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Abstract. This paper addresses the semantic instance segmentation
task in the open-set conditions, where input images can contain known
and unknown object classes. The training process of existing semantic
instance segmentation methods requires annotation masks for all object
instances, which is expensive to acquire or even infeasible in some realistic
scenarios, where the number of categories may increase boundlessly. In
this paper, we present a novel open-set semantic instance segmentation
approach capable of segmenting all known and unknown object classes
in images, based on the output of an object detector trained on known
object classes. We formulate the problem using a Bayesian framework,
where the posterior distribution is approximated with a simulated anneal-
ing optimization equipped with an efficient image partition sampler. We
show empirically that our method is competitive with state-of-the-art su-
pervised methods on known classes, but also performs well on unknown
classes when compared with unsupervised methods.
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1 Introduction

In recent years, scene understanding driven by multi-class semantic segmenta-
tion [10,13,16], object detection [19] or instance segmentation [7] has progressed
significantly thanks to the power of deep learning. However, a major limitation
of these deep learning based approaches is that they only work for a set of known
object classes that are used during supervised training. In contrast, autonomous
systems often operate under open-set conditions [23] in many application do-
mains, i.e. they will inevitably encounter object classes that were not part of the
training dataset. For instance, state-of-the-art methods such as Mask-RCNN [7]
and YOLO9000 [19] fail to detect such unknown objects. This behavior is detri-
mental to the performance of autonomous systems that would ideally need to
understand scenes holistically, i.e., reasoning about all objects that appear in
the scene and their complex relations.

Semantic instance segmentation based scene understanding has recently at-
tracted the interest of the field [3, 25]. The ultimate goal is to decompose the
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Fig. 1: Overview of semantic instance segmentation in a open-set environment. Our
method segments all image regions irrespective of whether they have been detected or
undetected, or are from a known or unknown class

input image into individual objects (e.g., car, human, chair) and stuffs (e.g., road,
floor) along with their semantic labels. Compared with semantic segmentation
and object detection, the accuracy and robustness of semantic instance segmen-
tation lags significantly. Recent efforts (e.g., [7]) follow a detect-and-segment

approach — first detect objects in an image, then generate a segmentation mask
for each instance. Such an approach might label a pixel with multiple object in-
stances, and completely fails to segment unknown objects, and even known, but
miss-detected objects. More importantly, current instance segmentation meth-
ods require annotation masks for all object instances during training, which is
too expensive to acquire for new classes. A much cheaper alternative consists of
the bounding box annotation of new classes (a mere two mouse clicks, compared
to the multiple clicks required for annotating segmentation masks).

In this paper, we propose a novel Bayesian semantic instance segmentation ap-
proach that is capable of segmenting all object instances irrespective of whether
they have been detected or undetected and are from a known or an unknown
training class. Such a capability is vitally useful for many vision-based robotic
systems. Our proposed approach generates a global pixelwise image segmenta-
tion conditioned on a set of detections of known object classes (in terms of either
bounding boxes or masks) instead of generating a segmentation mask for each
detection (e.g., [7]). The segmentation produced by our approach not only keeps
the benefits of the ability to segment known objects, but also retains the gener-
ality of an approach that can handle unknown objects via perceptual grouping.
The outcome of our algorithm is a set of regions which are perceptually grouped
and are each associated either to a known (object) detection or an unknown
object class. To best of our knowledge, such a segmentation output has never
been achieved before.

We formulate the instance segmentation problem using a Bayesian framework,
where the likelihood is measured using image boundaries, a geometric bounding
box model for pixel locations and optionally a mask model. These models com-
pete with each other to explain different image regions. Intuitively, the boundary
model explains unknown regions while bounding box and mask models describe
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regions where known objects are detected. The prior model simply penalizes the
number of regions and enforces object compactness.

Nonetheless, finding the segmentation that maximizes the posterior distribu-
tion over a very large image partition space is non-trivial. Gibbs sampling [9]
could be employed but it might take too long to converge. One of the main
contributions of this work is an efficient image partition sampler that quickly
generates high-quality segmentation proposals. Our image partition sampler is
based on a boundary-driven region hierarchy, where regions of the hierarchy are
likely representations of object instances. The boundary is estimated using a
deep neural network [12]. To sample a new image partition, we simply select
one region of the hierarchy, and “paste” it to the current segmentation. This
operation will automatically realize either the split, merge or split-and-merge
move between different segmentations depending on the selected region. Finally,
the image partitioner is equipped with a Simulated Annealing optimization [28]
to approximate the optimal segmentation.

We evaluate the effectiveness of our open-set instance segmentation approach
on several datasets including indoor NYU [24] and general COCO [11]. Experi-
mental results confirm that our segmentation method, with only bounding box
supervision, is competitive with the state-of-the-art supervised instance segmen-
tation methods (e.g., [7,8]) when tested on known object classes, while it is able
to segment miss-detected and unknown objects. Our segmentation approach also
outperforms other unsupervised segmentation methods when tested on unknown
classes. Figure 1 demonstrates an overview and an example outcome of our seg-
mentation method.

2 Related Work

Supervised instance segmentation: State-of-the-art supervised instance seg-
mentation methods (e.g., [4,7,29]) follow a detect-and-segment approach — first
detect objects in an image, then generate a segmentation mask for each instance.
For example, the Mask-RCNN method [7] extends the Faster-RCNN [21] object
detection network by adding another semantic segmentation branch for predict-
ing a segmentation mask for each detected instance. Earlier methods [17,18] are
based on segment proposals. For instance, DeepMask [17] and SharpMask [18]
learn to generate segment proposals which are then classified into semantic cate-
gories using Fast-RCNN. In contrast, the FCIS method [29] jointly predicts, for
each location in the image, an object class, a bounding box and a segmentation
mask. The methods in [20, 22] employ Recurrent Neural Networks (RNN) to
sequentially predict an object binary mask at each step.

Another group of supervised instance segmentation methods is based on clus-
tering. In [5], the idea is first computing the likelihood that two pixels belong to
the same object (using a deep neural network), then use these likelihoods to seg-
ment the image into object instances. Instead of predicting similarities between
pixels, the method in [2] predicts a energy value for each pixel, the energy sur-
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face is then used to partition the image into object instances using the watershed
transform algorithm.

The common drawback of existing instance segmentation methods is that
they require a strong supervisory signal, consisting of the annotation masks
of the known objects that are used during training. In contrast, our Bayesian
instance segmentation approach does not necessarily require such object anno-
tation masks, while being capable of segmenting all object instances irrespective
of whether they have been detected or not and are from a known or unknown
class.

Unsupervised segmentation: In contrast to learning based segmentation,
unsupervised segmentation methods [6, 15, 26] are able to discover unknown ob-
jects without the strong supervisory training signal mentioned above. These
methods, however, often make strong assumptions about visual objects (e.g.,
they tend to have similar color, texture and share strong edges) and consequently
rely on low-level image cues such as color, depth, texture and edges for segmen-
tation. As a result, their results tend to be relatively inaccurate. In contrast, our
segmentation approach combines the best of both worlds using a unified formu-
lation. In particular, our method exploits the prior object locations (for example
given by an object detector) to improve the overall image segmentation. At the
same time, our method does not require expensive segmentation masks of all
object instances for training.

3 Open-set Semantic Instance Segmentation

Let I : Ω → R be an input image defined on a discrete pixel gridΩ = {v1, v2, . . . },
i.e., Iv is the color or intensity at pixel v. The goal of semantic instance segmen-
tation is to decompose the image IΩ into individual object instance regions (e.g.,
chair, monitor) and stuff regions (e.g., floor, ceiling) along with their semantic
labels. In particular, one seeks a partition of the image into k non-overlap regions

∪k
i=1

Ri = Ω, Ri ∩Rj = ∅, ∀i ̸= j, (1)

and the assignment of each region R ∈ Ω to a semantic label lR. Unlike the
semantic segmentation task, here a region should not contain more than one
object instance of the same class. A region, however, may not be contiguous
since occlusions can break regions into disconnected segments.

Recently, the supervised detect-and-segment approach has become increas-
ingly popular due to its simplicity. First, a deep-learning based object detector
is applied to the input image to generate m detections in terms of bounding
boxes D. Then, a semantic segmentation network is applied to each bounding
box to generate a segmentation mask for each instance, resulting in m regions
{R1, R2, . . . , Rm}. However, it is clear that the condition in (1) is not necessarily
satisfied because

∪m
i=1

Ri ⊆ Ω, Ri ∩Rj = ∅, ¬∀i ̸= j. (2)
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This means that not all pixels in the image are segmented and two segmentation
masks can overlap. While the second problem can be resolved using a pixel voting
mechanism, the first problem is more challenging to be addressed. In open-set

world, an image might capture objects that are unknown to the detector, so
pixels belonging to these unknown object instances will not be labelled by this
detect-and-segment approach. Miss-detected objects are not segmented either.

Ideally, one needs a model that is able to segment all individual objects (and
“stuff”) in an image regardless of whether they have been detected or not. In other
words, all known and unknown object instances should be segmented. However,
unknown and miss-detected objects will be assigned an “unknown” label.

Toward that goal, in this work, we propose a segmentation model that per-
forms image segmentation globally (i.e., guaranteeing the condition ∪k

i=1
Ri = Ω)

so that each Ri is a coherent region. The segmentation process also optimally
assigns labels to these regions using the detection set D. In the next section, we
discuss our Bayesian formulation to achieve this goal.

4 Bayesian Formulation

Similar to the unsupervised Bayesian image segmentation formulation in [27],
our image segmentation solution S has the following structure:

S = ((R1, t1, θ1), (R2, t2, θ2), . . . , (Rk, tk, θk)), (3)

where each region Ri is “explained” by a model type ti with parameters θi. More
precise definitions of ti and θi will be given below. The number of regions k is also
unknown. In a Bayesian framework, the quality of a segmentation S is measured
as the density of a posterior distribution:

p(S|I) ∝ p(I|S)p(S) S ∈ S, (4)

where p(I|S) is the likelihood and p(S) is the prior, and S is the solution space.
In the following, we will discuss the likelihood and prior terms used in our work.

4.1 The Likelihood Models

We assume that object regions in the image are mutually independent, forming
the following likelihood term:

p(I|S) =
k
∏

i=1

p(IRi
|ti, θi). (5)

The challenge is to define a set of robust image models that explain complex
visual patterns of object classes. The standard machine learning approach is to
learn an image model for each object category using training images that have
been manually annotated (i.e., segmented). Unfortunately, in open-set problems,
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as the number of object categories increases boundlessly, manually annotating
training data for all possible object classes becomes infeasible.

In this work, we consider three types of image models to explain image re-
gions: boundary/contour model (C), bounding box model (B), and mask model
(M) i.e., t ∈ {C,B,M}. We use the boundary to describe unknown regions. More
complicated models such as Gaussian mixture could also be used, but they have
higher computational cost. The bounding box and mask models are used for
known objects.

Boundary/contour model (C). Objects in the image are often isolated by
their contours. Assume that we have a method (e.g., COB [12]) that is able to
estimate a contour probability map from the image. Given a region R, we can de-
fine its external boundary score cex(R) as the lowest probability on the boundary,
whereas its internal boundary score cin(R) is highest probability among internal
pixels. The likelihood of the region R being an object is defined as:

p(IR|cex(R), cin(R)) ∝

[

exp

(

−
|cex(R)− 1|2

σ2
ex

)

× exp

(

−
|cin(R)− 0|2

σ2

in

)]|R|

(6)

where σex and σin are standard deviation parameters. According to (6), a region
with strong external boundary (≈ 1) and weak internal boundary (≈ 0) is more
likely to represent an object. We used σin = 0.4 and σex = 0.6.

Bounding box model (B). Given an object detection d represented by
a bounding box b = [cx, cy, w, h], object class c, and detection score s, the
likelihood of a region R being from the object d is:

p(IR|b) ∝ IoU(bR,b)× s×
∏

v∈R

exp

(

−
|vx − cx|

2

σ2
w

)

exp

(

−
|vy − cy|

2

σ2

h

)

(7)

where bR is the minimum bounding box covering the region R, IoU(.) computes
the intersection-over-union between two bounding boxes, [vx, vy] is the location
of pixel v in the image space. σw and σh, standard deviations from the center of
the bounding box, are functions of bounding box width w and height h respec-
tively. To avoid bigger bounding boxes with higher detection scores taking all the
pixels, we encourage smaller bounding boxes by setting σw = wα and σh = hα,
where α is a constant smaller than 1. In our experiments, we set α = 0.8.

Mask model (M). Similarly, given an object detection d represented by a
segmentation mask m, object class c, and detection score s, the likelihood of a
region R being from the object d is:

p(IR|m) ∝ [IoU(R,m)× s]
|R|

, (8)

where IoU() computes the intersection-over-union between two regions. Note
that the mask model is optional in our framework.
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4.2 The Prior Model

Our prior segmentation model is defined as:

p(S) ∝ exp(−γk)×
k
∏

i=1

exp
(

−|Ri|
0.9

)

× exp (−ρ(Ri)) , (9)

where k is the number of regions, and γ is a constant parameter. In (9), the
first term exp(−γk) penalizes the number of regions k, and the second term
exp(−|Ri|

0.9) encourages large regions. The function ρ(Ri), calculating the ratio
of the total number of pixels in the region R and the area of its convex hull,
encourages compact regions. In our experiments, we set γ = 100.

5 MAP Inference using Simulated Annealing

Having defined the model for the semantic instance segmentation problem, the
next challenge is to quickly find an optimal segmentation S∗ that maximizes the
posterior probability over the solution space S

S∗ = argmax
S∈S

p(S|I), (10)

or analogously minimizing the energy E(S, I) = − log(p(S|I)). The segmentation
S defined in (3) can be decomposed as S = (k, πk, (t1, θ1), (t2, θ2), . . . , (tk, θk)),
where πk = (R1, R2, . . . , Rk) is a partition of the image domain Ω into exactly
k non-overlap regions. Given a partition πk, it is easy to compute the optimal ti
and θi for each region Ri ∈ πk by comparing the likelihoods of Ri given different
image models. However, the more difficult part is the estimation of the partition
πk. Given an image domain Ω, we can partition it into a minimum of 1 region
and maximum of |Ω| regions. Let ωπk

be the set of all possible partitions πk of
the image into k regions, then the full partition space is:

P = ∪
|Ω|
k=1

ωπk
. (11)

It is clearly infeasible to examine all possible partitions πk with different values
of k. We mitigate this problem by resorting to the Simulated Annealing (SA)
optimization approach [28] to approximate the global optimum of the energy
function E(S, I).

5.1 Simulated Annealing

Algorithm 1 details our simulated annealing approach to minimizing the energy
function E(S, I) = − log(p(S|I)). Our algorithm performs a series of “moves” be-
tween image partitions (πk → πk′) of different k to explore the complex partition
space P, defined in (11). The model parameters (ti, θi) for each region Ri are
computed deterministically at each step. A proposed segmentation is accepted
probabilistically in order to avoid local minima.
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Algorithm 1 Simulated Annealing for Open-set Bayesian Instance Segmentation

Input: A set of detections (bounding boxes or masks), initial segmentation S, E(S, I),
and temperature T .

Output: Optimal segmentation S∗.
1: S∗ = S.
2: Sample a neighbor partition πk′ near the last partition πk.
3: Update parameters (ti, θi) i = 1, 2, . . . , k′.
4: Create a new solution S = (k′, πk′ , (t1, θ1), . . . , (tk′ , θk′)).
5: Compute E(S, I)

6: With probability exp
(

E(S∗,I)−E(S,I)
T

)

, S∗ = S.

7: T = 0.99T and repeat from Step 2 until the stopping criteria is true.

A crucial component of Algorithm 1 is the sampling of new partition πk′ near
by the current partition πk (Line 2). The sooner good partitions are sampled,
the faster Algorithm 1 reaches the optimal S∗. In Section 5.2, we propose an
efficient partition sampling method based on a region hierarchy.

5.2 Efficient Partition Sampling

The key component of our Simulated Annealing based instance segmentation
approach is an efficient image partition generator based on a boundary-driven
region hierarchy.

Boundary-driven region hierarchy A region hierarchy is a multi-scale rep-
resentation of an image, where regions are groups of pixels with similar char-
acteristics (i.e., colors, textures). Similar regions at lower levels are iteratively
merged into bigger regions at higher levels. A region hierarchy can be efficiently
represented using a single Ultrametric Contour Map (UCM) [1]. A common way
to construct an image region hierarchy is based on image boundaries, which can
be either estimated using local features such as colors, or predicted using deep
convolutional networks (e.g., [12]). In this work, we use the COB network pro-
posed in [12] for the object boundary estimation due to its superior performance
compared to other methods.

Let R denote the region hierarchy (tree). One important property of R is
that one can generate valid image partitions by either selecting various levels of
the tree or performing tree cuts [14]. Conditioned on R, the optimal tree cut can
be found exactly using Dynamic Programming, as done in [14]. Unfortunately,
regions of the hierarchy R might not represent accurately all complete objects
in the image due to imperfect boundary estimation. Also, occlusion might cause
objects to split into different regions of the tree. As a result, the best partition
obtained by the optimal tree cut may be far away from the optimal partition
π∗
k. Below, we show how to sample higher-quality image partitions based on the

initial region hierarchy R.
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Fig. 2: Intermediate segmentation results when the Algorithm 1 progresses. Left is
the initialized segmentation. Right is the final result when the algorithm converges. In
each image, bounding boxes represent detected objects returned by the trained detector.
Notice black bounding boxes are currently rejected by the algorithm

Image partition proposal Let πk = (R1, R2, . . . , Rk) ⊂ R be the current
image partition, a new partition can be proposed by first randomly sampling a
region R ∈ R \ πk, then “paste” it onto the current partition πk. Let AR ⊂ πk

be a subset of regions that overlap with R, where |AR| denotes the number of
regions in AR. The following scenarios can happen:

– R = ∪AR. Regions in AR will be merged into a single region R.
– |AR| = 1, R ⊂ AR. AR will be split into two subregions: R and AR \R.
– |AR| > 1, R ⊂ ∪AR. Each region inAR will be split by R into two subregions,

one of which will be merged into R. This is a split-and-merge process.

It can be seen that the above “sample-and-paste” operation naturally realizes
the split, merge, and split-and-merge processes probabilistically, allowing the
exploration of partition spaces of difference cardinalities. Note that the last two
moves may generate new region candidates that are not in the original region
hierarchy R. These regions are added into R in the next iteration. Figure 2
demonstrates the progressive improvement of the segmentation during Simulated
Annealing optimisation.

Occlusion handling The above “sample-and-paste” process is unlikely to be
able to merge regions that are spatially separated. Because of occlusion, spatially
isolated regions might be from the same object instance. Given a current parti-
tion πk and a detection represented by either a bounding box b or a mask m,
we create more region candidates by sampling pairs of regions in πk that overlap
with b or m. These regions are added into R in the next iteration.

6 Experimental Evaluation

In all below experiments, we run the Algorithm 1 for 3000 iterations. For each
image, we run the COB network [12] and compute a region hierarchy of 20 levels,
in which level 10 will be used as the initialized segmentation.

6.1 Baselines

Since we are not aware of any previous work solving the same problem as ours, we
develop a simple baseline for comparisons. Noting that the input to our method
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Fig. 3: Baseline (top row) vs our method (second row) with bounding box supervision.
Testing images are from the NYU dataset. Bounding boxes represent detected objects.
Note that not all detected object instances are used in the final segmentation. Black
bounding boxes are detections rejected by the methods

is an image, and possibly a set of object detections or masks returned either by an
object detection (e.g., Faster-RCNN) or an instance segmentation method (e.g.,
Mask-RCNN) trained on known classes. In some cases, no known objects are
detected in the image. For the baseline method, we first apply an unsupervised
segmentation method to decompose the image into a set of non-overlap regions.
If a set of detections (bounding boxes) is given, we classify each segmented region
into these detected objects using intersection-over-union scores. If the maximum
score is smaller than 0.25, we assign that region to an unknown class. When a
set of object masks is given, we overwrite these masks onto the segmentation.
Masks are sorted (in ascending order) using detection scores to ensure that high
confidence masks will be on top.

We develop the unsupervised segmentation by thresholding the UCMs, com-
puted from the boundary maps estimated by the COB network [12]. We use
different thresholds for the baseline method, including the best threshold com-
puted using ground-truth data. As reported in [12,14], this segmentation method
greatly outperforms other existing unsupervised image segmentation methods,
making it a strong baseline for comparison.

6.2 Open-set Datasets

For evaluation, we create a testing environment which includes both known and
unknown object classes. In computer vision, the COCO dataset has been widely
used for training and testing the object detection and instance segmentation
methods. This dataset has annotations (bounding boxes and masks) of 80 object
classes. We select these 80 classes as known classes. Moreover, the popular NYU
dataset has annotations of 894 classes, in which 781 are objects and 113 are stuffs.
We observe (manually check) that 60 classes from the COCO dataset actually
appear in the NYU dataset. Consequentially, we select the NYU dataset as the
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Fig. 4: Baseline (top row) vs our method (second row) with mask supervision. Testing
images are from the NYU dataset. Bounding boxes represents detected objects

testing set with 60 known and 721 unknown for benchmarking our method and
baseline method.

6.3 Ablation Studies

We compare our method against the baseline in three different settings: 1) No
supervision, 2) Bounding box supervision and 3) Mask supervision. In the first
case, we assume that there is no training data available for training the object
detection or instance segmentation networks. In the second case, we assume that
known object classes are annotated with only bounding boxes so that one can
train an object detector (i.e., Faster-RCNN). It is worth mentioning that while
our method can be guided by a given set of bounding boxes (if available), the
baseline method does not use the given bounding boxes for segmentation at
all because the object segmentation and object labeling are carried sequentially.
Finally, in the last setting, if known object instances are carefully annotated
with binary masks, one can train an instance segmentation network (i.e., Mask-
RCNN), which is then applied onto testing images to return a set of segmentation
masks together with their categories. The predicted segmentation masks are
taken as input to the baseline and our method. In all our experiments, we use
Detectron1, which implements Mask-RCNN method, to generate bounding boxes
and segmentation masks. We select the model trained on the COCO dataset.

Evaluation For each image, we first run the Hungarian matching algorithm
to associate ground truth regions to predicted regions based on IoU scores. We
then compute, given an IoU threshold, precision and recall rates, which will be
summarised via F-1 scores. Note that we evaluate known and unknown object
classes separately. Table 1 reports comparison results tested on NYU images
using F-1 scores at different IoU thresholds. Firstly, it is clear that our method

1 https://github.com/facebookresearch/Detectron
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Table 1: Quantitative comparison results on 654 NYU RGB-D testing images between
our method and the baseline method with different supervision information. The base-
line method is tested with different thresholds. We report F-1 scores for known and
unknown classes at 0.5 and 0.75 IoU thresholds respectively

Method Supervision Known Unknown

F50
1 F75

1 F50
1 F75

1

Baseline (0.3) None/BBoxes 40.1 21.1 47.8 26.3
Baseline (0.3) Masks 10.6 5.1 19.5 10.9
Baseline (0.4) None/BBoxes 47.4 26.1 45.2 26.7
Baseline (0.4) Masks 7.3 3.8 13.25 7.9
Our method None 45.6 22.6 55.7 32.2
Our method BBoxes 48.6 23.1 54.2 30.4
Our method Masks 51.1 25.9 53.8 30.3

Table 2: Comparison results on 80 known classes tested on 5k COCO validation images.
mIoUw is weighted by the object sizes

Method Supervision mAP mIoUw mIoU

Baseline Weakly (Boxes) 10.1 26.6 25.2
Our method Weakly (Boxes) 20.0 33.6 32.3
Mask-RCNN Fully (Boxes and Masks) 30.5 38.7 37.3

performs much better than the baseline when both methods are not guided by
detections, even when the baseline is provided the best threshold (0.4) computed
using ground truth. Moreover, when guided by bounding boxes and masks, our
accuracies on known object classes increase significantly as expected. In con-
trast, the baseline method’s accuracies decrease greatly when masks are used
because the given masks are greedily overwritten onto the unsupervised segmen-
tation results. These results confirm the efficacies of our global Bayesian image
segmentation approach compared to the greedy baseline method.

Figures 3 and 4 demonstrate the qualitative comparison results between our
method and the baseline. It can be seen that the baseline method fails to segment
objects correctly (either under-segmentation or over-segmentation). In contrast,
our method, guided by the given bounding boxes, performs much better. More
importantly, the baseline method does not take the given bounding boxes into
segmentation, it can not suppress multiple duplicated detections (with different
classes) at the same location, unlike our method.

6.4 Weakly Supervision Segmentation of Known Objects

Existing instance segmentation methods (e.g., Mask-RCNN) require ground-
truth instance masks for training. However, annotating segmentation masks for
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all object instances is very expensive. Nonetheless, our semantic instance segmen-
tation method does not require mask annotations for training. Here, we compare
our weakly supervision instance segmentation of known objects against the fully
supervised Mask RCNN method. Recently, Hu et al. [8] have proposed a learning
transfer method, named MaskXRCNN, for instance segmentation when only a
subset of known object classes has mask annotations. We are, however, unable
to compare with MaskXRCNN as neither its pre-trained model nor predicted
segmentation masks are publicly available.

Evaluation While our method outputs one instance label per pixel, Mask
RCNN returns a set of overlap segmentation masks per image. Therefore, the
two methods can be not practically compared. To be fair, we post-process the
Mask RCNN’s results to ensure that one pixel is assigned to only one instance
(via pixel voting based on detection scores). We measure the segmentation ac-
curacies using Mean Intersection over Union (mIoU) metric. We first run the
Hungarian matching algorithm to match predicted regions to ground-truth re-
gions. The “matched” IoU scores are then averaged over all object instances and
semantic categories. We also report Mean Average Precision (mAP) scores as
Mask RCNN does. However, we note that mAP metric is only suitable for prob-
lems where an output is a set of ranked items. In contrast, our method returns,
for each image, a single pixelwise segmentation where each pixel is assigned to
a single object instance without any ranking.

Table 2 reports the comparison results. It can be seen that our method,
though only requiring bounding box supervision, is competitive with respect
to Mask RCNN, which requires ground-truth segmentation masks of all known
object instances for training. This again indicates the efficacy of our method
for the open-set instance segmentation problem where it is expensive, if not
impossible, to annotate segmentation masks for all object instances. Figure 5
demonstrates example semantic instance segmentation results from our method
using images from COCO dataset. Notice that our method is not only able to
segment known objects but also unknown objects and stuffs such as grass, sky
with high accuracies.

7 Discussion and Conclusion

We have presented a global instance segmentation approach that has a capability
to segment all object instances and stuffs in the scene regardless of whether these
objects are known or unknown. Such a capability is useful for autonomous robots
working in open-set conditions [23], where the robots will unavoidably encounter
novel objects that were not part of the training dataset.

Different from state-of-the-art supervised instance segmentation methods [4,
7,19,29], our approach does not perform segmentation on each detection indepen-
dently, but instead segments the input image globally. The outcome is a set of
coherent regions which are perceptually grouped and are each associated either
to a known detection or unknown object instance. We formulate the instance
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Fig. 5: Example instance segmentation results of our method on COCO dataset.
Bounding boxes represents detected objects. In these examples, our method only uses
bounding box supervision. Notice that our method segments not only detected objects,
but also other miss-detected and unknown objects

segmentation problem in a Bayesian framework, and approximate the optimal
segmentation using using a Simulated Annealing approach.

We envision that open-set instance segmentation will soon become a hot
research topic in the field. We thus believe the proposed method and the exper-
imental setup proposed will serve as a strong baseline for future methods to be
proposed in the field (e.g., end-to-end learning mechanisms).

Moreover, existing supervised learning methods which require a huge amount
of precise mask annotations for all object instances for training, which is very
expensive to extend to new object categories. Our approach offers an alternative,
which is based on a more natural incremental annotation strategy to deal with
new classes. This strategy consists of explicitly identifying unknown objects from
images and training new object models using the labels provided by an “oracle”
(such as a human).
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