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Abstract. Multi-graph matching refers to finding correspondences across
graphs, which are traditionally solved by matching all the graphs in a sin-
gle batch. However in real-world applications, graphs are often collected
incrementally, rather than once for all. In this paper, we present an in-
cremental multi-graph matching approach, which deals with the arriving
graph utilizing the previous matching results under the global consis-
tency constraint. When a new graph arrives, rather than re-optimizing
over all graphs, we propose to partition graphs into subsets with certain
topological structure and conduct optimization within each subset. The
partitioning procedure is guided by the diversity within partitions and
randomness over iterations, and we present an interpretation showing
why these two factors are essential. The final matching results are calcu-
lated over all subsets via an intersection graph. Extensive experimental
results on synthetic and real image datasets show that our algorithm
notably improves the efficiency without sacrificing the accuracy.

Keywords: Multi-graph matching; Incremental graph matching; Deter-
minantal point process; Graph clustering

1 Introduction

Graph matching (GM), which refers to the problem of finding common vertex
correspondences over a set of graphs by exploring both unary (vertex) and pair-
wise (edge) affinity, is a fundamental problem in computer vision and is known
to be NP-hard [1]. Compared with vector data, expressive graph representation
is often more welcomed when structural relation need to be considered. Due to
its robustness against noise, GM has been adopted in various vision applications
e.g. scene understanding [2], visual tracking [3], and object recognition [4], etc.

Though proven successful in exploiting structural data, two-graph match-
ing still suffers from the inherent local ambiguity, which on one hand leads to
non-smooth and difficult optimization problem. On the other hand, the affinity
objective can be biased from ground truth correspondence. Though learning the
affinity function [5] can mitigate such an issue, bringing more graphs for joint
matching can be a more natural and effective way to dismiss local bias [6, 7].

However, rather than being obtained at one time, graphs are often collect-
ed over time in practice, e.g. photos taken by street-view vehicle, video from
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surveillance camera, newly discovered protein v.s. existing protein. For this set-
ting, the naive strategy by treating the old batch and new graphs as a new
batch for matching from scratch is inefficient. Given previous matching results,
the problem arises for how to utilize existing matchings to accelerate new match-
ings or even enhance the accuracy. Despite the practical importance, little effort
has been made to address this online setting, which is the focus of this paper.

In contrast to the vast literature on offline multi-graph matching [7–14], the
paper is tailored to the online setting with the following contributions:

– To our best knowledge, this is one of the first works for addressing the
problem of incremental matching of multiple graphs.

– Compared with the offline baselines, our method can achieve or even improve
the matching accuracy while notably decreases the computing cost.

– We present interpretation to the proposed structure and mechanism, which
can be treated as a more general framework to [6] and [7].

2 Related works

Due to its importance and fundamentality, extensive work on graph matching
have been performed and thoroughly reviewed in a recent survey [15]. We cate-
gorize the representative work by the following perspectives.

2.1 Affinity function model

Graph matching incorporates both unary node-to-node, and second-order, or
even higher-order, (hyper)edge-to-(hyper)edge structural similarities. In its tra-
ditional setting, whereby no higher-order affinity is considered [16–20], the two
graph matching problem can be formulated as a quadratic assignment problem
(QAP) [1], being well-known NP-complete [21]. More recent work on hypergraph
matching further explores the higher-order (and mostly third-order) in affinity
function modeling [22–26] at the cost of increased time and space complexity,
whereby tensor marginalization is often used.

In contrast to the above methods whereby the affinity function is predefined
regardless their order or attribute layer, learning is adopted to adapt the affini-
ty function to different settings [16, 19, 5]. Supervised [5] and unsupervised [16]
learning paradigm have been explored to improve the matching accuracy. How-
ever, either learning based or learning-free affinity function modeling cannot
completely address the inherent ambiguity and noise in two-graph matching.

2.2 Solvers and techniques

In the past decades there have emerged various GM solvers. A large body of
literature are devoted to the study of different relaxation techniques, in order to
mitigate the hard combinatorial problem in nature. Typical relaxations include i)
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doubly-stochastic relaxation on the matching matrix [17, 27, 28]; ii) Semidefinite-
programming (SDP) [29, 30]; iii) spectral relaxations [27, 31]. From the optimiza-
tion perspective, different continuation methods [17, 32, 33] are widely adopted.

Different from these continuous relaxation methods which involves a post-
processing step to binarize the final result, several methods tend to directly
compute the solution in discrete assignment space. Sampling based methods [34,
35] directly generate discrete solutions via Monte Carlo Sampling. More recently,
[36] devises a tailored Tabu search for graph matching.

Our approach involves iteratively solving pairwise matching. We depart from
the above techniques, and follow a binarization-free composition based technique
[7] to derive pairwise matchings which has been proved efficient and effective.

2.3 Multi-graph matching

Beyond two-graph matching, an emerging line of work tend to address the match-
ing problem for multiple graphs jointly. These works [37–39, 9–11, 40, 13, 41] are
motivated by the fact that: i) in real cases, it is more often that multiple graphs
are available and needed for matching; ii) the availability to a batch of graphs
provides global information to enable robust model against local noise.

Employing an independent two-graph matching method for each pair of
graphs may result in the so-called cycle-inconsistency issue. Consider one toy
example, for graph Gi, Gj , Gk of equal size with no outlier. The three naive
matching solutions Xij , Xik, Xkj obtained independently from each pair of
graphs, may lead to cycle-inconsistency: Xij 6= XikXkj as illustrated in [9].

To address this issue, various multi-graph matching models are proposed in-
corporating the so-called consistency either in an iterative or a one-shot manner.
We follow the survey [15] to categorize these works in the following two folds.

Iterative methods [10, 9, 6, 11, 7] seek to find a tradeoff between affinity and
consistency scores. In general, the authors write out the objective for multi-graph
matching by adding up pairwise affinity terms {vec(X)⊤Kvec(X)}Ni,j=1, and the

pairwise matchings {X}Ni,j=1 are iteratively updated whereby in each iteration
the cycle-consistency constraints are strictly, or gradually satisfied. Specifically,
[9, 6] enforce the strict cycle-consistency constraint Xij = XibXbj over the whole
iterative variable updating procedure. As a result, the matching accuracy may
degenerate due to the inherent sensitivity to the starting point and updating ro-
tating order. Such idea is also employed in [10] for extending two-graph matching
method – Graduated Assignment [17] to multi-graph case. In contrast, a more
flexible and robust mechanism is devised in [11, 7], whereby the consistency is
gradually added over iterations.

One-shot methods [39, 40] try to enforce overall consistency as a post-step
given the putative two-graph matchings. However, since the affinity information
is totally discarded in the consistency enforcement procedure, these methods
suffer from the sensitivity to the quality of putative matchings as initialization.
In [42], the first-order affinity is utilized together with the consistency constrain-
t, to improve robustness on real images. However, higher-order information is
neglected.
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Based on the above two lines of methods, the authors in [12] present a for-
mulation where the affinity among graphs is encoded by a matrix stacked by the
vectorized attributes of graphs, and the variables are reduced to a set of non-
redundant bases inherent free from the consistency constraint. In [13], a tensor
representation based approach for multi-graph matching is presented.

However, all the aforementioned work ignore an important setting, whereby
the graphs arrive in a sequential way and online matching is needed. In fact the
problem of online or incremental matching of graphs is nontrivial and existing
methods may not be readily generalized to handle this new problem.

To our best knowledge, this is one of the first works for explicitly address-
ing the graph matching problem in an online fashion, whereby an incremental
matching technique is presented. Experimental results show our solver can no-
tably outperform the traditional multi-graph matching methods.

3 Preliminaries

We consider the case of one-to-one bijection matching. This setting has its tech-
nical consideration as cycle consistency constraint requires sizes of graphs to be i-
dentical. While most existing multi-graph matching methods employ such setting
[25, 11, 39, 42, 14], unbalanced graph sizes can be handled by introducing dummy
nodes or slack variables as in [18]. In case of bijection, a matching between graph
Gi and Gj can be expressed via a permutation matrix Xij ∈ {0, 1}n×n, where n

is the number of vertices in each graph. Given the affinity matrix Kij ∈ Rn2×n2

encoding the vertex and edge similarities on diagonal and off diagonal respective-
ly (see more detailed definition for Kij in prior art [6]), the matching objective
between graph Gi and Gj can be compactly defined as:

max
x

Eij = xT
ijKijxij

s.t. Hxij = 1,xij ∈ {0, 1}n
2

(1)

where xij = vec(Xij) is the column-wise vectorized formation of Xij . H is a se-
lection matrix enforcing the matching to be one-to-one. Due to the combinatorial
nature, to obtain the optimal solution for Eij is in general NP-hard, and it is

often relaxed into continuous domain by replacing the constraint xij ∈ {0, 1}n
2

with xij ∈ [0, 1]n
2

for efficient and approximate optimization [27, 31, 18].
Beyond two-graph matching, multi-graph matching has recently received ex-

tensive attention, which is a process of simultaneously finding pairwise matchings
between all given graphs to maximize the overall affinity score E =

∑

i,j Eij . A
naive approach is to solve each two-graph matching problem by maximizing
each Eij independently. However, this can lead to a fact that one matching so-
lution Xij does not agree with another solution derived by an alternative path:
Xij = XikXkj . To address this, cycle consistency [7] is proposed to constrain
the matching results to be cycle consistent, which emphasizes any two matching
paths between graph Gi and Gj should derive similar correspondence. For efficien-
cy and simplicity, in this paper we follow the widely used first-order consistency



Incremental Multi-graph Matching 5

over graph Gk as in [6, 7], which is defined as:

Ck = 1−

∑

i

∑

j>i‖Xij −XikXkj‖F /2

nN(N − 1)/2
∈ (0, 1] (2)

where N is the number of graphs, and ‖·‖F refers to the Frobenius norm. This
equation measures how much a direct matching agrees to another matching via
an intermediate graph. Thus the overall consistency over all graphs becomes:

C =
1

N

∑

k

Ck (3)

By adding C as a regularizer to affinity score, multi-graph matching with
consistency regularization yields to optimize:

Emgm = λE + (1− λ)C (4)

where λ is a controlling parameter. As this objective is significantly different to
those which are optimized using analytical or gradient-based methods, a heuris-
tic multi-graph matching method over Emgm is introduced in [7], in which the
matching in previous iteration is replaced by the product of two permutation
matrices on the path X′

ij = XikXkj if Emgm ascends. For its effectiveness and
efficiency, we employ this strategy in part of our method.

As an extension of offline multi-graph matching, incremental multi-graph
matching tries to match the N + 1th arriving graph when previous matchings
of N graphs have been computed. It is desired that one can reuse the previous
matching results when one or a few new graphs arrive. A naive way is to take
the previous solution for N graphs as starting point for iterative updating with
the N +1 graph no matter what existing multi-graph matching method is used,
under the expectation that the results obtained from N graphs can serve as
better initialization than random guess and speedup the convergence. However,
one still has to compute all N +1 matchings Xij each time a new graph arrives.

4 Proposed approach

4.1 Concepts for hypergraph topology

Before going into the details, it is worthwhile to mention some definitions here.
A hypergraph G consists of multiple graphs and the pairwise matchings between
them. Mathematically, a hypergraph is defined as (also sketched in Figure 1):

G = {{G1, ...,GN}, {Mij}} , i, j ∈ {1, ..., N} i 6= j (5)

where Mij is the matching between Gi and Gj . For hypergraph, there is a
complex that covers the corresponding structure. Given an index subset u ⊆
{1, ..., N}, we re-number the index as u = {l1, ..., lk}. Then a sub-hypergraph
Gu contains a subset of k graphs and its matchings induced by the index set u:

Gu =
{

{Gl1 , ...,Glk}, {Mlilj}
}

, li, lj ∈ u, li 6= lj (6)
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Fig. 1: The hypergraph with a petal-shape topology and its cover complex. There
are 10 existing graphs and an arriving graph. Note that: i) graphs are re-clustered
into k partitions overlapped by the intersection graph over iterations; ii) at
each iteration, the intersection graph is re-selected from all graphs which is not
necessarily the new graph; iii) the partitions are clustered by the criterion of
randomness and diversity under a given cluster number (here k = 3).

According to the topology of hypergraph G which is a fully connected struc-
ture, matchings are calculated between each pair of individual graphs. As the
amount of such matchings is combinatorial to the number of graphs, it could be
computationally intensive. However, if we can reduce the size of the hypergraph,
the computational cost will be mitigated significantly. This fact motivates the
idea to partition a hypergraph into several sub-hypergraphs, conduct optimiza-
tion on each subset and merge all the matching results. Figure 1 demonstrates
a general view of our method. We will detail the algorithm and give an intuitive
interpretation in the following sections.

4.2 Algorithm details

As shown in Algorithm 1, a method called Incremental Multi-Graph Matching
via randomness and diversity based graph clustering (abbr. IMGM) is proposed.

In general, the method consists of i) intersection graph selection and exclu-
sion; ii) randomness and diversity based graph clustering without the intersection
graph; iii) matching propagation along the intersection graph. These steps are
performed iteratively and illustrated in Figure 1.

1) Selecting intersection graph shared by sub-hypergraphs. Applying
multi-graph matching within each sub-hypergraph cannot guarantee the global
cycle consistency, because there is no link between different sub-hypergraphs
which also limit the effective use of global information across all the graphs. To
establish the connection between sub-hypergraphs, we adopt the criterion in [6, 7]
to select an intersection graph Gv (see illustration in Figure 1) by maximizing the
consistency score according to Equation (2). Hence the reference graph becomes
the intersection of all sub-hypergraphs by regarding it as belonging to each of
the sub-hypergraphs. The resulting topology of the hypergraph is petal-shape,
as shown in Figure 1 (note the resulting clusters are overlapped to each other
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Algorithm 1 Incremental multi-graph matching via randomness and diversity
based graph clustering (IMGM)

1: function IMGM(S,G,N) ⊲ S - Similarity, G - Hypergraph, GN - New graph
2: for each new graph GN : do
3: G = G ∪ {GN}
4: Find intersection graph v by maximizing Equation (2) based on updated X

5: Update similarity S by Equation (1) based on updated X

6: Partition G\ v into d clusters using k-DPP based on S, or random partition
7: for u = 1, . . . , d do

8: Generate sub-hypergraph Gu induced by u-th cluster
9: Gu = Gu ∪ {Gv}
10: Construct cover using Gu, u = 1, ..., U
11: Apply CAOPC (or other multi-graph matching solvers) to obtain Xu

12: end for

13: for i ∈ Iu1
, j ∈ Iu2

, i, j 6= v do

14: Xij = XivXvj ⊲ Construct length-two path through new graph
15: X = ∪Xu ∪ {Xij}
16: end for

17: end for

18: return X

19: end function

by the intersection graph). As a result, to obtain a cycle-consistent hypergraph
G for multi-graph matching, one only needs to consider the cycle consistency
constraint within each sub-hypergraph.

2) Clustering sub-hypergraphs by randomness and diversity. We
focus on two desirable properties for partitioning/clustering hypergraph in our
setting: diversity (in iteration) and randomness (over iterations). We first de-
scribe the general idea as follows:

For the first property, traditional clustering methods partition data into sev-
eral collections to aggregate similar objects and separate dissimilar ones. How-
ever, this strategy does not fit with our case, and the intuitive idea is that it
is difficult to match two dissimilar graphs from two clusters via an intersection
graph. Hence we adopt the policy that encourages diversity in each cluster, and
the hope is that each cluster is representative for the whole hypergraph.

The second property, on the other hand, emphasizes the relative randomness
of the partitions over iterations. If the partitions are fixed at each iteration,
the optimization may fall into local optima and has less chance to escape. In
this sense, the matching solution will converge in early iterations and not evolve
along with the graph sequence. To introduce randomness, we expect that the
partition can change to some extent from iteration to iteration, such that the
heuristic procedure can explore more solution space.

Based on the above observations, we introduce two specific ways for parti-
tioning at and over iterations: random sampling and determinantal point process
(DPP) [43]. Since random sampling is trivial, we explain more about DPP parti-
tioning in the following. DPP sampling relies on computation of similarity Sij of
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(a) Partition by spectral clustering
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(b) Partition by k-DPP

Fig. 2: Partitioning results using spectral clustering with similarity (left) and
proposed DPP procedure with diversity (right) on 40 graphs. Graphs are con-
verted to 2-D points by Multi-Dimensional Scaling [45] with pairwise affinity
score. Square markers are the centroids of each cluster.

any pair of graphs i and j. To this end, we at first introduce the optimal energy
Sij = Eij as a measurement when i 6= j. For i = j, we let Sii = 1.1×maxi,j,i 6=j Eij
without loss of generality. Then we let Sij = Sij −mini,j,i 6=j Eij . For N graphs
with d partitions, we first compute the size of each partition by using N/d and
rounding it properly. We then apply d times of k-DPP [44] to obtain the parti-
tions. Readers are referred to [44] for more details about k-DPP. We visualize
such partitioning strategies in Figure 2. This example contains 40 graphs and
the 2-D points are obtained by Multi-Dimensional Scaling [45]. The square box
corresponds to each cluster centroid. One can see the centroids in the left panel
are more scattered than those in the right panel. The points within a cluster in
the left panel are closer to each other, while the points within a partition in the
right panel span the whole space as much as possible.

Remarks One may argue the adoption of dissimilarity based spectral clus-
tering which can also generate scattered points in each cluster. However, this
approach is deterministic causing the partition in each iteration frozen. Another
alternative is using random sampling to form each cluster, while the drawback
is the diversity in each cluster cannot be effectively ensured. In fact, DPP ca-
nensure the diversity in each cluster at each iteration as well as the randomness
over iterations due to its inherent stochastic nature.

3) Propagating matching along the intersection. Specifically, for each
cluster u with graph sample index set Iu, by treating the reference graph as the
intersection graph that forms the petal-shape topology we define a new objective
for incremental matching:

E inc =
U
∑

u=1





∑

i,j∈Iu

λEij + (1− λ)Cu



 (7)
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In fact, we can apply existing multi-graph matching algorithm e.g. the method
called compositional affinity optimization with pairwise consistency (CAOPC) in
[7] over each sub-hypergraph independently to optimize this score function. Then
we can obtain a fully-connected sub-hypergraph in the sense that each pair of
graphs is matched in the sub-hypergraph. Concretely, for graph Gi and Gj from
different sub-hypergraphs there is no direct link, we use the intersection graph
Gk as intermediate node to generate a length-two matching Xij = XikXkj for
i ∈ Iu, j /∈ Iu. The optimal matchings for Equation (7), together with the gen-
erated matchings via the intersection graph, are denoted by X =

{

X∗
ij

}

which
can also be used as the starting point for matching next new graph.

Remarks Figure 1 demonstrates the topology generated from our algorithm.
Each solid circle corresponds to a partition, while optimization is conducted
within each dashed ellipse. In each dashed ellipse, we densely calculate matchings
of each pair of graphs with consistency regularization.

4.3 Further discussion

Complexity The complexity of CAOPC is O(N3n3 + N2τpair), where N and
n are the numbers of the graphs and vertices, respectively. τpair refers to the
complexity of the selected graph matching solver. In k-DPP sampling, an eigen-
decomposition and a projection procedure are involved, with complexity O(N3)
and O(N2), respectively. If the hypergraph is clustered into d partitions, and
w.l.g. equal size for each partition, the complexity of CAO-PC step of IMGM
becomes O(N3n3/d2 + N2τpair). In this case, the complexity of k-DPP parti-
tioning is O(N3/d2). It is easily seen that the clustering and cover topology can
reduce the complexity significantly. In general, the complexity of the proposed
algorithm with k-DPP partitioning becomes O(N3n3/d2 +N2τpair +N3/d2).

Topological interpretation The complex concept for offline multi-graph match-
ing has been discussed in [14], and the authors have proven that under the fol-
lowing conditions the hypergraph G is cycle-consistent: 1) Each sub-hypergraph
(not including G itself) is cycle-consistent; 2) Each pair of sub-hypergraph is
joint normal; 3) The cover complex of the hypergraph is topologically simply
connected. Though the assumption in these statements is ideal, it still provides
hints showing why our algorithm works. Since the proposed topological structure
assures that, once cycle-consistency is reached out in each partition, the holistic
cycle-consistency derived from intersection graph will be satisfied accordingly.
Furthermore we provide an explicit strategy on how to construct such a topology
which is not covered in [14].

Alternative topology First we observe that the topology of the proposed
method can be viewed as a generalized versions of [6] and [7]. If the size of the
partitions is the same as the number of graphs, our method becomes [6]. On
the other hand, if there is only one partition, our method degenerates to [7]. In
this sense, our topology leverages the previous two structures, thus can reach
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out a good balance between accuracy and efficiency. Besides, other topologies
sufficing the three conditions stated in previous paragraph can also be proposed,
as long as the matching can be propagated through intersection graph (e.g., line
or circle structure). We leave these variations to future work.

5 Experiments

Performance evaluation criteria We impose three popular measurements
[6, 7] to evaluate the performance of algorithms: accuracy, affinity score and
consistency (abbreviated as acc, scr and con, respectively). acc = 1−

∑

i,j‖X
∗
ij−

XGT
ij ‖2F /nN

2 ∈ [0, 1] refers to the matching accuracy by comparing solution X∗
ij

to ground-truth matching XGT
ij . scr = 1

N2

∑

i,j

vec(X∗

ij)
T
Kijvec(X

∗

ij)

vec(XGT

ij
)TKijvec(XGT

ij
)
calculates

the overall affinity score. con = C referring to Equation 3. Note scr can be above
1 – recall the affinity function can be biased rendering an incorrect matching
leads to a higher affinity score than the one by ground truth matching.

Comparing methods and settings As there is little existing multi-graph
matching algorithm in an incremental fashion, we devise two baselines by ex-
tending the CAOPC algorithm in [7] and Consistent Matching algorithm in [6].
To this end, we reuse the matching result X in the previous iteration as a starting
point, and incorporate the arriving graph GN in the current iteration for another
round of batch based multi-graph matching. We term these two baselines incre-
mental CAO and incremental ConMatch. We also employ raw CAOPC

which calculates matching from scratch without using the previous result. Per-
mutation synchronization (mSync) [39], which processes the matchings to fulfill
the cycle consistency, is also adopted for comparison. The proposed algorithms e-
quipped with DPP and random sampling for graph clustering over iterations, are
termed as IMGM-D and IMGM-R, respectively. All initial pairwise match-
ings are obtained using Reweighted Random Walk [18] which has been proved
an effective and stable two-graph matching solver.

5.1 On synthetic random graph

We follow [7, 9] to implement tests on synthetic data, in which the pairwise affin-
ity scores are randomly generated with Gaussion deformation perturbation. For
each trial, a reference graph with node count nR = 10 is created, by assigning a
weight qRab for edge (a, b) uniformly sampled from [0, 1]. Then a Gaussian noise
µ ∼ N (0, ǫ) is added as qDab = qRab + µ to generate a destination graph. The
edge density of graphs is adjusted according to density parameter ρ. The edge

affinity is thus calculated by Kac;bd = exp(− (qab−qcd)
2

σ2 ). We test different com-
binations of numbers of base graphs NB and arriving graphs NA. Three settings
of such combinations is conducted as (NB , NA) ∈ {(25, 15), (30, 20), (35, 25)}.
We keep to partition the hypergraph into 2 sub-hypergraphs in all tests (if not
otherwise specified) and conduct 50 times for each test and calculate the average
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Fig. 3: Performance on synthetic data w.r.t. accumulated arriving graph count.
Base graph number from top to bottom: 25, 30, 35, 30.

performance. We let ρ = 0.9, ǫ = 0.15 and σ2 = 0.05. The testing results are
demonstrated in the first three rows of Figure 3. To evaluate of impact different
partition size d, we conduct an additional test with (NB , NA) = (30, 20) with
d ∈ {2, 3, 4}. This test consists of 100 times of independent trials. The results
for this additional test are shown in the last row of Figure 3, where DPP and
Rnd correspond to IMGM-D and IMGM-R, respectively.

As one can see, when the size of base graphs is 25, our algorithm outper-
forms raw CAO in accuracy, and is very close to incremental CAO. When the
size increases to 30, IMGM outperforms incremental CAO when more graphs
arrive. In either case, raw CAO, incremental ConMatch and mSync have much
lower accuracy. When there are 35 base graphs, both IMGM-D and IMGM-R
outperform all other algorithms significantly, achieving state-of-the-art perfor-
mance. Further, IMGM-D has a more stable accuracy growth along with arriving
graphs. We can also observe that our algorithm reaches better global consisten-
cy than CAO-based methods. This is due to the fact that the matchings across
sub-hypergraphs are generated via an intermediate graph, thus have higher con-
sistency score. It should be noted that the matching accuracy of incremental
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Fig. 4: Performance on CMU sequence w.r.t. accumulated arriving graph count.

ConMatch decreases along with graph sequence. This is because the topology of
this algorithm does not evolve along with arriving graphs (there is always only
one cluster), therefore randomness is missing from iteration to iteration. Notably,
we also observe about 3 to 4 times of speedup compared to CAO algorithms.
From the bottom row, one can observe that a larger cluster size d generally accel-
erates the computation and enhances the consistency. However, larger d results
in accuracy drop – perhaps due to the cluster becomes too small to explore the
joint matching effectively. Hence we need to find a trade-off between accuracy
and efficiency controlled by d (see complexity analysis in Sec. 4.3). Last but not
least, we also observe IMGM-D can often converge more quickly than IMGM-R,
which compensates the additional overhead of performing DPP.

5.2 On real images: CMU sequence

The CMU pose dataset1 consists of two image sequences. One is CMU house
with 111 frames and 30 landmarks, and the other is CMU hotel with 101 frames
and 30 landmarks. Each sequence contains an object gradually changing its pos-
es. This dataset is widely tested in [18, 42, 7]. We use this dataset to evaluate the
performance under partial similarity and outlier nodes. To this end, we follow the
settings in [7] by selecting 10 inlier points in each frame, and randomly choose 4
points from the remaining landmarks in each frame rendering the matching more
challenging. The graphs are constructing with sparse delaunay triangulation on
both inliers and outliers following the method in [7]. The affinity is generated

by Kac;bd = exp(− (qab−qcd)
2

σ2 ), where qab measures the Euclidean distance be-
tween point a and b normalized to [0, 1] by dividing the largest edge length. The

1 http://vasc.ri.cmu.edu/idb/html/motion/
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diagonal elements of the affinity corresponding to node similarity are set to 0
as previous test. For each trail, we randomly sample NB = 30 frames as base
graphs, then randomly sample NA = 20 frames from the remaining frames as
arriving graphs. We conduct 20 times of single trial and calculate the average
performance. Let σ2 = 0.05. The performance curves are shown in Figure 4.

On the hotel sequence, IMGM-D method achieves significant accuracy superi-
ority against the other compared algorithms. In the house sequence test, IMGM-
D performs competitively to state-of-the-art algorithms. Though the change of
relative positions of landmarks is not severe across graphs, the outlier points hin-
der the matching algorithms as disturbing edges may appear along with outliers.
The stable performance demonstrates the robustness of the proposed algorith-
m, especially IMGM-D, against outliers. The algorithms show similar behavior
as in synthetic test on the metrics other than accuracy. Thus we only present
accuracy in the next Willow-ObjectClass data test.

5.3 On real images: Willow-ObjectClass

The Willow-ObjectClass dataset is collected and released in [5], which consists
of 5 classes of images collected from Caltech-256 and PASCAL07: 109 Face, 66
Winebottle, 50 Duck, 40 Car and 40 Motorbike images. All images are taken
from natural scenes. For each image, 10 landmark points on the correspond-
ing object are manually labelled. We select Winebottle, Duck and Car in our
experiment with splits (NB , NA) of (30, 20), (30, 20) and (25, 15), respectively.
For Winebottle (or namely Bottle), as NB +NA < 66, we following the setting
in previous test to randomly sample 50 images in each trial. For the resting
two objects, we randomly permute all images. 4 SIFT feature points on the
background are randomly selected as outliers. We still empoly sparse delaunay
triangulation to construct the adjacency graph. Then the affinity is calculated
as Kac;bd = βKlen

ac;bd + (1 − β)Kang
ac;bd taking into account both edge length and

angle similarity, where β ∈ [0, 1] is a controlling parameter. While the definition
of Klen

ac;bd is the same as used for the CMU sequence test, Kang
ac;bd measures differ-

ence of the absolute angles between edge (a, b) and (c, d). The diagonal elements
of affinity matrix are all set to 0 as before. β = 0.9 in this test. We conduct 20
times of independent trial and the mean accuracy is shown in Figure 5.

When there are more base graphs in Winebottle and Duck tests, IMGM-
D outperforms the selected counterparts on most arriving graphs. On the other
hand, in Car test with fewer base graphs, the proposed method gradually adapts
the problem along with arriving graphs, and reaches competitive performance.

5.4 Discussion

We observe that the proposed method outperforms all peer algorithms when the
size of graphs is sufficiently large. This may be due to the following two reasons.
On one hand, the diversity in a sub-hypergraph must be sufficiently represen-
tative of the whole graph space, which is barely satisfied when the number of
graphs is too small. On the other hand, the partitioning procedure is capable of
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Fig. 5: Accuracy on matching objects from Willow-ObjectClass dataset.

restricting the unreliability within a sub-hypergraph imposed by “outlier” graph,
which may be propagated to all matching results if a whole batch optimization
is employed. We also observe that, as the algorithm in [7] works on permutation
matrices, if the partitions are stable along time, the matching solution after a
period within each sub-hypergraph may fall into a permutation sub-group, and
will not evolve any further. On the contrary, by imposing randomness in par-
titions, our algorithm can escape from poor local optima. Last but not least,
we observe IMGM-D performs closely to IMGM-R on our synthetic test, and
outperforms IMGM-R on all the real-world image tests. We conjecture this is
due to the fact that for synthetic data, they are generated based on a shared
base structure (with additional slight noise). However, the natural image data
has a more complex distribution in their graph structure which can be better
captured by diversity-based clustering.

6 Conclusion

In this paper, we present an incremental multi-graph matching approach called
IMGM, which takes previous matchings and arriving graph as input, and per-
forms optimization over a cycle-consistent topological structure. To the best of
our knowledge, this is the first attempt to solve graph matching incrementally.
We also analyze the functional topological structure of hypergraph and interpret
the necessity of diversity and randomness in incremental settings. The proposed
approach reduces the computational overhead, and improves the matching ac-
curacy when there has accumulated enough graphs. Our paradigm is flexible to
allow for the adoption other multi-graph matching methods as plugin.
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