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Abstract. Compositional models represent patterns with hierarchies of
meaningful parts and subparts. Their ability to characterize high-order
relationships among body parts helps resolve low-level ambiguities in hu-
man pose estimation (HPE). However, prior compositional models make
unrealistic assumptions on subpart-part relationships, making them in-
capable to characterize complex compositional patterns. Moreover, state
spaces of their higher-level parts can be exponentially large, complicat-
ing both inference and learning. To address these issues, this paper in-
troduces a novel framework, termed as Deeply Learned Compositional
Model (DLCM), for HPE. It exploits deep neural networks to learn the
compositionality of human bodies. This results in a novel network with
a hierarchical compositional architecture and bottom-up/top-down in-
ference stages. In addition, we propose a novel bone-based part repre-
sentation. It not only compactly encodes orientations, scales and shapes
of parts, but also avoids their potentially large state spaces. With sig-
nificantly lower complexities, our approach outperforms state-of-the-art
methods on three benchmark datasets.

1 Introduction

Human pose estimation (HPE) means to locate body parts from input images.
It serves as a fundamental tool for several practical applications such as action
recognition, human-computer interaction and video surveillance [1]. The most
recent HPE systems have adopted convolutional neural networks (CNNs) [2–4]
as their backbones and yielded drastic improvements on standard benchmarks
[5–9]. However, they are still prone to fail when there exist ambiguities caused
by overlapping parts, nearby persons and clutter backgrounds, e.g., Fig. 1.

One promising way to tackle these difficulties is to exploit the composition-
ality [10, 11] of human bodies. It means to represent a whole body as a hierarchy
of parts and subparts, which satisfy some articulation constraints. This kind
of hierarchical structure enables us to capture high-order relationships among
parts and characterize an exponential number of plausible poses [12]. Based on
this principle, compositional models1 [13, 14] infer poses via two stages, as il-
lustrated in Fig. 2(a). In the bottom-up stage, states of higher-level parts are

1 We focus on multilevel compositional models in this paper.
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Fig. 1. Pairs of pose predictions obtained by an eight-stack hourglass network [5] (left)
and our approach (right). Some wrong part localizations are highlighted by green el-
lipses. By exploiting compositionality of human bodies, our approach is able to reduce
low-level ambiguities in pose estimations. See Fig. 8 for more examples

Fig. 2. (a) A typical compositional model of a human body. The pose is estimated
via two stages: bottom-up inference followed by top-down refinement. (b) Each tensor
represents score maps of several parts. An SLIS function aggregates information from
input score maps on a spatially local support to predict output score maps. (c) Overview
of our deeply learned compositional model. The orange and green arrows respectively
denote SLIS functions modeled by CNNs in bottom-up and top-down stages. The
colored rectangles on the left side denote predicted score maps of parts at different
semantic levels while the heat maps on the right side represent their corresponding
ground truth in the training phase

recursively predicted from states of their child parts. In the top-down stage,
states of lower-level parts are refined by their parents’ states updated one step
earlier. Such global adjustments enable pose estimations to optimally meet the
relational constraints and thus reduce low-level image ambiguities. In the last
decade, compositional models have been adopted in several HPE systems [12,
15–19] and shown superior performances over their flat counterparts.

However, there are problems with existing compositional models designed for
HPE [12, 15–19]. First, they often assume a Gaussian distribution on the subpart-
part displacement with the subpart’s anchor position being its mean. While
simplifying both their inference and learning [20], this assumption generally does
not hold in real scenarios, e.g., distributions of joints visualized in [21–23]. Thus,
we argue it is incapable to characterize the complex compositional relationships
among body parts. Second, a set of discrete type variables are often used to
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model the compatibility among parts. They not only include the orientation and
scale of a part but also span semantic classes (a straight versus bended arm).
As the distinct types of a part can be as many as the different combinations of
all its children’s types, state spaces for higher-level parts can be exponentially
large. This makes both computation and storage demanding. Third, when the
compositional structure has loops, approximate inference algorithms must be
used. As a result, both the learning and testing will be adversely affected.

To address these issues, this paper introduces a novel framework, termed as
Deeply Learned Compositional Model (DLCM), for HPE. We first show each
bottom-up/top-down inference step of general compositional models is indeed
an instantiation of a generalized process we call spatially local information sum-

marization (SLIS). As shown in Fig. 2(b), it aggregates information from input
score maps2 on a spatially local support to predict output score maps. In this
paper, we exploit CNNs to model this process due to their capability to approx-
imate inference functions via spatially local connections. As a result, DLCMs
can learn more sophisticated and realistic compositional patterns within human
bodies. To avoid potentially large state spaces, we propose to use state variables
to only denote locations and embed the type information into score maps. Spe-
cially, we use bone segments to represent a part and supervise its score map in
the training phase. This novel representation not only compactly encodes the
orientation, scale and shape of a part, but also reduces both computation and
space complexities. Fig. 2(c) provides an overview of a DLCM. We evaluate the
proposed approach on three HPE benchmarks. With significantly less parameters
and lower computational complexities, it outperforms state-of-the-art methods.

In summary, the novelty of this paper is as follows:

– To the best of our knowledge, this is the first attempt to explicitly learn the
hierarchical compositionality of visual patterns via deep neural networks.
As a result, DLCMs are capable to characterize the complex and realistic
compositional relationships among body parts.

– We propose a novel part representation. It encodes the orientation, scale and
shape of each part compactly and avoids their potentially large state spaces.

– Compared with prior deep neural networks, e.g., CNNs, designed for HPE,
our model has a hierarchical compositional structure and bottom-up/top-
down inference stages across multiple semantic levels. We show in the ex-
periments that the compositional nature of DLCMs helps them resolve the
ambiguities that appear in bottom-up pose predictions.

2 Related Work

Compositional models. Compositionality has been studied in several lines
of vision research [13, 24, 14, 25] and exploited in tasks like HPE [12, 15–19, 26],

2 Each entry of a score map evaluates the goodness of a part being at a certain state,
e.g., location and type.
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semantic segmentation [27] and object detection [28]. However, prior composi-
tional models adopt simple and unrealistic relational modeling, e.g., pairwise
potentials based on Gaussian distributions. They are incapable to model com-
plex compositional patterns. Our approach attempts to address this difficulty
by learning the compositional relationships among body parts via the powerful
CNNs. In addition, we exploit a novel part representation to compactly encode
the scale, orientation and shape of each part and avoid their potentially large
state spaces.

CNN-based HPE. All state-of-the-art HPE systems take CNNs as their
main building block [5–7, 9, 29]. Newell et. al. [5] introduce a novel hourglass
module to process and consolidate features across all scales to best capture the
various spatial relationships associated with the body. Yang et. al. [7] combine
CNNs and the expressive deformable mixture of parts [30] to enforce the spatial
and appearance consistency among body parts. Hu and Ramanan [29] unroll the
inference process of hierarchical rectified Gaussians as bidirectional architectures
that also reason with top-down feedback. Instead of predicting body joint posi-
tions directly, Sun et. al. [31] regress the coordinate shifts between joint pairs
to encode their interactions. It is worth noting that none of these methods de-
composes entities as hierarchies of meaningful and reusable parts or infers across
different semantic levels. Our approach differs from them in that: (1) It has a
hierarchical compositional network architecture; (2) CNNs are used to learn the
compositional relationships among body parts; (3) Its inference consists of both
bottom-up and top-down stages across multiple semantic levels; (4) It exploits
a novel part representation to supervise the training of CNNs.

Bone-based part representations. Some prior works [32, 33] use heat
maps of limbs between each pair of adjacent joints as supervisions of deep neu-
ral networks. Their motivation is that modeling pairs of joints helps capture
additional body constraints and correlations. Different with them, our bone-
based part representation has (1) a hierarchical compositional structure and (2)
multiple semantic levels. It is designed to (1) tightly encode the scale, orientation
and shape of a part, (2) avoid exponentially large state spaces for higher-level
parts and (3) guide CNNs to learn the compositionality of human bodies.

3 Our Approach

We first make a brief introduction to general compositional models (Sec. 3.1).
Their inference steps are generalized as SLIS functions and modeled with CNNs
(Sec. 3.2). We then describe our novel bone-based part representation (Sec. 3.3).
Finally, the deeply learned compositional models are detailed in Sec. 3.4.

3.1 Compositional models

A compositional model is defined on a hierarchical graph, as shown in Fig.
3. It is characterized by a 4-tuple (V, E , φand, φleaf ), which specifies its graph
structure (V, E) and potential functions (φand, φleaf ). We consider two types of
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Fig. 3. Example compositional models (a) without and (b) with part sharing and
higher-order cliques

nodes3: V = Vand ∪ V leaf . And-nodes Vand model the composition of subparts
into higher-level parts. Leaf nodes V leaf model primitives, i.e., the lowest-level
parts. We call And-nodes at the highest level as root nodes. E denotes graph
edges. In this section, we first illustrate our idea using the basic compositional
model shown in Fig. 3(a), which does not share parts and considers only pairwise
relationships, and then extend it to the general one, as shown in Fig. 3(b).

A state variable wu is associated to each node/part u ∈ V. For HPE, it can
be the position pu and type tu of this part: wu = {pu, tu}. As a motivating
example, Yang and Ramanan [30] use types to represent orientations, scales and
semantic classes (a straight versus bended arm) of parts.

Let Ω denote the set of all state variables in the model. The probability
distribution over Ω is of the following Gibbs form:

p(Ω|I) =
1

Z
exp{−E(Ω, I)} (1)

where I is the input image, E(Ω, I) is the energy and Z is the partition function.
For convenience, we use a score function S(Ω), defined as the negative energy, to
specify the model and omit I. Without part sharing and higher-order potentials,
it can be written as:

S(Ω) ≡ −E(Ω, I) =
∑

u∈Vleaf

φleaf
u (wu, I) +

∑

u∈Vand

∑

v∈ch(u)

φand
u,v (wu, wv) (2)

where ch(u) denotes the set of children of node u. The two terms are potential
functions corresponding to Leaf and And nodes, respectively. The first term acts
like a detector: it determines how likely the primitive modeled by Leaf-node
u is present at location pu and of type tu. The second term models the state
compatibility between a subpart v and its parent u.

Thanks to the tree structure, the optimal states Ω∗ for an input image I
can be computed efficiently via dynamic programming. We call this process the
compositional inference. It is consisted of two stages. In the bottom-up stage,

3 We do not need Or-nodes [13, 14] here as part variations have been explicitly modeled
by the state variables of And-nodes.
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Fig. 4. Illustration of input-output relationships between child and parent score maps
in the compositional inference. In this example, node u has two children v1 and v2.
(a) In the bottom-up stage, the score map of a higher-level part is a function of its
children’s score maps. (b) In the top-down stage, the score map of a lower-level part is
refined by its parent’s score map updated one step earlier

the maximum score, i.e., maxΩ S(Ω), can be calculated recursively as:

(Leaf) S↑
u(wu) = φleaf

u (wu, I) (3)

(And) S↑
u(wu) =

∑

v∈ch(u)

max
wv

[φand
u,v (wu, wv) + S↑

v (wv)] (4)

where S↑
u(wu) is the maximum score of the subgraph formed by node u and all

its descendants, with root node u taking state wu, and is computed recursively
by Eq. (4), with boundary conditions provided by Eq. (3). The recursion begins
from the Leaf-level and goes up until root nodes are reached. As a function,
S↑
u(wu) assigns each possible state of part u a score. It can also be considered as

a tensor/map, each entry of which is indexed by the part’s state and valued by
the corresponding score. Thus, we also call S↑

u(wu) the score map of part u.

In the top-down stage, we recursively invert Eq. (4) to obtain the optimal
states of child nodes that yield the maximum score:

(Root) w∗
u = argmaxwu

S↓
u(wu) ≡ argmaxwu

S↑
u(wu) (5)

(Non-root) w∗
v = argmaxwv

S↓
v (wv) ≡ argmaxwv

[φand
u,v (w

∗
u, wv) + S↑

v (wv)] (6)

where node u in Eq. (6) is the unique parent of node v, i.e., {u} = pa(v),
S↑
u(wu) and S↑

v (wv) are acquired from the bottom-up stage, S↓
u(wu) and S↓

v (wv)
are respectively refined score maps of nodes u and v. Specially, w∗

u and w∗
v are

respectively optimal states of parts u and v, and are computed recursively by
Eq. (6), with boundary conditions provided by Eq. (5). The recursion begins
from root nodes and goes down until the Leaf-level is reached.

3.2 Spatially local information summarization

From Eq. (6), S↓
v (wv) for non-root nodes is defined as:

S↓
v (wv) = φand

u,v (w
∗
u, wv) + S↑

v (wv) (7)
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Fig. 5. (a) Illustration of the SLIS function in the compositional inference. Each cube
denotes a score map corresponding to a part or subpart. Each entry in the output/right
score map is obtained by aggregating information from the input/left score maps on
a local spatial support. (b) Illustration of bone-based part representations. First row:
the right lower arm, right upper arm, right arm and left arm of a person. Second row:
right or left legs of different persons

where {u} = pa(v), w∗
u = argmaxwu

S↓
u(wu). We can write the bottom-up (BU)

and top-down (TD) recursive equations, i.e., Eq. (4) and Eq. (7), together as

(BU) S↑
u(wu) =

∑

v∈ch(u)

max
wv

[φand
u,v (wu, wv) + S↑

v (wv)] (8)

(TD) S↓
v (wv) =

∑

wu

φand
u,v (wu, wv)S̄

↓
u(wu) + S↑

v (wv) (9)

where S̄↓
u(wu) is the hard-thresholded version of S↓

u(wu): S̄
↓
u(wu) equals to 1 if

wu = w∗
u and 0 otherwise. As illustrated in Fig. 4, these two equations intuitively

demonstrate how score maps are propagated upwards and downwards in the
inference process, which finally gives us the globally optimal states, i.e., Ω∗, of
the compositional model.

In both equations, there exist summation and/or maximization operations
over state variables, e.g.,

∑

v∈ch(u) maxwv
and

∑

wu
, as well as between score

maps. They can be considered as average and maximum poolings. In the liter-
ature of statistical learning [34], pooling means to combine features in a way
that preserves task-related information while removing irrelevant details, leads
to more compact representations, and better robustness to noise and clutter.
In the compositional inference, score maps of some parts are combined to get
relevant information about the states of other related parts. This analogy leads
us to think of Eqs. (8) and (9) as different kinds of information summarization.

Since child and parent parts should not be far apart in practice, it is unneces-
sary to search them within the whole image [35, 36, 14]. Thus, it is reasonable to
constrain their relative displacements to be within a small range: pv − pu ∈ Duv,
e.g., Duv = [−50, 50] × [−50, 50]. For compositional models, this constraint can
be enforced by setting φand

u,v (wu, wv) = 0 if pv−pu /∈ Duv. Consequently, for each
entry of the score maps on the LHS of Eqs. (8) and (9), only information within
a local spatial region is summarized on the RHS, as the mapping shown in Fig.
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5(a). Note this mapping is also location-invariant because the spatial compati-
bility between parts u and v with types tu and tv only depends on their relative
locations and is unrelated to their global coordinates in the image space.

Our analysis indicates both recursive equations can be considered as different
instantiations of a more generalized process, which aggregates information on a
local spatial support and is location-invariant. We call this process spatially local

information summarization (SLIS) and illustrate it in Fig. 5(a). In the bottom-
up stage, the score map of a higher-level part S↑

u(wu) is an SLIS function of their
children’s score maps {S↑

v (wv)}v∈ch(u). In the top-down stage, the score map of

a lower-level part S↓
v (wv) is an SLIS function of its parent’s score map S↓

u(wu)
as well as its own score map estimated in the bottom-up stage S↑

v (wv).
Model SLIS functions with CNNs. In this paper, we exploit CNNs to

model our SLIS functions for two reasons. First, CNNs aggregate information on
a local spatial support using location-invariant parameters. Second, CNNs are
known for their capability to approximate inference functions. By learning them
from data, we expect the SLIS functions are capable to infer the sophisticated
compositional relationships within real human bodies. Specifically, we replace
Eqs. (8) and (9) with:

(BU) S↑
u(wu) = c↑u

(

{S↑
v (wv)}v∈ch(u);Θ

↑
u

)

(10)

(TD) S↓
v (wv) = c↓v

(

S↓
u(wu), S

↑
v (wv);Θ

↓
v

)

(11)

where c↑u and c↓v are CNN mappings with Θ↑
u and Θ↓

v being their respective
collections of convolutional kernels. Since the bottom-up and top-down SLIS
functions are different, their corresponding kernels should also be different.

Part sharing and higher-order potentials. We now consider a more gen-
eral compositional model, as shown in Fig. 3(b). With part sharing and higher-
order potentials, the score function is

S(Ω) =
∑

u∈Vleaf

φleaf
u (wu, I) +

∑

u∈Vand

φand
u (wu, {wv}v∈ch(u)) (12)

where φand
u (wu, {wv}v∈ch(u)) denotes the higher-order potential function mea-

suring the state compatibility among part u and its child parts {v : v ∈ ch(u)}.
Due to the existence of loops and child sharing, states of all parts at one

level should be estimated/refined jointly from all parts at a lower/higher level.
By exploiting the update rules of dynamic programming [25], similar derivations
(available in the supplementary material) indicate that we can approximate the
SLIS functions as follows:

(BU) {S↑
u(wu)}u∈VL = c↑L

(

{S↑
v (wv)}v∈VL−1 ;Θ↑

L

)

(13)

(TD) {S↓
v (wv)}v∈VL−1 = c↓L−1

(

{S↓
u(wu)}u∈VL , {S↑

v (wv)}v∈VL−1 ;Θ↓
L−1

)

(14)

where L indexes the semantic level, VL denotes the set of nodes at the Lth level,
Θ↑

L and Θ↓
L−1 are convolutional kernels. In the bottom-up stage, score maps at

a higher level are jointly estimated from all score maps at one level lower. In the
top-down stage, score maps at a lower level are jointly refined by all score maps
at one level higher as well as their initial estimations in the bottom-up stage.
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Fig. 6. (a) The compositional structure of a human body used in our experiments. It
has three semantic levels, which include 16, 12 and 6 parts, respectively. Assume all the
children sharing a common parent are linked to each other. (b) Network architecture
of the proposed DLCM. Maps in the rectangles are short for score maps

3.3 Bone-based part representation

Another problem with existing compositional models is that the type space for
higher-level parts are potentially large. For example, if we have N types for
both the left lower leg and left upper leg, there can be O(N2) types for the
whole left leg and O(N4) types for the composition of left and right legs. As
a result, the type dimensions of score maps S↑

u(wu) and S↓
u(wu) would be very

high, which makes both storage and computation demanding. To address this
issue, we propose to embed the type information into score maps and use state
variables to only denote locations. As shown in Fig. 5(b), we represent each part
with its bones, which are generated by putting Gaussian kernels along the part
segments. They are then taken as the ground truth of score maps S↑

u(wu) and
S↓
u(wu) when training neural networks. Specifically, for each point on the line

segments of a part, we generate a heat map with a 2D Gaussian (std=1 pixel)
centered at it. Then, a single heat map is formed by taking the maximum value
from these heat maps at each position.

Our novel part representation has several advantages. First, score maps are
now 2-D matrices with no type dimension instead of 3-D tensors. This reduces
space and computation complexities in score map predictions. Second, the bones
compactly encode orientations, scales and shapes of parts, as shown in Fig. 5(b).
We no longer need to discretize them via clustering [12, 15–19, 26]. One weakness
of this representation is that the ends of parts are indistinguishable. To solve
this problem, we augment score maps of higher-level parts with score maps of
their ends4. In this way, all important information of parts can be retained.

3.4 Deeply learned compositional model (DLCM)

Motivated by the reasoning above, our Deeply Learned Compositional Model
(DLCM) exploits CNNs to learn the compositionality of human bodies for HPE.

4 In practice, we find repeated ends can be removed without deteriorating performance.
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Fig. 6(b) shows an example network based on Eqs. (13) and (14). It has a hierar-
chical compositional architecture and bottom-up/top-down inference stages. In
the bottom-up stage, score maps of target joints are first regressed directly from
the image observations, as with existing CNN-based HPE methods. Then, score
maps of higher-level parts are recursively estimated from those of their children.
In the top-down stage, score maps of lower-level parts are recursively refined
using their parents’ score maps as well as their own score maps estimated in the
bottom-up stage. Similar as [37], a Mean Squared Error (MSE) loss is applied to
compare predicted score maps with the ground truth. In this way, we can guide
the network to learn the compositional relationships among body parts. Some
examples of score maps predicted by our DLCM in the bottom-up and top-down
stages can be found in Fig. 8(a).

4 Experiments

4.1 Implementation details

The proposed DLCM is a general framework and can be instantiated with any
compositional body structures and CNN modules. In the experiments, we use a
similar compositional structure as that in [12] but include higher-order cliques
and part sharing. As shown in Fig. 6(a), it has three semantic levels, which
include 16, 12 and 6 parts, respectively. Assume all children sharing a common
parent are linked to each other. The whole human body is not included here since
it has negligible effect on overall performances, while complicating the model.

For two reasons, we exploit the hourglass module [5] to instantiate the CNN
blocks in Fig. 6(b). First, the hourglass module extends the fully convolutional
network [38] by processing and consolidating features across multiple scales. This
enables it to capture the various spatial relationships associated with the input
score maps. Second, the eight-stack hourglass network [5], formed by sequentially
stacking eight hourglass modules, has achieved state-of-the-art results on several
HPE benchmarks. It serves as a suitable baseline to test the effectiveness of the
proposed approach. To instantiate a DLCM with three semantic levels, we need
five hourglass modules, i.e., the five CNN blocks in Fig. 6(b). Newell et. al. [5]
add the intermediate features used to predict part score maps back to these
predictions via skip connections before they are fed into the next hourglass. We
follow this design in our implementation and find it helps reduce overfitting.

Our approach is evaluated on three HPE benchmark datasets of increasing
difficulties: FLIC [39], Leeds Sports Poses (LSP) [40] and MPII Human Pose [21].
The FLIC dataset is composed of 5003 images (3987 for training, 1016 for testing)
taken from films. The images are annotated on the upper body with most figures
facing the camera. The extended LSP dataset consists of 11k training images and
1k testing images from sports activities. As a common practice [6, 41, 9], we train
the network by including the MPII training samples. A few joint annotations in
the LSP dataset are on the wrong side. We manually correct them. The MPII
dataset consists of around 25k images with 40k annotated samples (28k for
training, 11k for testing). The images cover a wide range of everyday human
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Table 1. Comparisons of PCK@0.2 scores on the FLIC testing set

Elbow Wrist Total

Tompson et. al. [42] 93.1 89.0 91.05
Chen&Yuille [43] 95.3 92.4 93.9
Wei et. al. [6] 97.6 95.0 96.3
Newell et. al. [5] 99.0 97.0 98.0

Ours (3-level DLCM) 99.5 98.5 99.0

Table 2. Comparisons of PCK@0.2 scores on the LSP testing set

Head Shoulder Elbow Wrist Hip Knee Ankle Total

Bulat&Tzimiropoulos [8] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
Insafutdinov et. al. [44] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Lifshitz et. al. [45] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
Yu et. al. [46] 87.2 88.2 82.4 76.3 91.4 85.8 78.7 84.3
Chu et. al. [9] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6
Chen et. al. [47] 98.5 94.0 89.8 87.5 93.9 94.1 93.0 93.1
Sun et. al. [48] 97.9 93.6 89.0 85.8 92.9 91.2 90.5 91.6
Yang et. al. [49] 98.3 94.5 92.2 88.9 94.4 95.0 93.7 93.9

Ours (3-level DLCM) 98.3 95.9 93.5 90.7 95.0 96.6 95.7 95.1

activities and a great variety of full-body poses. Following [42, 5], 3k samples are
taken as a validation set to tune the hyper-parameters.

Each input image is cropped around the target person according to the an-
notated body position and scale. They are then resized to 256×256 pixels. Data
augmentation based on affine transformation [50, 48] is used to reduce overfit-
ting. We implement DLCMs5 using Torch [51] and optimize them via RMSProp
[52] with batch size 16. The learning rate is initialized as 2.5 × 10−4 and then
dropped by a factor of 10 after the validation accuracy plateaus. In the testing
phase, we run both the original input and a flipped version of a six-scale image
pyramid through the network and average the estimated score maps together
[49]. The final prediction is the maximum activating location of the score map
for a given joint predicted by the last CNN module.

4.2 Evaluation

Metrics. Following previous work, we use the Percentage of Correct Keypoints
(PCK) [21] as the evaluation metric. It calculates the percentage of detections
that fall within a normalized distance of the ground truth. For LSP and FLIC,
the distance is normalized by the torso size, and for MPII, by a fraction of the
head size (referred to as PCKh).

Accuracies. Tabs. 1-3 respectively compare the performances of our 3-level
DLCM and the most recent state-of-the-art HPE methods on FLIC, LSP and

5 http://www.ece.northwestern.edu/~wtt450/project/ECCV18_DLCM.html
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Table 3. Comparisons of PCKh@0.5 scores on the MPII testing set

Head Shoulder Elbow Wrist Hip Knee Ankle Total

Bulat&Tzimiropoulos [8] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Gkioxary et. al. [53] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1
Insafutdinov et. al. [44] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Lifshitz et. al. [45] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Belagiannis et. al. [33] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1
Sun et. al. [31] 97.5 94.3 87.0 81.2 86.5 78.5 75.4 86.4
Sun et. al. [48] 98.1 96.2 91.2 87.2 89.8 87.4 84.1 91.0
Yang et. al. [49] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0

Newell et. al. [5] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Ours (3-level DLCM) 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3

Table 4. Comparisons of parameter and operation numbers

#parameters #operations (GFLOPS)

Yang et. al. [49] (state-of-the-art) 26.9M 45.9
Newell et. al. [5] 23.7M 41.2
Ours (3-level DLCM) 15.5M 33.6

MPII datasets. Our approach clearly outperforms the eight-stack hourglass net-
work [5], especially on some challenging joints. On the FLIC dataset, it achieves
1.5% improvement on wrist and halves the overall error rate (from 2% to 1%).
On the MPII dataset, it achieves 2.6%, 2.0%, 1.7%, 1.6% and 1.4% improve-
ments on ankle, knee, hip, wrist and elbow, respectively. On all three datasets,
our approach achieves superior performance to the state-of-the-art methods.

Complexities. Tab. 4 compares the complexities of our 3-level DLCM with
the eight-stack hourglass network [5] as well as the current state-of-the-art
method [49]. Obviously, using only five hourglass modules instead of eight [5,
49], our model has significantly less parameters and lower computational com-
plexities. Specially, the prior top-performing method [49] on the benchmarks has
74% more parameters and needs 37% more GFLOPS.

Summary. From Tabs. 1-4, we can see that with significantly less parameters
and lower computational complexities, the proposed approach has an overall
superior performance to the state-of-the-art methods.

4.3 Component analysis

We analyze the effectiveness of each component in DLCMs on MPII validation
set. Mean PCKh@0.5 over hard joints, i.e., ankle, knee, hip, wrist and elbow, is
used as the evaluation metric. A DLCM with two semantic levels is taken as the
basic model. Model (i), i ∈ {1, 2, 3, 4, 5}, denotes one of the five variants of the
basic model shown in Fig. 7(a).
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Fig. 7. (a) Component analysis on MPII validation set. See Sec. 4.3 for details. (b)
Qualitative results obtained by our approach on the MPII (top row) and LSP (bottom
row) testing sets

To see the importance of compositional architectures, we successively remove
the top-down lateral connections and compositional part supervisions, which
leads to Model (1) and Model (2). Fig. 7(a) indicates that both variants, espe-
cially the second one, perform worse than the basic model.

In Model (3), we replace bone-based part representations in the basic model
with conventional part representations, i.e., cubes in Fig. 5(a). Following [12],
we use K-means to cluster each of the 12 higher-level parts into N types. Since
a part sample is assigned to one type, only 1 of its N score map channels is
nonzero (with a Gaussian centered at the part location). We have tested N = 15
[12] and N = 30 and reported the better result. As shown in Fig. 7(a), the novel
bone-based part representation significantly outperforms the conventional one.

Finally, we explore whether using more semantic levels in a DLCM can boost
its performance. Model (4) is what we have used in Sec. 4.2. Model (5) has 4
semantic levels. The highest-level part is the whole human body. Its ground
truth bone map is the composition (location-wise maximum) of its children’s
bone maps. Fig. 7(a) shows that the 3-level DLCM performs much better than
the 2-level model. However, with 38% more parameters and 27% more GFLOPS,
the 4-level DLCM only marginally outperforms the 3-level model.

4.4 Qualitative results

Fig. 7(b) displays some pose estimation results obtained by our approach. Fig.
8(a) visualizes some score maps obtained by our method in the bottom-up (BU)
and top-down (TD) inference stages. The evolution of these score maps demon-
strates how the learned compositionality helps resolve the low-level ambiguities
that appear in high-level pose estimations. The uncertain bottom-up estimations
of the left ankle, right ankle and right elbow respectively in the first, second and
fifth examples are resolved by the first-level compositions. In some more chal-
lenging cases, one level of composition is not enough to resolve the ambiguities,
e.g., the bottom-up predictions of the left lower arm in the third example and the
left lower leg in the fourth example. Thanks to the hierarchical compositional-
ity, their uncertainties can be reduced by the higher-level relational models. Fig.



14 W. Tang, P. Yu and Y. Wu

Fig. 8. (a) Score maps obtained by our method on some unseen images in the bottom-
up (BU) and top-down (TD) inference stages. The five columns correspond to the five
inference steps in Fig. 6(b). Due to space limit, only score maps corresponding to one
of the six level-2 parts are displayed for the example at each row. From top to bottom,
the level-2 parts are left leg, right leg, left arm, left leg and right arm, respectively.
Within each sub-figure, parts of the same level are ordered by their distances to the
body center. (b) Some examples showing that a 3-level DLCM (bottom row) is able
to resolve the ambiguities that appear in bottom-up pose predictions of an 8-stack
hourglass network (top row). Wrong part localizations are highlighted by green ellipses

8(b) shows that our DLCM can resolve the ambiguities that appear in bottom-up
pose predictions of an 8-stack hourglass network.

5 Conclusion

This paper exploits deep neural networks to learn the complex compositional
patterns within human bodies for pose estimation. We also propose a novel bone-
based part representation to avoid potentially large state spaces for higher-level
parts. Experiments demonstrate the effectiveness and efficiency of our approach.
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