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Abstract. Benefit from the quick development of deep learning tech-
niques, salient object detection has achieved remarkable progresses re-
cently. However, there still exists following two major challenges that hin-
der its application in embedded devices, low resolution output and heavy
model weight. To this end, this paper presents an accurate yet compact
deep network for efficient salient object detection. More specifically, given
a coarse saliency prediction in the deepest layer, we first employ residual
learning to learn side-output residual features for saliency refinement,
which can be achieved with very limited convolutional parameters while
keep accuracy. Secondly, we further propose reverse attention to guide
such side-output residual learning in a top-down manner. By erasing
the current predicted salient regions from side-output features, the net-
work can eventually explore the missing object parts and details which
results in high resolution and accuracy. Experiments on six benchmark
datasets demonstrate that the proposed approach compares favorably
against state-of-the-art methods, and with advantages in terms of sim-
plicity, efficiency (45 FPS) and model size (81 MB).

Keywords: Salient Object Detection - Reverse Attention - Side-output
Residual Learning

1 Introduction

Salient object detection, also known as saliency detection, aims to localize and
segment the most conspicuous and eye-attracting objects or regions in an im-
age. It is usually served as a pre-processing step to facilitate various subsequent
high-level vision tasks, such as image segmentation [l], image captioning [2],
and so on. Recently, with the quick development of deep convolutional neural
networks (CNNs), salient object detection has achieved significant improvements
over conventional hand-crafted feature based approaches. The emergence of fully
convolutional neural networks (FCNs) [3] further pushed it to a new state-of-the-
art due to its efficiency and end-to-end training. Such architecture also benefits
other applications, e.g., semantic segmentation [4], edge detection [5].

Albeit profound progresses have been made, there still exists two major chal-
lenges that hinder its applications in real-world, e.g., embedded devices. One is
the low resolution of the saliency maps produced by FCNs based saliency mod-
els. Due to the repeated stride and pooling operations in CNN architectures,
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Fig. 1. Maximum F-Measure of recent deep CNN-based saliency detection mod-
els on ECSSD, including DS [6], ELD [7], DCL* [5], DHS [3], RFCN [9],
NLDF [10], DSS* [11], MSRNet [12], Amulet [13], UCF [I4], and ours (red
circle). As can be seen that the proposed model is the only one less than 100
MB while achieves comparable performance with state-of-the-art methods.

it is inevitable to lose resolution and difficult to refine, making it infeasible to
locate salient objects accurately, especially for the object boundaries and small
objects. The other is the heavy weight and large redundancy of the existing deep
saliency models. As can be seen in Fig. 1, all the listed deep models are larger
than 100 MB, which is too heavy for a pre-processing step to apply in subsequent
high-level tasks, and also not memory efficient for embedded devices.

Diverse solutions have been explored to improve the resolution of the FCNs
based prediction. Early works [3,15,16] usually combined it with an extra region
or superpixel based stream to fuse their respective advantages at the expense
of high time cost. Then, some simple yet effective structures are constructed to
combine the complementary cues of shallow and deep CNN features, which cap-
ture low-level spatial details and high-level semantic information respectively,
such as skip connections [12], short connections [11], dense connections [17],
adaptive aggregation [13]. Such multi-level feature fusion schemes also play an
important role in semantic segmentation [18,19], edge detection [20], skeleton de-
tection [21,22]. Nevertheless, the existing archaic fusions are still incompetent for
saliency detection under complex real-world scenarios, especially when dealing
with multiple salient objects with diverse scales. In addition, some time consum-
ing post-processing skills are also applied for refinement, e.g., superpixel-based
filter [23], fully connected conditional random field (CRF) [8,11,24]. However,
to the best of our knowledge, there are no saliency detection networks explored
considering both lightweight model and high accuracy.

To this end, we present an accurate yet compact deep salient object detection
network which achieved comparable performance with state-of-the-art methods,
thus enables for real-time applications. In generally, more convolutional channels
with large kernel size leads to better performance in salient object detection
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Fig. 2. Visual comparison of saliency maps produced by DSS [11] (top row),
our method without (middle row) and with reverse attention (bottom row) in
different side-outputs, respectively. As can be seen clearly that the resolutions of
the saliency maps are improved gradually from deep to shallow side-outputs, and
our reverse attention based side-output residual learning performs much better
than short connections [11].

due to the large receptive field and model capacity to capture more semantic
information, e.g., there are 512 channels with kernel size 7x7 in the last side-
output of DSS [11]. In a different way, we introduce residual learning [25] into the
architecture of HED [5], and regard salient object detection as a super-resolution
reconstruction problem [26]. Given the low resolution prediction of FCNs, side-
output residual features are learned to refine it step by step. Note that it can
be achieved only using convolution with 64 channels and kernel size 3x3 in each
side-output, whose parameters are significant fewer than DSS.

Similar residual learning was also utilized in skeleton detection [21] and im-
age super-resolution [27]. However, the performance is not satisfactory enough if
we directly apply it for salient object detection due to its challenging. Since most
of the existing deep saliency models are fine-tuned from image classification net-
work, the fine-tuned network will unconsciously focus on the regions with high
response values during residual learning as can be seen in Fig. 5, thus struggling
to capture the residual details, e.g., object boundaries and other undetected ob-
ject parts. To solve it, we propose reverse attention to guide side-output residual
learning in a top-down manner. Specifically, prediction of deep layer is upsampled
then reversed to weight its neighbor shallow side-output feature, which quickly
guides the network to focus on the undetected regions for residual capture, thus
leads to better performance as seen in Fig. 2.

In summary, the contributions of this paper can be concluded as: (1) We
introduce residual learning into the architecture of HED for salient object detec-
tion. With the help of the learned side-output residual features, the resolution
of the saliency map can be improved gradually with much fewer parameters
compared to the existing deep saliency networks. (2) We further propose re-
verse attention to guide side-output residual learning. By erasing the current
prediction, the network can disscover the missing object parts and residual de-
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tails effectively and quickly, which leads to significant performance improvement.
(3) Benefit from the above two components, our approach consistently achieves
comparable performance with state-of-the-art methods, and with advantages in
terms of simplicity, efficiency (45 FPS) and model size (81 MB).

2 Related Work

There are plenty of saliency detection methods proposed in the past two de-
ceads. Here, we only focus on the recent state-of-the-art methods. Almost all of
them are FCNs based and try to solve the common problem: how to produce
saliency map with high resolution by using FCNs? Kuen et al. [28] applied re-
current unit into FCNs to iteratively refine each salient region. Hu et al. [23]
entended a superpixel-based guided filter to be a layer in the network for bound-
ary refinement. Hou et al. [11] designed short connections for multi-scale feature
fusion, while in Amulet [13], multi-level convolutional features were aggregated
adaptively. Luo et al. [10] proposed a multi-resolution grid structure to capture
both local and global cues. In addition, a new loss function was introduced to
penalize errors on the boundaries. Zhang et al. [14] further proposed a novel
upsampling method to reduce the artifacts produced in deconvolution. Recently,
dilated convolution [23] and dense connections [17] are further incorporated to
obtain high resolution saliency map. There are also some progressive works to
address the above issue in semantic segmentation. In [19], skip connections was
proposed to refine object instances, while in [29], it was used to build a Laplacian
pyramid reconstruction network for object boundary refinement.

Instead of fusing multi-level convolutional features as the above works, we
try to learn residual feature for low resolution refinement. The idea of residual
learning was first proposed by He et al. [25]for image classification. After that,
it was widely applied in various applications. Ke et al. [21] leraned side-output
residual feature for accurate object symmetry detection. Kim et al. [27] built a
very deep convolutional network based on residual learning for accurate image
super-resolution.

Although it is natural to apply it for salient object detection, the performance
is not satisfactory enough. To solve it, we introduce attention mechanism which is
inspired from human perception process. By using top information to efficiently
guide bottom-up feedforward process, it has achieved great success in many
tasks. Attention model was designed to weight multi-scale features in [12,30].
Residual attention module was stacted to generate deep attention-aware features
for image classification in [31]. In ILSVRC 2017 Image Classification Challenge,
Hu et al. [32] won the 1st place by constructing Squeeze-and-Excitation block
for channel attention. Huang et al. [33] designed an attention mask to highlight
the prediction of the reverse object class, which then be subtracted from the
original prediction to correct the mistakes in the confusion area for semantic
segmentation. Inspired but differed from it, we employ reverse attention in a
top-down manner to guide side-output residual learning. Benefit from it, we can
learn more accurate residual details which leads to significant improvement.
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Fig. 3. The overall architecture of the proposed network. Here, only three side-
outputs are listed for illustration.“R” denotes the proposed reverse attention
block that is illustrated in Fig. 4. As can be seen, the residual error decreases
along the stacking orientation with the supervision both on the input and output
of the residual unit (yellow circle).

3 Proposed Method

In this section, we first describe the overall architecture of the proposed deep
salient object detection network, and then present the details of the main com-
ponents one by one, which are corresponding to side-output residual learning
and top-down reverse attention respectively.

3.1 Architecture

The proposed network is built upon the HED [5] architecture and choses VGG-
16 [34] as backbone. We use the layers up to “pool5” and select {convl_2,
conv2_2, conv3_3, conv4_ 3, conv5_3} as side-outputs, which have strides of {1,
2, 4, 8, 16} pixels with respect to the input image repectively. We first reduce
the dimension of “pool5” into 256 by convolution with kernel size 1x1, and then
add three convolutional layers with 5x5 kernels to capture global saliency. Since
the resolution of the global saliency map is only 1/32 of the input image, we
further learn residual feature in each side-output to improve its resolution grad-
ually. In specificly, D convolutional layers with 3x3 kernels and 64 channels are
stacked for residual learning. The reverse attention block is embedded before
side-output residual learning. The prediction of the shallowest side-output is fed
into a sigmoid layer for final output. The overall architecture is shown in Fig. 3
and complete configurations are outlined in Table 1.
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Table 1. The configurations of the proposed network. (n,k x k) x D denotes
stacking D convolutional layers with channel number (n) and kernel size (k),
and ReLU layer is added for nonlinear transformation.

Side output 1~5 Global saliency
(64, 1x1) (256, 1x1)
{(64,3 x 3),ReLU} x D {(256,5 x 5), ReLU} x 3
(1, 3x3) (1, 1x1)

3.2 Side-output Residual Learning

As we know, deep layers of network capture high-level semantic information but
messy details, while it is opposite for shallow ones. Based on this observation,
multi-level features fusion is a common choice to capture their complementary
cues, however, it will degrade the confident prediction of deep layers when com-
bining with shallow ones. In this paper, we implement it in a different yet more
efficient way by employing residual learning to remedy the errors between the
predicted saliency maps and the ground truth. Specifically, the residual feature
is learned by applying deep supervision both on the input and output of the
designed residual unit, which is illustrated in Fig. 3. Formally, given the upsam-
pled input saliency map S* fl by a factor 2 in side-output stage ¢ + 1, and the
residual feature R; learned in side-output stage 4, then the deep supervision can
be formulated as:

Sith + Rz‘}wxgi = {Si}upxzi ~ G

where S; is the output of the residual unit and G is ground truth, up x 2* denotes
the upsample operation by a factor 2, which is implemented by the same bilinear
interpolation with HED [5].

Such a learning objective inherits the following good property. The residual
units establish shortcut connections between the predictions from different scales
and the ground truth, which makes it easier to remedy their errors with higher
scale adaptability. Generally, the error between the input and output of the
residual unit is fairly small based on the same supervision, thus can be learned
more easily with fewer parameters and iterations. To the extreme, the error is
approximately equal to zero if the prediction is close enough to the ground truth.
As a result, the constructed network can be very efficient and lightweight.

3.3 Top-down Reverse Attention

Although it is natural and straightforward to learn residual details for saliency
refinement, it is not easy for the network to capture them accurately without
extra supervision, which will result in unsatisfactory detection. Since most of the
existing saliency detection networks are fine-tuned from image classification net-
works which are only responsive to small and sparse discriminative object parts,
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Fig. 4. Illustration of the proposed reverse attention block, whose input and
output are highlighted in blue and green respectively.

it obviously deviates from the requirement of the saliency detection task that
needs to explore dense and integral regions for pixel-wise prediction. To mitigate
this gap, we propose a reverse attention based side-output residual learning ap-
proach for expanding object regions progressively. Starting with a coarse saliency
map generated in the deepest layer with high semantic confidence but low reso-
lution, our proposed approach guides the whole network to sequentially discover
complement object regions and details by erasing the current predicted salient
regions from side-output features, where the current prediction is upsampled
from its deeper layer. Such a top-down erasing manner can eventually refine the
coarse and low resolution prediction into a complete and high resolution saliency
map with these explored regions and details, see Fig. 4 for illustration.

Given the side-output feature 7" and reverse attention weight A, then the
output attentive feature can be produced by their element-wise multiplication,
which can be formulated as:

Fz7c = Az : Tz,w (2)
where z and c¢ denote the spatial position of the feature map and the index
of the feature channel, respectively. And the reverse attention weight in side-
output stage i is simply generated by subtracting the upsampled prediction of
side-output 7 4+ 1 from one, which is computed as below:

A; =1 — Sigmoid(S;},). (3)

Fig. 5 shows some visual examples of the learned residual feature to illustrate
the effectiveness of the proposed revrse attention. As can be seen, the proposed
network well captured the residual details near object boundaries with the help
of reverse attention. While without reverse attention, it learned some redundant
features inside object which is helpless for saliency refinement.
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Fig. 5. Visualization of residual features in different side-outputs of the proposed
network without (the first row) and with reverse attention (the second row).
From left to right are saliency map, the last convolutional feature from side
output 1 to 4, respectively. After appling our reverse attention, the proposed
network well captured spatial details near object boundaries which is beneficial
for saliency refinement, especially in shallow layers. Best viewed in color.

3.4 Supervision

As shown in Fig. 3, deep supervision is applied to each side-output stage as did
in [5,11]. Each side-output produces a loss term L;q. which is defined as below:

M
Laac(I,G,W,w) = > 6001, W, w™), (4)
m=1

where M regards to the total side-output numbers including global saliency, W
denotes the collection of all standard network layer parameters, I and G refer
to the input image and the corresponding ground truth respectively. Each side-
output layer is regarded as a pixel-wise classifier with the corresponding weights
w which is represented by

w=(w w® . wh)y (5)

Here, Eéﬁz represents the image-level class-balanced cross-entropy loss func-

tion [5] of the mth side output, which is computed by the following formulation:

|1
(1, GW, wi™) = = 3" G(2)logPr(G(z) = 11(2); W, w™)
z=1

side

(6)
+ (1 — G(2))logPr(G(z) = OI(z); W, w(™),

where Pr(G(z) = 1|I(z); W, w(™) represents the probability of the activation
value at location z in the mth side output, z is the saptial coordinate. Different
with HED [5] and DSS [11], there is no fusion layer included in our approach.
The output of the first side-output is used as our final prediction after a sigmoid
layer in the testing stage.
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3.5 Difference to Other Networks

Though shares the same name, the proposed network significantly differs from
reverse attention network [33], which applied reverse attention to weight the
prediction that is not associated with a target class, in this way to amplify the
reverse-class response in the confused region, thus can help the original branch
make correct prediction. While in our approach, the usage of reverse attention
is totally different. It is used to erase the confident prediction from deep layer,
which can guide the network to explore the missing object regions and details
effectively.

There are also some significant differences with other residual learning based
architectures, e.g., side-output residual network (SRN) [21], and Laplacian re-
construction network (LRN) [29]. In SRN, the residual feature is learned from
each side-output of VGG-16 directly, while in this paper, it is learned after re-
verse attention that is applied to guide residual learning. The main difference
with LRN lies in the usage of the wight mask, which is used to weight the learned
side-output features for boundary refinement in LRN, in contrast, we apply it
before side-output feature learning for guidance. In addition, the weight mask in
LRN is generated from the edge of deep prediction which will miss some object
regions due to its low resolution, while in this paper, we apply it to focus on
all the undetected regions for saliency refinement, which not only refines object
boundaries well but also highlights object regions more completely.

4 Experiments

4.1 Experimental Setup

The proposed network is built on the top of the implementations of HED [5]
and DSS [11], and trained though the publicly available Caffe [35] library. The
whole network is trained end-to-end using full-resolution images and optimized
by stochastic gradient descent method. The hyper-parameters are set as be-
low: batch size (1), iter_size (10), the momentum (0.9), the weight decay (5e-4),
learning rate is initialized as le-8 and decreased by 10% when the training loss
reaches a flat, the training iteration number (10K). All these parameters were
fixed during the following experiments. The source code will be released’.

We comprehensively evaluated our method on six representative datasets,
including MSRA-B [36], HKU-IS [37], ECSSD [35], PASCAL-S [39], SOD [10],
and DUT-OMRON [41], which contain 5000, 4447, 1000, 850, 300, 5168 well
annotated images, respectively. Among them, PASCAL-S and DUT-OMRON
are more challenging than the others. To guarantee a fair comparison with the
existing approaches, we utilize the same training sets as in [3,10,11,42] and test
all of the datasets with the same model. Data augmentation is also implemented
the same with [10,11] to reduce the over-fitting risk, which increased by 2 times
through horizontal flipping.

! http://shuhanchen.net
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Three standard and widely agreed metrics are used to evaluate the perfor-
mance, including Precision-Recall (PR) curve, F-measure, and the Mean Abso-
lute Error (MAE). Pairs of precision and recall values are calculated by compar-
ing the binary saliency maps with the ground truth to plot the PR curve, where
the thresholds are in the range of [0, 255]. The F-measure is adopted to mea-
sure the overall performance, which is defined as the weighted harmonic mean
of precision and recall:

Precision x Recall
B2Precision + Recall’

Fg=(1+p%) (7
where 32 is set to 2 to emphasize the precision over recall as suggested in [13].
Only the maximum F-Measure is reported here to to show the best performance
a detector can achieve. Given the normalized saliency map S and ground truth
G, the MAE score is calculated by their average per-pixel difference:

MAE = o 33 [S(y) - Gy, (8)

rz=1y=1

where W and H are the width and height of the saliency map, respectively.

4.2 Ablation Studies

Before comparing with the state-of-the-art methods, we first evaluate the influ-
ence of different design options (the depth D), the effectiveness of the proposed
side-output residual learning and reverse attention in this section.

Depth D. We make a experiment to see how the depth D affects the perfor-
mance by varying it from 1 to 3. The results on PASCAL-S and DUT-OMRON
are shown in Table 2. As can be seen that the best performance is obtained when
D=2. Therefore, we set it as 2 in the following experiments.

Table 2. Performance comparison with different numbers of D.

PASCAL-S DUT-OMRON
Fs MAE Fs MAE
0.830 0.100 0.776 0.067
0.834 0.104 0.786  0.062
0.824 0.106 0.778 0.064

SO T
OQ[UD»—A

Side-output residual learning. To investigate the effectiveness of the side-
output residual learning, we separately evaluate the performance of each side-
output prediction and show in Table 3. We can find that the performance is
gradually improved by combing more side-output residual features.

Reverse attention. As illustrated in Fig. 5, the network well located at
the object boundaries with the help of reverse attention. Here, we perform a
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Table 3. Performance comparison with different side-output predictions.

PASCAL-S DUT-OMRON

Fs MAE Fs MAE

Side-output 5 0.817 0.111 0.755 0.071
Side-output 4 0.827 0.106 0.776 0.065
Side-output 3 0.831 0.104  0.785 0.062
Side-output 2 0832  0.104  0.786  0.062
Side-output 1 0.834  0.104  0.786  0.062

detailed comparison using F-measure and MAE scores which are reported in
Table 4. From the results, we can get the following observations: (1) Without
reverse attention, our performance is similiar to the state-of-the-art method DSS
(without CRF-based post-processing), which indicates its large redundancy. (2)
After applying reverse attention, the performance is improved by a large margin,
specifically, we obtained an average of 1.4% gain in terms of F-measure and 0.5%
decrease for MAE score, which clearly demonstrates its effectiveness.

4.3 Performance Comparison with State-of-the-art

We compare the proposed method with 10 state-of-the-art ones, including 9 re-
cent CNN-based approaches, DCLY [3], DHS [44], SSD [15], RFCN [9], DLS [23],
NLDF [10], DSS and DSS* [11], Amulet [13], UCF [14], and one conventional
top approach, DRFI [42], where symbol “+” indicates that the network includes
CRF-based post-processing. Note that all the saliency maps of the above meth-
ods are produced by running source codes or pre-computed by the authors, and
ResNet based methods are not included for fair comparison.

Quantitative Evaluation. The results of quantitative comparison with
state-of-the-art methods are reported in Table 4 and Fig. 7. We can clearly ob-
serve that our approach significantly outperforms the competing methods both
in terms of F-measure and MAE scores, expecially on the challenging datasets
(e.g., DUT-OMRON). For PR curves, we also achieved comparable performance
with state-of-the-arts except at high level of recall (recall>0.9). In comparison
to the top method, DSS™, which uses a CRF-based post-processing step to re-
fine the resolution, nevertheless, our approach still attains nearly identical (or
better) performance across the board. It also needs to point out that the exist-
ing methods used different training datasets and data augmentaion strategies,
which caused an unfair comparison. Nevertheless, we still perform much better
that clearly shows the superiority of the proposed approach. And we also believe
that further performance gain can be obtained by using larger training dataset
with more augmented training images, which is beyond the scope of this paper.

Qualitative Evaluation. We also show some visual results of some repre-
sentative images to exhibit the superiority of the proposed approach in Fig. 6,
including complex scenes, low contrast between salient object and background,
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multiple (small) salient objects with diverse characteristics (e.g., size, color).
Taking all the cases into account, it can be observed clearly that our approach
not only highlights the salient regions correctly with less false detection but also
produces sharp boundaries and coherent details (e.g., the mouth of the bird in
the 4th row of Fig. 6). It is also interesting to note that the proposed method
even corrected some false labeling in the ground truth, e.g., the left horn in the
7th row of Fig. 6. Nevertheless, we still obtain unsatisfactory results in some
challenging cases, taking the last row of Fig. 6 for example, to segment all the
salient objects completely is still very difficult for the existing methods.
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Fig. 6. Visual comparisons with the existing methods in some challenging cases:
complex scenes, low contrast, and multiple (small) salient objects.
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Fig. 7. Comparison of precision-recall curves on different datasets.

Table 4. Quantitative comparison with state-of-the-art methods on six bench-
mark datasets. Each cell (from up to down) contains max F-measure (higher
better), and MAE (lower better). The top two results are highlighted in red and
green respectively. “RA” denotes the proposed reverse attention, and “MK” is
MSRA-10K [46], the other abbreviations are the initials of each dataset metioned
in the paper. Note that the number of images listed here are including the aug-

mented ones.

Dat;s:?i;;’flages MSRA-B HKU-IS ECSSD PASCAL-S SOD 01134%%1\1
TR R v
i e g oo o oo
DHS[1] MK+D 95kx12 o ol oo g
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RFOND] MK 10k T (e 0000 T onas oant
DLSPS) MK 10k T gl g 0T L oo
NIDFIO MB  25kx2 (Ui oas 0065 009 0123 0080
Amuiet[1] MK 108 (B o 0000 ol o008
UCF[) MK 108 ot Gt e o o
DSS[I]  MB 25kx2 (Ul (U o 0105 0196 007
DSS'1) MB 23kx2 ' 0'0L0 0'05s 0095 0425 0.063
wola  MB 2502 io (RE U onoe oo oom
Ous  MB 2302 (Uic 00LC 00s0 ga04 0124 0.062
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Execution Time. Finally, we investigate the efficiency of our method, and
conduct all the experiments on a single NVIDIA TITAN Xp GPU for fair com-
parison. It only takes less than 2 hours to train our model, for comparison, DSS
needs about 6 hours. We also compared the average execution time with other
five leading CNN-based methods on ECSSD. As can be seen from Table 5, our
approach is much faster than all the competing methods. Therefore, considering
both in vusial quality and efficiency, our approach is the best choice for real-time
applications up to now.

Table 5. Average execution time comparison with other methods on ECSSD.
DHS DSS NLDF UCF  Amulet Owurs
Times(s) 0.026 0.048 0.048 0.168 0.080 0.022

5 Conclusions

As a low-level pre-processing step, salient object detection has great applicabil-
ity in various high-level tasks yet remains not being well solved, which mainly
lies on the following two aspects: low resolution output and heavy model weight.
In this paper, we presented an accurate yet compact deep network for efficient
salient object detection. Instead of directly learning multi-scale saliency features
in different side-output stages, we employ residual learning to learn side-output
residual features for saliency refinement. Based on it, the resolution of the global
saliency map generated by the deepest convolutional layer was improved grad-
ually with very limited parameters. We further propose reverse attention to
guide such side-output residual learning in a top-down manner. Benefit from
it, our network learned more accurate residual features, which leads to signifi-
cant performance improvement. Extensive experimental resutls demonstrate that
the proposed approach performs favorably against state-of-the-art ones both in
quantitative and qualitative comparisons, which enables it a better choice for
further real-world applications, and also makes it a great potential to apply in
other end-to-end pixel-level prediction tasks. Nevertheless, the global saliency
branch and backbone (VGG-16) network still contain large redundancy, which
will be further explored by introducing handcrafted saliency prior and learning
from scratch in our future work.
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