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Abstract. Many computer vision methods use consensus maximization to re-

late measurements containing outliers with the correct transformation model. In

the context of rigid shapes, this is typically done using Random Sampling and

Consensus (RANSAC) by estimating an analytical model that agrees with the

largest number of measurements (inliers). However, small parameter models may

not be always available. In this paper, we formulate the model-free consensus

maximization as an Integer Program in a graph using ‘rules’ on measurements.

We then provide a method to solve it optimally using the Branch and Bound

(BnB) paradigm. We focus its application on non-rigid shapes, where we apply

the method to remove outlier 3D correspondences and achieve performance supe-

rior to the state of the art. Our method works with outlier ratio as high as 80%. We

further derive a similar formulation for 3D template to image matching, achieving

similar or better performance compared to the state of the art.

1 Introduction

Consensus maximization is a powerful tool in computer vision that has enabled practical

applications of highly complex algorithms such as Structure-from-Motion (SfM) [1–3]

to work despite incorrect measurements and noise. Apart from heuristic strategies such

as Random Sampling and Consensus (RANSAC) [4], globally optimal consensus max-

imizers [5–11] have been widely studied for rigid shapes, where there exists a simple

analytical transformation between two sets of measurements. In contrast, such tools

have not been explored in earnest for the model-free scenario, where simple analyti-

cal transformation models cannot explain the measurements. An important field where

model-free approaches are needed is in non-rigid shape registration. Consensus maxi-

mization in non-rigid shapes have applications in augmented reality, object animations

and shape analysis, among others.

While a large number of works have tackled non-rigid registration problem between

images or shapes [12–16], little attention has been given to identifying outliers in

matching correspondences. A few methods solve the problem in the images of non-

rigid shapes [17, 18] and between a template shape and an image [19] through locally

optimal approaches. The difficulty of assigning a suitable minimal parameter model to

non-rigid transformations makes it highly challenging to devise a consensus maximizer.

In this paper, we propose a common framework of seeking consensus in a model-

free correspondence set. Our key idea is that despite lacking a model which can explain
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each instance in a matching set individually, one can consider the agreement between

two or more instances using certain rules to formulate constraints. In non-rigid shapes,

a rule widely applied for reconstruction and registration is the isometric deformation

prior. Isometry implies that the geodesic distances are preserved despite deformations.

Using these theoretical understandings, we provide our contributions in three differ-

ent aspects. First we show how a model-free consensus maximization problem can be

posed as a graph problem and solved as an Integer Program if we have inlier/outlier

rules on the matching sets. Such an Integer Program can be solved optimally using a

BnB approach. Second, we apply this formulation for removing outliers in non-rigid

shape correspondences under the isometry prior. We show that our method can handle

as much as 80% outlier correspondences on isometric surfaces. We provide extensive

experiments on several isometric and partial shapes, as well as ‘loosely’ isometric par-

tial inter-subject human shapes, where we obtain results that improve over the state-of-

the-art methods. To show the generic nature of the introduced consensus maximizer,

we also formulate a 3D template-to-image outlier removal problem using the piecewise

rigidity and smoothness prior. We conduct extensive experiments in order to analyze the

behavior of the proposed algorithms and to compare with the state-of-the-art methods.

2 Related Work

We briefly highlight the related works that are relevant to non-rigid registration prob-

lems. The first problem is that of maximizing consensus between matched 3D surface

points in non-rigid 3D shapes using the isometry prior. Isometry is a widely used prior

in registration [14, 15, 20–22] as well as 3D reconstruction [23, 24]. Most non-rigid

shape registration methods [15, 20–22] start with a 3D descriptor such as the SHOT

descriptor [25] or heat kernels [26] and establish correspondences between shapes

through energy minimization. Others compute the registration by blending conformal

maps [14, 27]. Any such matching method results in good and bad matches. In the

following sections, we study how the outlier matches from various methods can be

removed in practical cases, including complete, partial and inter-subject scenarios.

3D template-to-image matching is yet another important problem in non-rigid

shapes that can be used to localize cameras [28] or for template-based 3D reconstruc-

tion [19, 24, 29, 30]. Eliminating outlier matches in such cases is addressed in [19]

by using a local iterative approach. Most other methods which solve image registra-

tion [12,18] do not use a 3D geometric prior explicitly. We address the problem of con-

sensus maximization in this setting with piece-wise rigidity and smoothness prior. A

recent method [16] solves the combinatorial matching problem with similar constraints

but does not focus on the problem of identifying outlier matches.

3 Background and Theory

Notations. We represent sets and graphs as special Latin characters, e.g., V . We use

lowercase Latin letters i, j, k or l to represent indices or sets of indices. For example,

Vi is an element of the set V . We write known or unknown scalars also in lowercase

letters, such as z. We use uppercase bold Latin letters to represent matrices (e.g., M)
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and lowercase bold Latin letters to represent vectors (e.g., v). We use lowercase Greek

letter ǫ to represent thresholds. We use uppercase Greek letters to represent mappings

or functions (e.g., Φ). We use ‖.‖ to denote the ℓ2 – norm and | . | to denote the ℓ1 –

norm of a vector or the cardinality of a set. Unless stated otherwise, we write primed

letters to represent quantities related to the transformed set.

3.1 Outliers

Let Φ : Ω → Ω′ be a transformation function between two spatial domains. Φ is related

to the matching sets P = {Pi : Pi ∈ Ω, i = 1, . . . , p} and P ′ = {P ′
i : P

′
i ∈ Ω′, i =

1, . . . , p}. In practice, Φ may be a rigid or non-rigid transformation function or such

transformations followed by camera projection. Each member Pi corresponds to the

member P ′
i in the second set. This defines a set of matches C ⊂ P × P ′ that may

contain outliers. The outlier set O is defined with a distance function ∆ as:

∀i ∈ {1 . . . p}, ∆ (Φ(Pi),P
′
i) ≥ ǫ =⇒ i ∈ O. (1)

A correspondence pair (Pi,P
′
i), also simply denoted as i, is an outlier if the distance

between the mapping of Pi and its correspondence P ′
i , is greater than the threshold ǫ.

3.2 Consensus Maximization

Using the definition of outliers in (1), the problem of consensus maximization is defined

as the minimization of the cardinality of the set O for the unknown Φ:

minimize
Φ

|O|

subject to ∆ (Φ(Pi),P
′
i) ≥ ǫ =⇒ i ∈ O.

(2)

Problem (2) implies that we wish to find the mapping Φ which results in the least num-

ber of disagreements given by the cardinality of O, in the given matching set C. In rigid

SfM related problems, Φ can be often expressed using a linear or non-linear function

with a small fixed number of parameters. This means that equation (1) can be evalu-

ated point-wise1 and also estimated using a very small size of point correspondence

set, known as the minimal set. There is no doubt that such problems can be efficiently

solved using RANSAC and other globally optimal methods highlighted in section 1.

It should be noted that even if Φ can be parameterized, very recently problem (2) was

shown to be NP-hard with W[1]-complexity [31, 32], meaning that solving it optimally

is very expensive. We call such a problem, when Φ can be parameterized (with a rea-

sonably small number of parameters), as model-based consensus maximization. In the

sections below we focus on the model-free case. Note that most formulations on con-

sensus maximization are written as maximization of the inlier set cardinality rather than

the minimization of the outlier set cardinality. However, these definitions are equivalent

and we choose the latter for convenience.

1Although in some cases such as that of the Fundamental Matrix, Φ cannot be determined point-

wise, it can be estimated for a minimal set. Thus, a RANSAC problem can be formulated.



4 Thomas Probst, Ajad Chhatkuli, Danda Pani Paudel, and Luc Van Gool

3.3 Generic Rules-based Consensus Maximization

In contrast to model-based problems, for many applications such as those related to non-

rigid shapes, Φ cannot be represented with a small size of parameters and therefore it

cannot be estimated using a minimal point set. As a consequence, ∆ cannot be evaluated

point-wise. For example, consider the case when Φ represents the mapping between the

two instances of a non-rigid surface. Such a map may be represented by Free-Form

Deformation (FFD) [18, 33] or specialized latent space models such as SMPL [34] for

human body, both requiring a large number of points to fit the latent parameters. In such

cases problem (2) is impractical to solve in its original form.

Therefore, we offer an alternative consensus maximization formulation which is

easier to solve for a special class of problems. A problem belongs to this special class

if the sets P and P ′ have a common underlying structure which can be measured using

subsets of the match set C, without explicitly computing the transformation function Φ.

To obtain a tractable formulation, we define a set of binary variables {z}, zi ∈ {0, 1}
and i ∈ {1, . . . , p} such that zi = 1 ⇐⇒ i ∈ O. Let a binary valued function Θ :
(Sa,Sb) → {0, 1} measure the agreement between two small subsets Sa, Sb ⊂ C. Θ
evaluates to 1 if the subsets Sa and Sb agree up to some threshold ǫ and 0 otherwise.

Then the following is an alternative of the original problem (2):

minimize
{z}

∑

i

zi

subject to

Θ(Sa,Sb) = 0 =⇒ ∃(Pi,P
′
i) ∈ Sa ∪ Sb : zi = 1,

∀ (Sa,Sb) : Sa 6= Sb,

(3)

The function Θ can be thought of as a rule which uses priors on the sets P and P ′ to

measure the agreement on the matched subsets. The subsets Sa and Sb sampled from

the match set C, are the minimal sets such that Θ can be evaluated. Problem (3) simply

means, in case two subsets chosen on the basis of a prior do not agree with each other,

at least one member from the union of those subsets must be an outlier. This is the key

idea of our work. Although solving problem (3) optimally does not guarantee an optimal

solution for problem (2), the latter is a close relaxation of the former. Therefore solving

problem (3) amounts to solving the model-free consensus maximization. Problem (3) is

still a combinatorial problem and is NP-hard. In the next section we give more insights

into the problem with a graph structure and provide a globally optimal method for

solving it with integer programming.

4 Consensus Maximization with a Graph

We represent the union of all samples Sa and Sb as the nodes and the connection be-

tween them as the edges of a graph G = {V, E}. The node set V consists of all unique

sampled subsets Sa and Sb. An edge (Sa,Sb) ∈ E connects the nodes Sa and Sb and

induces the agreement function Θ(Sa,Sb). We use the index k ∈ {1 . . . v} to denote

the nodes V and the index l ∈ {1 . . . e} to denote the edges E . Figure 1 illustrates this

representation of the problem.
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Fig. 1: Graph formulation for consensus maximization. The selected point sets

(nodes) are drawn as orange and purple circles in the graph, connected by edges repre-

senting the compatiblity between the sets. The point clouds are taken from [35].

4.1 Graph Formulation

Given the graph G, we would still like to compute the original binary variable set {z}.

With a slight abuse of notations, we define the binary variable set of a node as zk ,

{zi} : (Pi,P
′
i) ∈ Vk. Similarly we define the binary variable set of an edge as zl ,

{zi} : (Pi,P
′
i) ∈ Vka

∪Vkb
for El = (Vka

,Vkb
). The constraint on the binary variables

can then be compactly expressed as:

Σzl +Θ(El) ≥ 1, (4)

where Σzl represents the sum of all the elements in the set zl. Problem (3) with con-

straint (4) is an example of graph optimization where we need to compute the node

properties zk for each node k using the edge measurements Θ(El).

4.2 Integer Programming

Using the constraint of (4) in a graph, we propose an efficient way to solve the consensus

maximization problem, under the framework of Integer Programming, as:

minimize
{z}

∑

zi

subject to
∑

zl ≥ 1, ∀l ∈ {1 . . . e}, if Θ(El) = 0.
(5)

Problem (5) can be optimally solved using any off-the-shelf solver for Integer Program-

ming. This is done using the popular BnB method. Often such problems in consensus

maximization are solved using the so-called big M method [36]. Such a method is

needed when a binary decision function Θ cannot be defined for a given edge El. In

that case, the integer inequality in problem (5) is written as M
∑

zl + ǫ ≥ Λ(El) using

the scalar-valued function Λ and a scalar threshold ǫ. Here, M is a chosen large scalar

number that makes the problem feasible when Λ is large. However, in this work we

consider only those problems that can be expressed with a binary rule Θ.
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Relaxed alternatives and BnB. Integer programming problems are generally non-

convex in nature. They can be simplified by further relaxing the binary or integer con-

straint with real bounds. In contrast, we opt for the BnB approach keeping the integer

constraint in order to obtain a globally optimal solution even in case of high outlier ratio.

Such an approach computes the lower and upper bound of the cost iteratively and termi-

nates with a certificate of ǫ sub-optimality if they are equal. We compare the relaxed and

the globally optimal methods in section 6. In the next section, we describe two different

problems in non-rigid shapes which can be expressed in the form of problem (5).

5 Non-Rigid Shapes

Non-rigid objects have deformations that cannot be parameterized with a small fixed set

of parameters. Nevertheless, they do obey some shape priors. We provide our methods

for two problems in non-rigid shapes below, based on such deformation priors.

5.1 Shape Matching with Isometry

We consider two different shapes P and P ′ related by an unknown deformation Φ. We

want to establish the set of outlier points O on the matching set C. Such problems may

arise, for example, when registering 3D non-rigid surfaces using image matches [28] or

when registering different shapes with a 3D feature point descriptor [25, 26]. In order

to solve the problem, we consider the isometric deformation prior which assumes that

the surface distances are preserved under deformations. The prior allows us to use the

following graph attributes:

Vk = (Pi,P
′
i)

Θ(El) =

{

1 if ‖Ψ(Pi1 ,Pi2)− Ψ(P ′
i1
,P ′

i2
)‖ ≤ ǫ

0 otherwise.

(6)

where Ψ is the function that measures the geodesic distance between two points on

a surface. Each graph node consists of a single matching pair in C. Therefore each

constraint in (6) obtained for an edge consists of only two binary variables, making

the problem highly sparse. Although, we only show the problem formulation using

isometry, other deformation priors such as conformality may be used in problem (6).

Practical considerations. While the method works perfectly for isometric surfaces,

objects which are undergoing topological changes such as a tearing piece of paper or

loosely isometric surfaces such as a human body pose additional difficulty, as isometry

is not always satisfied in such cases. We therefore provide a more practical approach

to solve the problem in algorithm 1. In algorithm 1, separately applying the method for

different clusters also addresses the non-linear time complexity of the integer program-

ming problem. This allows us to use the method in dense point surfaces as the time

complexity with the number of clusters is always linear. To estimate the geodesics, we

compute a mesh by Delaunay triangulation when a mesh is not provided.
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Algorithm 1 : {z} = shapeRegistration (P, P ′, C)

1. Cluster initial matches C into m disjoint clusters using k-means.

2. For each cluster c ∈ {1 . . .m},

(a) Compute nearest neighbors and establish edges El.

(b) For each edge compute the agreement function Θ(El).
(c) Formulate constraints (6) with Θ.

3. Aggregate all the results from each cluster c.

5.2 Template to Image Matching

Template-based reconstruction is a well-studied problem [19, 23, 24, 30] which uses

matches between the template shape P and the deformed shape’s image I to recon-

struct the deformed surface. Again, the matches established may consist of outliers, in

which case the reconstruction obtained can be of poor quality. Here, we propose the

use of piece-wise rigidity and surface smoothness as the priors to define the agreement

function Θ. Despite non-rigidity, surface smoothness has been successfully used in the

state-of-the-art template-based reconstruction methods [19, 30]. We use a similar ap-

proach by considering that the relative camera to object pose changes smoothly over

the surface. Using these priors we define the graph attributes as follows:

Vk1
= {(Pi, Ii)}, i = {i1, i2, i3}, i1, i2, i3 ∈ {1 . . . p}

Vk2
∈ N (Vk1

)

Θ(El) =

{

1 if ∆
(

R
⊤
k1
,Rk2

)

≤ ǫ1 and |tk1
− tk2

| ≤ ǫ2

0 otherwise

(7)

where Rk1
and Rk2

represent the rotations of the absolute pose estimated using the

nodes Vk1
and Vk2

respectively, for the image I. We define N (.) to be the set val-

ued function giving neighboring nodes in the graph. Similarly tk1
and tk2

represent the

camera translations. The rule Θ measures how well the poses agree for the two nodes.

To that end, ∆ is the function used to measure the distance between two rotations.

We use two hyperparameters ǫ1 and ǫ2 to threshold the change in rotation and trans-

lation respectively. Local rigidity and surface smoothness imply that the poses should

also change smoothly. The absolute pose problem can be solved using any of the so-

called PnP methods [37–39]. We consider only the minimal problem that uses three

non-collinear matched points and is also known as the P3P method [37]. The solutions

obtained with P3P have a 4-fold ambiguity. This can be disambiguated either by using

an additional matching point pair or by simply choosing the solution that minimizes ∆.

The nodes are sampled such that each edge requires only four unique point matches and

therefore each inequality constraint will consist of four binary variables.

Practical considerations. Piecewise rigidity is a stronger prior compared to isometry.

For non-rigid shapes, this holds true only for close neighbors. In contrast to the shape

matching problem of 5.1, each edge here requires four point matches. For that reason,

it requires the matching set to be dense enough so that the points obey rigidity at least
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Algorithm 2 : {z} = templateImageRegistration (P, I, C)

1. Cluster initial matches C into m disjoint clusters using k-means.

2. For each cluster c ∈ {1 . . .m},

(a) Compute various triangulations of the point clusters and establish edges with two triangles.

(b) For each such pair of triangles with shared edge, evaluate Θ(El).
(c) Formulate constraints (7) with Θ.

3. Aggregate all the results from m clusters.

locally. Algorithm 2 describes the implementation of the method. A very naive simplifi-

cation of algorithm 2 can be made by considering all points that produce a high number

of 1’s in the agreement function Θ to be inliers. We term such a voting method as local

filtering which can find obvious inliers in the template-image matching problem.

5.3 Complexity Analysis

The combinatorial complexity of problem (5) depends on four main aspects: the number

of points p, the neighborhood size q, the cluster size r and the cardinality of the minimal

set required to represent a vertex set S , say s in the graph (see Fig. 1). The complexity

for a single Integer Program as reported in Table 1 can be directly obtained from the

combinatorics in graph. Although the template-to-image matching complexity (s = 3)

is high, the problem demands only local agreement, which allows us to use a small

local neighborhood (q = 15) for creating the vertices (triangles in this case) with on

average 30 edges per point. This is not the case in the shape matching and we use a

fully-connected graph (q = p/r − 1) on any cluster as the geodesic measurements are

valid irrespective of the points’ proximity.

Table 1: Complexity Analysis. Solving

for n points and minimal set size s with

full connectivity (cluster size r = 1) and

q-connectivity (cluster size r).

Full-connectivity q-connectivity

Vertices Edges Vertices Edges

(

p

s

)

(

(

p

s

)

2

)

p

sr

(

q

s−1

)

(

p

sr

(

q

s−1

)

2

)

6 Experimental Results

We present the results and analysis of our proposed methods in this section on sev-

eral standard datasets. We refer to the integer program based methods as exact or

the proposed method. We also compare with the simplified method where the binary

constraints in problem (5) have been relaxed to real, which we refer to as the re-

laxed method. We compare and use several matching or outlier removal methods. We

write the spline-warp based image outlier removal method [18] as featds. We write the

graph matching method [12] as maxpoolm. We test the template-image outlier removal

method based on mesh Laplacian [19] as laplacian. Apart from these image-based

methods we also use shape matching methods. We write the recent deformable shape

kernel matching method [15] as KM. We write the deep functional map [22] as DFM



Model-free Consensus Maximization for Non-Rigid Shapes 9

and the blended intrinsic maps [14] as BIM. We implement our methods in MATLAB

with YALMIP [40] and MOSEK [41] for integer programming. Below we describe in

detail the experiments for each of the discussed non-rigid registration problems.

Clustering and threshold parameters. For some experiments, we apply clustering to

handle the high number of point matches. For template-to-image matching and the

Hand dataset, the number of point matches is low (n < 200) and therefore the number

of clusters is 1. For the human shapes and the newspaper dataset we choose the num-

ber of clusters as 5 based on neighborhood (k-means clustering). Note that the result

aggregation is straight forward, since the clusters are disjoint. For Fig. 2, to vary the

number of points, we randomly sub-sampled the points to a fixed number. Regarding

thresholds, we fix ǫ = 20% distance error relative to the template for shape matching

(Sec. 6.1) unless stated otherwise. In the template-to-image (Sec. 6.2) matching case,

we use ǫ1 = 10o and ǫ2 = 40% for all datasets.

6.1 Non-rigid Shape Matching

We begin by analyzing the behavior of the proposed methods on synthetic data where

the ground truth correspondences are available for the shape matching problem. We

also compare the proposed methods with the state-of-the-art methods on several real

datasets. All these are outlined below.

Mocap data. We test with two cloth-capture data [35]. The datasets consist of a cloth

falling (toss) and a moving pair of trousers (stepping trousers). The datasets are gen-

erated with mocap and consist of registered real 3D points. We synthetically generate

outliers by randomly re-assigning matches to evaluate our methods.

Figure 2 (a) compares the relaxed and exact versions of the proposed method. We

observe that, for low outlier ratio, it is possible to remove all the outliers using the

relaxed method. However, it breaks down as the percentage of outliers increase beyond

50%, while the exact solution still correctly detects the inliers even in conditions with

80% outliers. Note that the proposed method does not detect any false positive inliers.

Figure 2 (b) shows how the exact method behaves with the number of iterations. We

observe that the method quickly computes the upper bound cost or the pessimistic inlier

set while it takes a while to obtain the certificate of optimality. We find this behavior

to be consistent to many other experimental setups. Figure 2 (c) shows the number of

open nodes at each iteration, describing how BnB evaluates and prunes branches. To

investigate time complexity, we also plot the execution time for the exact method in

figure 2 (d). It can be observed that the execution time increases with increase in the

number of points. However, this is not a problem in practice thanks to the clustering

framework presented in algorithm 1.

KINECT Newspaper dataset. The RGB-D data obtained from depth-camera sensors

such as KINECT make an important field of application for the method. We inves-

tigated our method on the Newspaper dataset2 [42]. It consists of a double sheet of

2 Dataset was provided by the authors.
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Fig. 2: Analysis of our method. Number of inliers detected, convergence of the pro-

posed method, and time taken for the mocap cloth dataset [35] under various setups.

Note that the number of iterations in (b) and (c) are in log-scale.

newspaper being torn into two parts. Figure 3 shows the inliers and outliers for a part

of the template image with our method. Due to the local neighborhood computed using

both point sets, the exact method can robustly handle the topological changes. On the

other hand, the relaxed method does not work well from lack of enough constraints3.

Hand dataset. The hand dataset [42] consists of two different instances of a hand and

their 3D ground truth obtained with SfM. Due to the non-rigid deformation, the detected

SIFT correspondences consist of very few matches with a large percentage (more than

70%) of outliers. The shape matching methods [14, 15] completely fail on this dataset

and we do not show them here. We show the results of the exact method in figure 4 and

the next best performing methods in figure 5. These qualitative results clearly show that

the compared methods do not perform well in such difficult cases.

Human body shapes. In the next set of experiments, we use our methods on human

body scans from the FAUST [43] dataset. To introduce challenging outliers, we consider

a partial matching scenario by cutting out one arm and one leg from the mesh, and

matching it to the full one. Thanks to the mesh registrations provided by the dataset, we

can exactly evaluate inliers and outliers based on geodesic deviations to the ground truth

correspondences (deviations greater than 15cm are considered as outliers). We compare

our relaxed and exact methods against matches estimated by DFM [22], KM [15], and

BIM [14]. Although BIM [14] produced visually good correspondences, it suffered

from mirror-image ambiguity, that could not be resolved. Therefore we compare to

BIM only where proper evaluations were possible.

3The complete set of results are provided in the supplementary document.
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(a) exact

(b) relaxed

(c) laplacian

Fig. 3: Newspaper dataset. Visualization of inlier and outlier matches from our exact

and two next best performing methods for an example pair of the Newspaper dataset.

Left column shows the inlier detection and the right column shows the outlier detection.

Fig. 4: SfM Hand dataset. Inlier detections (left) and outlier detections (right) of our

exact method.

Fig. 5: Inlier detections with laplacian (left) and relaxed (right).
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Since our method is designed for isometric shapes, we conduct the first experiment

in the intra-subject case (same subject in 9 different poses). We observe that our method

can successfully eliminate more than 90% outliers produced by DFM and KM while

removing only a few true inliers, as shown in the first column of Table 2.

In inter-subject body shape matching applications however, the isometry assump-

tion holds only to some extent. We use two challenging datasets to test such scenarios.

The first one is on inter-subject matching on the FAUST data, again in the partial match-

ing setting. Since the body shape varies across subjects, isometry doesn’t hold anymore.

The results presented in the second column of Table 2 demonstrate that this problem is

significantly harder than the isometric matching. We see that the matches resulting from

BIM contain outliers that are very hard to detect, and only 15% can be removed without

sacrificing many inliers. For DFM and KM, we reliably detect more than 80% and 90%

resp., and therefore improve the matching robustness for subsequent tasks.

Our third experiment with human body shapes involves dense correspondence esti-

mation from a depth map to the 3D model. We rendered synthetic depth map mimick-

ing the projection and noise properties of KINECT from an articulated MPII Human

Shape model [44] using variations of upright poses and body shapes. To compute the

geodesics on this modality, we triangulated the point cloud using 2D Delaunay triangu-

lation. Applying DFM and KM on the raw input does not work well, since SHOT [45]

and HKS [46] are not reliable features for depth maps. We therefore take initial matches

from a metric regression forest [47] trained on the specific task of dense correspondence

estimation. We then compare our methods, KM and ICP on top of these matches in the

third column of Table 2. We can conclude that, although provided with inital matches,

KM fails to correctly match the two modalities. Our method however shows promising

results even though the shapes are non-isometric, and geodesics are computed on the

triangulated point cloud. Interestingly, our result is comparable to that of the articu-

lated non-rigid ICP which exploits additional information such as the kinematics and a

stronger shape prior. Fig. 6 shows a qualitative example from our test set.

In summary, we showed that our method can be used on top of generic matching

methods to robustly detect outliers for isometric deformations, and some classes of non-

isometric registration such as inter-subject body shapes. Moreover, we can confirm our

results on the synthetic data and conclude that even the relaxed method provides good

results if the proportion of the outliers is below 50%.

6.2 Template to Image Matching

The template 3D to image matching is an important problem in non-rigid geometry.

Most reconstruction methods [19, 30] are sensitive to outlying correspondences and

proceed by first removing outliers in matches. We use problem (7) to formulate the

template to image outlier removal method using the absolute pose. We test our results

on three datasets: KINECT Paper [48], T-Shirt [49] and the MPI Sintel [50] all of which

contain the groundtruth 3D data and images. We select a random single pair for each

dataset and compute the SIFT matches. We count the number of inliers and outlier

matches manually for each of the methods’ output. We compare our methods with three

other state-of-the-art methods laplacian, featds and maxpoolm. Similarly, as discussed

in section 5.2 we also report the results of the relaxed method. We further report the
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Method
FAUST MPII HumanShape

intra-subject inter-subject from rendered depth map

Inliers / Outliers Time [s] Inliers / Outliers Time [s] Inliers / Outliers Time [s]

BIM - - 3381 / 1602 3 - -

BIM+Ours (relaxed) - - 3269 / 1362 10 - -

BIM+Ours (exact) - - 3267 / 1395 32.9 - -

DFM 4211 / 772 1 3756 / 1227 1 272 / 3728 1

DFM+Ours (relaxed) 3918 / 31 19 3437 / 93 15 - -

DFM+Ours (exact) 3918 / 31 24 3437 / 93 19.4 - -

KM 4736 / 181 89 4051 / 860 92 572 / 3387 53

KM+Ours (relaxed) 4554 / 18 104 3634 / 161 107 - -

KM+Ours (exact) 4556 / 17 110 3634 / 161 115 - -

RF - - - - 3220 / 780 <1

RF+KM - - - - 1162 / 269 3

RF+Ours (relaxed) - - - - 2800 / 137 14

RF+Ours (exact) - - - - 2800 / 137 15

RF+ICP - - - - 3166 / 159 301

mostly isometric non-isometric

Table 2: Non-rigid 3D shape matching. Results on FAUST [43] intra- and inter-

subject, as well as matching depth maps to the MPII HumanShape [44] model. We re-

port the number of true positive (inliers) and false positive (remaining outliers) matches.

Fig. 6: Qualitative results. Non-isometric shape matching from depth map. Left to

right: body mesh model [44], RF [47], RF+KM [15], RF+Ours, RF+ICP, input depth

map. Correspondences are color-coded, gray indicates removed matches.

Method Kinect Paper T-shirt Sintel

Inliers Time(s) Inliers Time(s) Inliers Time(s)

Local-filtering 46 / 142 4.22 95 / 351 6.10 17 / 68 2.03

relaxed 99 / 142 5.56 291 / 351 7.52 44 / 68 3.51

exact 114 / 142 7.59 309 / 351 9.66 53 / 68 5.01

laplacian 126 / 142 1.15 301 / 351 7.84 44 / 68 0.53

featds 76 / 142 3.93 304 / 351 1.46 42 / 68 0.32

maxpoolm 3 / 142 159.96 6 / 351 608.55 16 / 68 7.88

Table 3: 3D template to image matching. Comparison on three different real datasets.
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results of the local-filtering method as another baseline where the inliers are decided

based on the local neighborhood voting.

We test all the methods with favorable parameters. The reported inliers are manually

validated. The results show that our method performs in par with laplacian designed

exactly for the template-based outlier removal. Note that the exact method consistently

detects more number of inliers than other methods. Our method performs better than

featds in multi-body situation as featds uses a single spline-based warp and computes

the residuals to identify outliers. We visualize the results of outlier removal in figure 7

for the proposed method and two other best performing methods: featds and laplacian.

Fig. 7: Inliers (left) vs. Outliers (right) for the T-shirt dataset using the exact method.

The performance of our method is better than that of the two compared methods de-

signed for non-rigid matching. More results are provided in the supplementary material.

7 Conclusions and Future Work

In this paper we brought forward a theory on model-free consensus maximization using

integer programming and an optimal method to solve it using Branch and Bound. We

formulated two different registration problems using our consensus maximizer: isomet-

ric shape outlier removal and template-image outlier removal. We obtained very good

results at up to 80% mismatches in non-rigid shape registration and >25% mismatches

in template-image registration. We obtained these results by solving a close relaxation

of the original problem with guaranteed optimality. We showed with extensive experi-

ments that our methods consistently performs on par or better than the existing methods.

Although the focus of this paper was on non-rigid shapes, many vision problems

can be converted to formulation 5 with three or less variables per graph node. A non-

exhaustive list includes: i) one variable problems: relative pose on robot navigation [51],

ii) two variable problems: robust triangulation [52] and pure translation estimation [53],

and iii) three variable problems: image to image affine homography and three-view

modulus constraints [54]. For future works, we intend to tackle some of these problems

using the formulation we developed in this paper.
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19. Ngo, T.D., Östlund, J.O., Fua, P.: Template-based monocular 3D shape recovery using lapla-

cian meshes. IEEE Transactions on Pattern Analysis and Machine Intelligence 38(1) (2016)

172–187

20. Aflalo, Y., Dubrovina, A., Kimmel, R.: Spectral generalized multi-dimensional scaling. In-

ternational Journal of Computer Vision 118(3) (2016) 380–392

21. Vestner, M., Litman, R., Rodol, E., Bronstein, A., Cremers, D.: Product manifold filter: Non-

rigid shape correspondence via kernel density estimation in the product space. In: CVPR.

(2017)



16 Thomas Probst, Ajad Chhatkuli, Danda Pani Paudel, and Luc Van Gool

22. Litany, O., Remez, T., Rodola, E., Bronstein, A.M., Bronstein, M.M.: Deep functional maps:

Structured prediction for dense shape correspondence. In: ICCV. (2017)

23. Salzmann, M., Fua, P.: Linear local models for monocular reconstruction of deformable

surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(5) (2011)

931–944

24. Bartoli, A., Gérard, Y., Chadebecq, F., Collins, T., Pizarro, D.: Shape-from-template. IEEE

Trans. Pattern Anal. Mach. Intell. 37(10) (2015) 2099–2118

25. Salti, S., Tombari, F., Di Stefano, L.: Shot: Unique signatures of histograms for surface and

texture description. Computer Vision and Image Understanding 125 (2014) 251–264
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