative camera transformation between the two image frames is captured by a rotation

R
n and translation t

n. We note that the training data leveraged does not assume any

direct supervision for the scene’s 3D structure.

Predicted LDI Representation. A Layered Depth Image (LDI) representation (see

Figure 3 for an illustration) represents the 3D structure of a scene using layers of depth

and color images. An LDI representation with L layers is of the form {(I l, Dl)}Ll=1.

Here (I l, Dl) represent the texture (i.e., color) image I and disparity (inverse depth)

image D corresponding to layer l. An important property of the LDI representation is

that the structure captured in the layers is increasing in depth i.e. for any pixel p, if

l1 < l2, then Dl1(p) ≥ Dl2(p) (disparity is monotonically decreasing over layers, or,

equivalently, depth is increasing). Therefore, the initial layer l = 1 represents the visible

content from the camera viewpoint (layers in an LDI do not have an alpha channel or

mask). In fact, a standard depth map representation can be considered as an LDI with a

single layer, with I1 being the observed image.

Fig. 3: Layered Depth Images (LDIs). Illustration of a layered depth image (LDI) for a simple

scene. The first layer captures the depth (darker indicates closer) and texture of the visible points,

and the second layer describes the occluded structure.

In our work, we aim to learn an LDI prediction function f , parametrized as a CNN

fθ, which, given a single input image I , can infer the corresponding LDI representation

{(I l, Dl)}Ll=1. Intuitively, the first layer corresponds to the aspects of the scene visible

from the camera viewpoint, and the subsequent layers capture aspects occluded in the
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current view. Although in this work we restrict ourselves to inferring two layers, the

learning procedure presented is equally applicable for the more general scenario.

View Synthesis as Supervision. Given a source image Is, we predict the corresponding

LDI representation fθ(Is) = {(I ls, D
l
s)}

L
l=1. During training, we also have access

to an image It of the same scene as Is, but from a different viewpoint. We write

Vs→t ≡ (Ks,Kt,R, t) to denote the camera transform between the source frame and

the target frame, including intrinsic and extrinsic camera parameters. With this transform

and our predicted LDI representation, we can render a predicted image from the target

viewpoint. In particular, using a geometrically defined rendering function R, we can

express the novel target view rendered from the source image as R(fθ(Is);Vs→t).
We can thus obtain a learning signal for our LDI predictor fθ by enforcing similarity

between the predicted target view R(fθ(Is);Vs→t) and the observed target image It.

There are two aspects of this learning setup that allow us to learn meaningful prediction:

a) the novel view It may contain new scene content compared to Is, e.g. disoccluded

regions, therefore the LDI fθ(Is) must capture more than the visible structure; and b)

the LDI fθ(Is) is predicted independently of the target view/image It which may be

sampled arbitrarily, and hence the predicted LDI should be able to explain content from

many possible novel views.

The need for forward-rendering. As noted by Shade et al. when introducing the LDI

representation [22], the rendering process for synthesizing a novel view given a source

LDI requires forward-splatting-based rendering. This requirement leads to a subtle but

important difference in our training procedure compared to prior multi-view supervised

depth prediction methods [9,12,33]: while prior approaches rely on inverse warping for

rendering, our representation necessitates the use of forward rendering.

Concretely, prior approaches, given a source image Is, predict a per-pixel depth map.

Then, given a novel view image, It, they reconstruct the source image by ‘looking up’

pixels from It via the predicted depth and camera transform. Therefore, the ‘rendered

view’ is the same as the input view for which the geometry is inferred, i.e. these methods

do not render a novel view, but instead re-render the source view. This procedure only

enforces that correct geometry is learned for pixels visible to both views.

However, in our scenario, since we explicitly want to predict beyond the visible

structure, we cannot adopt this approach. Instead, we synthesize novel views using

our layered representation, thereby allowing us to learn about both the visible and the

occluded scene structure. This necessitates forward rendering, i.e. constructing a target

view given the source view texture and geometry, as opposed to inverse warping, i.e.

reconstructing a source view by using source geometry and target frame texture.

3.2 Differentiable Rendering of an LDI

Given a predicted LDI representation {(I ls, D
l
s)} in a source image frame, we want to

render a novel viewpoint related by a transform Vs→t. We do so by treating the LDI

as a textured point cloud, with each pixel in each layer corresponding to a point. We

first forward-project each source point onto the target frame, then handle occlusions by

proposing a ‘soft z-buffer’, and finally render the target image by a weighted average of

the colors of projected points.
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Forward Projection. Denoting by pls the pixel ps ≡ (xs, ys) in layer l, we can com-

pute its projected position and inverse depth in the target frame coordinates using the

(predicted) inverse depth dls ≡ Dl
s(ps) and the camera parameters.









x̄t(p
l
s)

ȳt(p
l
s)

1
d̄t(p

l
s)









∼

[

Kt 0̂

0̂ 1

] [

R t̂

0̂ 1

] [

K
−1
s 0̂

0̂ 1

]









xs

ys
1
dls









(1)

Splatting with soft z-buffering. Using the above transformation, we can forward splat

this point cloud to the target frame. Intuitively, we consider the target frame image as

an empty canvas. Then, each source point pls adds paint onto the canvas, but only at

the pixels immediately around its projection. Via this process, many source points may

contribute to the same target image pixel, and we want the closer ones to occlude the

further ones. In traditional rendering, this can be achieved using a z-buffer, with only the

closest point contributing to the rendering of a pixel.

However, this process results in a discontinuous and non-differentiable rendering

function that is unsuitable for our framework. Instead, we propose a soft z-buffer using

a weight w(pt, p
l
s) that specifies the contribution of pls to the target image pixel pt.

Defining B(x0, x1) ≡ max (0, 1− |x0 − x1|), we compute the weights as:

w(pt, p
l
s) = exp

(

d̄t(p
l
s)

τ

)

B(x̄t(p
l
s), xt) B(ȳt(p

l
s), yt) (2)

The initial exponential factor, modulated by the temperature τ , enforces higher prece-

dence for points closer to the camera. A large value of τ results in ‘softer’ z-buffering,

whereas a small value yields a rendering process analogous to standard z-buffering. The

latter terms simply represent bilinear interpolation weights and ensure that each source

point only contributes non-zero weight to target pixels in the immediate neighborhood.

Rendering. Finally, we compute the rendered texture Īt(pt) at each target pixel pt as a

weighted average of the contributions of points that splat to that pixel:

Īt(pt) =

∑

pl
s

I ls w(pt, p
l
s) + ǫ

∑

pl
s

w(pt, pls) + ǫ
(3)

The small ǫ in the denominator ensures numerical stability for target pixels that cor-

respond to no source point. A similar term in the numerator biases the color for such

pixels towards white. All operations involved in rendering the novel target view are

differentiable, including the forward projection, depth-dependent weight computation,

and final color computation. Hence, we can use this rendering via forward splatting

process as the differentiable R(fθ(Is);Vs→t) required in our learning framework.

3.3 Network Architecture

We adopt the DispNet [18] architecture for our LDI prediction CNN shown in Figure 4.

Given the input color image, a convolutional encoder processes it to compute spatial
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features at various resolutions. We then decode these via upconvolutions to get back

to the image resolution. Each layer in the decoder also receives the features from the

corresponding encoder layer via skip connections. While we use a single CNN to predict

disparities and textures for all LDI layers, we find it critical to have disjoint prediction

branches to infer each LDI layer. We hypothesize that this occurs because the foreground

layer gets more learning signal, and sharing all the prediction weights makes it difficult

for the learning signals for the background layer to compete. Therefore, the last three

decoding blocks and final prediction blocks are independent for each LDI layer.

3.4 Training Objective

To train our CNN fθ, we use view synthesis as a proxy task: given a source image Is, we

predict a corresponding LDI and render it from a novel viewpoint. As a training objective,

we enforce that this rendered image should be similar to the observed image from that

viewpoint. However, there are some additional nuances that we need to consider when

formulating our training objective.

Depth Monotonicity. The layers in our LDI representation are supposed to capture

content at increasing depths. We therefore enforce that the inverse depth across layers at

any pixel is non-increasing:

Linc(Is) =
∑

ps,l

max(0, Dl+1
s (ps)−Dl

s(ps)). (4)

Consistency with Source. The typical LDI representation enforces that the first layer’s

texture corresponds to the observed source. We additionally enforce a similar constraint

even for background layers when the predicted geometry is close to the foreground layer.

We compute a normalized weight for the layers at each pixel, denoted as w(ps, l) ∝

exp
Dl

s
(ps)
τ

, and define a weighted penalty for deviation from the observed image:

Lsc(Is) =
∑

ps,l

w(ps, l)‖Is(ps)− I ls(ps)‖1. (5)

This loss encourages the predicted texture at each layer to match the source texture,

while allowing significant deviations in case of occlusions, i.e. where the background

layer is much further than the foreground. In conjunction with Linc, this loss enforces

that the predicted representation adheres to the constraints of being an LDI.

Allowing Content Magnification. The forward-splatting rendering method described

in Section 3.2 computes a novel view image by splatting each source pixel onto the target

frame. This may result in ‘cracks’ [13]—target pixels that are empty because no source

pixels splat onto them. For example, if the target image contains a close-up view of an

object that is faraway in the source image, too few source points will splat into that large

target region to cover it completely. To overcome this, we simply render the target frame

at half the input resolution, i.e. the output image from the rendering function described

in Section 3.2 is half the size of the input LDI.
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Per-layer weights
and prediction.

Input

Upconvolution

Convolution

Predicted
Disparity

Predicted
Texture

Skip-connections

Fig. 4: Overview of our CNN architecture. We take as input an image and predict per-layer

texture and inverse depth. Our CNN architecture consists of a convolutional encoder and decoder

with skip-connections. We use disjoint prediction branches for inferring the texture and depth for

each LDI layer.

Ignoring Image Boundaries. While an LDI representation can explain the disoccluded

content that becomes visible in a novel view, it cannot capture the pixels in the target

frame that are outside the image boundary in the source frame. We would like to ignore

such pixels in the view synthesis loss. However, we do not have ground-truth to tell

us which pixels these are. Instead, we use the heuristic of ignoring pixels around the

boundary. Denoting as M a binary mask that is zero around the image edges, we define

our view synthesis loss as:

Lvs(Is, It, Vs→t) = ‖M ⊙ It − M ⊙ Īt‖1 where Īt = R(fθ(Is);Vs→t). (6)

As described above, the rendered image Īt and the target image It are spatially smaller

than Is.

Overcoming Depth Precedence. Consider synthesizing pixel pt as described in Eq. 3.

While the weighted averaging across layers resembles z-buffer-based rendering, it has

the disadvantage of making it harder to learn a layer if there is another preceding (and

possibly incorrectly predicted) layer in front of it. To overcome this, and therefore to

speed up the learning of layers independent of other layers, we add an additional loss

term. Denoting as Ī lt a target image rendered using only layer l, we add an additional

‘min-view synthesis’ loss measuring the minimum pixel-wise error across per-layer

synthesized views:

Lm−vs(Is, It, Vs→t) =
∑

pt

min
l

M(pt)‖It(pt)− Ī lt(pt)‖1 (7)

In contrast to the loss in Eq. 6, which combines the effects of all layers when measuring

the reconstruction error at pt, this loss term simply enforces that at least one layer should

correctly explain the observed It(pt). Therefore, a background layer can still get a

meaningful learning signal even if there is a foreground layer incorrectly occluding it.

Empirically, we found that this term is crucial to allow for learning the background layer.

Smoothness. We use a depth smoothness prior Lsm which minimizes the L1 norm of

the second-order spatial derivatives of the predicted inverse depths Dl
s.
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Fig. 5: Procedurally generated synthetic data. We show 6 random training samples (top: source

image and corresponding inverse depth, bottom: target image with corresponding inverse depth).

Note that only the color images are used for learning.

Our final learning objective, combining the various loss terms defined above (with

different weights) is:

Lfinal = Lvs + Lm−vs + Lsc + Linc + Lsm (8)

Using this learning objective, we can train our LDI prediction CNN fθ using a dataset

comprised only of paired source and target images of the same scene.

4 Experiments

We consider two different scenarios to learn single-view inference of a layer-structured

scene representation. We first study our approach in a synthetic, but nevertheless chal-

lenging, setting using procedurally generated data. We then use our method to learn from

stereo pairs in an outdoor setting.

4.1 Analysis using Synthetic Data

In order to examine our method in a controlled setting with full knowledge of the

underlying 3D scene structure, we create a dataset of procedurally generated scenes. We

first describe the details of the generation process, and then discuss the training details

and our results.

Dataset. We generate our synthetic data to have a room-like layout with two side ‘walls’,

one back ‘wall’, a ‘ceiling’ and a ‘floor’. We additionally place one to three upright

segmented objects on the floor. The ‘room’ box is always at a fixed location in the world

frame, and is of a fixed size. The segmented foreground objects are randomly placed,
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Fig. 6: Sample LDI prediction results on synthetic data. For each input image on the left, we

show our method’s predicted 2-layer texture and geometry for the highlighted area: a,b) show

the predicted textures for the foreground and background layers respectively, and c,d) depict the

corresponding predicted disparity.

from left to right, at increasing depths and lie on a front-facing planar surface. To obtain

the foreground objects, we randomly sample from the unoccluded and untruncated object

instances in the PASCAL VOC dataset [8]. The textures on the room walls are obtained

using random images from the SUN 2012 dataset [30].

To sample the source and target views for training our LDI prediction, we randomly

assign one of them to correspond to the canonical front-facing world view. The other

view corresponds to a random camera translation with a random rotation. We ensure

that the transformation can be large enough such that the novel views can often image

the content behind the foreground object(s) in the source view. We show some sample

source and target pairs in Figure 5.

Note that while the geometry of the scene layout is relatively simple, the foreground

objects can have differing shapes due their respective segmentation. Further, the surface

textures are drawn from diverse real images and significantly add to the complexity,

particularly as our aim is to infer both the geometry and the texture for the scene layers.

Training Details. We split the PASCAL VOC objects and the SUN 2012 images into

random subsets corresponding to a train/validation/test split of 70% − 15% − 15%.

We use the corresponding images and objects to generate training samples to train

our LDI prediction CNN fθ. We train our CNN for 600k iterations using the ADAM

optimizer [16]. Based on the dataset statistics, we restrict the maximum inverse depth

predicted to correspond to 1m.

Results. We visualize the predictions of our learned LDI prediction CNN in Figure 6.

We observe that it is able to predict the correct geometry for the foreground layer i.e.

per-pixel depth. More interestingly, it can leverage the background layer to successfully

infer the geometry of the occluded scene content and hallucinate plausible corresponding

textures. We observe some interesting error modes in the prediction, e.g. incorrect

background layer predictions at the base of wide objects, or spurious details in the

background layer at pixels outside the ‘room’. Both these occur because we do not use

any direct supervision for learning, but instead rely on a view synthesis loss. The first
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Fig. 7: Sample LDI prediction results on the KITTI dataset. For each input image on the left,

we show our method’s predicted 2-layer texture and geometry for the highlighted area: a, b) show

the predicted textures for the foreground and background layers respectively, and c,d) depict the

corresponding predicted disparity.

View Synthesis Error All Pixels Dis-occluded Pixels

1 layer model 0.0398 0.1439

2 layer model 0.0392 0.1301

Table 1: View synthesis error on synthetic data. We compare our 2 layer LDI prediction CNN

against a single layer model that can only capture the visible aspects. We report the mean pixel-

wise ℓ1 error between the ground-truth novel view and the corresponding view rendered using the

predicted representations.

error mode occurs because we never fully ‘see behind’ the base of wide objects even

in novel views. Similarly, the spurious details are only present in regions which are

consistently occluded by the foreground layer and therefore ignored for view synthesis.

We analyze our learned representation by evaluating how well we can synthesize

novel views using it. We report in Table 1 the mean ℓ1 error for view synthesis and

compare our 2 layer model vs a single layer model also trained for the view synthesis

task, using the same architecture and hyper-parameters. Note that that single layer model

can only hope to capture the visible aspects, but not the occluded structure. We observe

that we perform slightly better than the single layer model. Since most of the scene

pixels are visible in both, the source and target views, a single layer model explains

them well. However, we see that the error difference is more significant if we restrict

our analysis to only the dis-occluded pixels i.e. pixels in the target image which are not

visible in the source view. This supports the claim that our predicted LDI representation

does indeed capture more than the directly visible structure.

We also report in Table 2 the error in the predicted inverse depth(s) against the known

ground-truth. We restrict the error computation for the background layer to pixels where

the depth differs from the foreground layer. Since the one layer model only captures

the foreground, and does not predict the background depths, we measure its error for
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Inverse Depth Foreground Layer Background Layer

Error (All Pixels) (Hidden Pixels)

1 layer model 0.0092 0.1307 (*)

2 layer model 0.0102 0.0152

Table 2: Geometry prediction error on synthetic data. We measure mean pixel-wise error in

the predicted inverse depth(s) against the ground-truth. (*) As the single layer model does not infer

background, we evaluate its error for the background layer using the foreground depth predictions.

This serves to provide an instructive upper bound for the error of the LDI model.

View Synthesis Error All Pixels Dis-occluded Pixels

1 layer model 0.0583 0.0813

2 layer model 0.0581 0.0800

Table 3: View synthesis error on KITTI. We compare our 2 layer LDI prediction CNN against

a single layer model that can only capture the visible aspects. We report the mean pixel-wise view

synthesis error when rendering novel views using the predicted representations.

the background layer using the foreground layer predictions. While this is an obviously

harsh comparison, as the one layer model, by design, cannot capture the hidden depth,

the fact that our predicted background layer is ‘closer’ serves to empirically show that

our learned model infers meaningful geometry for the background layer.

4.2 Experiments on KITTI

We demonstrate the applicability of our framework in a more realistic setting: outdoor

scenes with images collected using a calibrated stereo camera setup. We note that

previous methods applied to this setting have been restricted to inferring the depth of the

visible pixels, and that it is encouraging that we can go beyond this representation.

Dataset. We use the ‘raw’ sequences from the KITTI dataset [10], restricting our data to

the 30 sequences from the city category as these more often contain interesting occluders

e.g. people or traffic lights. The multi-view supervision we use corresponds to images

from calibrated stereo cameras that are 0.5m apart. We use both the left and the right

camera images as source images, and treat the other as the target view for which the view

synthesis loss is minimized. Due to the camera setup, the view sampling corresponds to

a lateral motion of 0.5m and is more restrictive compared to the synthetic data.

Training Details. We randomly choose 22 among the 30 city sequences for training,

and use 4 each for validation and testing. This results in a training set of about 6,000

stereo pairs. We use similar hyper-parameters and optimization algorithm to the synthetic

data scenario, but alter the closest possible depth to correspond to 2m.
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Results. We visualize sample predictions of our learned LDI prediction CNN in Figure 7.

We observe that it is able to predict the correct geometry for the foreground layer i.e.

per-pixel depth. Similar to the synthetic data scenario, we observe that it can leverage the

background layer to hallucinate plausible geometry and texture of the occluded scene

content, although to a lesser extent. We hypothesize that the reduction in usage of the

background layer is because the view transformation between the source and target

views is small compared to the scene scale, and we therefore only infer background layer

mostly corresponding to a) thin scene structures smaller than the stereo baseline, or b)

around the boundaries of larger objects/structures e.g. cars.

We do not have the full 3D structure of the scenes to compare our predicted LDI

against, but we can evaluate the ability of this representation to infer the available novel

views, and we report these evaluations in Table 3. As we do not have the ground-truth for

the dis-occluded pixels, we instead use the unmatched pixels from an off-the-shelf stereo

matching algorithm [31]. This algorithm, in addition to computing disparity, attempts to

identify pixels with no correspondence in the other view, thus providing (approximate)

dis-occlusion labels (see supplementary material for visualizations). Measuring the

pixel-wise reconstruction error, we again observe that our two-layer LDI model performs

slightly better than a single layer model which only models the foreground. Additionally,

the difference is a bit more prominent for the dis-occluded pixels.

While the above evaluation indicates our ability to capture occluded structure, it is

also worth examining the accuracy of the predicted depth. To this end, we compared

results on our test set against the publicly available model from Zhou et al. [33], since

we use a similar CNN architecture facilitating a more apples-to-apples comparison.

We perform comparably, achieving an Absolute Relative error of 0.1856, compared to

an error of 0.2079 by [33]. While other monocular depth estimation approaches can

further achieve improved results using stronger supervision, better architectures or cycle

consistency [12], we note that achieving state-of-the-art depth prediction is not our

central goal. However, we find it encouraging that our proposed LDI prediction approach

does yield somewhat competitive depth prediction results.

5 Discussion

We have presented a learning-based method to infer a layer-structured representation of

scenes that can go beyond common 2.5D representations and allow for reasoning about

occluded structures. There are, however, a number of challenges yet to be addressed. As

we only rely on multi-view supervision, the learned geometry is restricted by the extent

of available motion across training views. Additionally, it would be interesting to extend

our layered representation to include a notion of grouping, incorporate semantics and

semantic priors (e.g. ‘roads are flat’). Finally, we are still far from full 3D understanding

of scenes. However, our work represents a step beyond 2.5D prediction and towards full

3D.
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