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Abstract. Convolutional neural networks (CNN) are limited by the lack
of capability to handle geometric information due to the fixed grid ker-
nel structure. The availability of depth data enables progress in RGB-D
semantic segmentation with CNNs. State-of-the-art methods either use
depth as additional images or process spatial information in 3D vol-
umes or point clouds. These methods suffer from high computation and
memory cost. To address these issues, we present Depth-aware CNN by
introducing two intuitive, flexible and effective operations: depth-aware
convolution and depth-aware average pooling. By leveraging depth simi-
larity between pixels in the process of information propagation, geometry
is seamlessly incorporated into CNN. Without introducing any additional
parameters, both operators can be easily integrated into existing CNNs.
Extensive experiments and ablation studies on challenging RGB-D se-
mantic segmentation benchmarks validate the effectiveness and flexibility
of our approach.
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1 Introduction

Recent advances [29,37,4] in CNN have achieved significant success in scene
understanding. With the help of range sensors (such as Kinect, LiDAR etc.),
depth images are applicable along with RGB images. Taking advantages of the
two complementary modalities with CNN is able to improve the performance of
scene understanding. However, CNN is limited to model geometric variance due
to the fixed grid computation structure. Incorporating the geometric information
from depth images into CNN is important yet challenging.

Extensive studies [27,5,17,22,28,6,35] have been carried out on this task.
FCN [29] and its successors treat depth as another input image and construct
two CNNs to process RGB and depth separately. This doubles the number of
network parameters and computation cost. In addition, the two-stream network
architecture still suffers from the fixed geometric structures of CNN. Even if the
geometric relations of two pixels are given, this relation cannot be used in infor-
mation propagation of CNN. An alternative is to leverage 3D networks [27,32,34]
to handle geometry. Nevertheless, both volumetric CNNs [32] and 3D point cloud
graph networks [27] are computationally more expensive than 2D CNN. Despite
the encouraging results of these progresses, we need to seek a more flexible and
efficient way to exploit 3D geometric information in 2D CNN.
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Fig. 1. Illustration of Depth-aware CNN. A and C are labeled as table and B is la-
beled as chair. They all have similar visual features in the RGB image, while they are
separable in depth. Depth-aware CNN incorporate the geometric relations of pixels in
both convolution and pooling. When A is the center of the receptive field, C then has
more contribution to the output unit than B. Figures in the rightmost column shows
the RGB-D semantic segmentation result of Depth-aware CNN.

To address the aforementioned problems, in this paper, we present an end-to-
end network, Depth-aware CNN (D-CNN), for RGB-D segmentation. Two new
operators are introduced: depth-aware convolution and depth-aware average pool-

ing. Depth-aware convolution augments the standard convolution with a depth
similarity term. We force pixels with similar depths with the center of the kernel
to have more contribution to the output than others. This simple depth simi-
larity term efficiently incorporates geometry in a convolution kernel and helps
build a depth-aware receptive field, where convolution is not constrained to the
fixed grid geometric structure.

The second introduced operator is depth-ware average pooling. Similarly,
when a filter is applied on a local region of the feature map, the pairwise re-
lations in depth between neighboring pixels are considered in computing mean
of the local region. Visual features are able to propagate along with the geomet-
ric structure given in depth images. Such geometry-aware operation enables the
localization of object boundaries with depth images.

Both operators are based on the intuition that pixels with the same semantic
label and similar depths should have more impact on each other. We observe
that two pixels with the same semantic labels have similar depths. As illustrated
in Figure 1, pixel A and pixel C should be more correlated with each other than
pixel A and pixel B. This correlation difference is obvious in depth image while
it is not captured in RGB image. By encoding the depth correlation in CNN,
pixel C has more contribution to the output unit than pixel B in the process of
information propagation.

The main advantages of depth-aware CNN are summarized as follows:

– By exploiting the nature of CNN kernel handling spatial information, geom-
etry in depth image is able to be integrated into CNN seamlessly.
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– Depth-aware CNN does not introduce any parameters and computation com-
plexity to the conventional CNN.

– Both depth-aware convolution and depth-ware average pooling can replace
their standard counterparts in conventional CNNs with minimal cost.

Depth-aware CNN is a general framework that bonds 2D CNN and 3D ge-
ometry. Comparison with the state-of-the-art methods and extensive ablation
studies on RGB-D semantic segmentation illustrate the flexibility, efficiency and
effectiveness of our approach.

2 Related Works

2.1 RGB-D Semantic Segmentation

With the help of CNNs, semantic segmentation on 2D images have achieved
promising results [29,37,4,14]. These advances in 2D CNN and the availability
of depth sensors enables progresses in RGB-D segmentation. Compared to the
RGB settings, RGB-D segmentation is able to integrate geometry into scene
understanding. In [8,21,10,33], depth is simply treated as additional channels and
directly fed into CNN. Several works [29,10,9,18,24] encode depth to HHA image,
which has three channels: horizontal disparity, height above ground, and norm
angle. RGB image and HHA image are fed into two separate networks, and the
two predictions are summed up in the last layer. The two-stream network doubles
the number of parameters and forward time compared to the conventional 2D
network. Moreover, CNNs per se are limited in their ability to model geometric
transformations due to their fixed grid computation. Cheng et al. [5] propose a
locality-sensitive deconvolution network with gated fusion. They build a feature
affinity matrix to perform weighted average pooling and unpooling. Lin et al. [19]
discretize depth and build different branches for different discrete depth value.
He et al. [12] use spatio-temporal correspondences across frames to aggregate
information over space and time. This requires heavy pre and post-processing
such as optical flow and superpixel computation.

Alternatively, many works [32,31] attempt to solve the problem with 3D
CNNs. However, the volumetric representation prevents scaling up due to high
memory and computation cost. Recently, deep learning frameworks [27,25,26,36,13]
on point cloud are introduced to address the limitations of 3D volume. Qi et
al. [27] built a 3D k-nearest neighbor (kNN) graph neural network on a point
cloud with extracted features from a CNN and achieved the state-of-the-art on
RGB-D segmentation. Although their method is more efficient than 3D CNNs,
the kNN operation suffers from high computation complexity and lack of flex-
ibility. Instead of using 3D representations, we use the raw depth input and
integrate 3D geometry into 2D CNN in a more efficient and flexible fashion.

2.2 Spatial Transformations in CNN

Standard CNNs are limited to model geometric transformations due to the fixed
structure of convolution kernels. Recently, many works are focused on dealing
with this issue. Dilated convolutions [37,4] increases the receptive field size with
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keeping the same complexity in parameters. This operator achieves better per-
formance on vision tasks such as semantic segmentation. Spatial transform net-
works [15] warps feature maps with a learned global spatial transformation.
Deformable CNN [7] learns kernel offsets to augment the spatial sampling loca-
tions. These methods have shown geometric transformations enable performance
boost on different vision tasks.

With the advances in 3D sensors, depth is applicable at low cost. The ge-
ometric information that resides in depth is highly correlated with the spatial
transformation in CNN. Bilateral filters [3,2] is widely used in computer graph-
ics for image smoothness with edge preserving. They use a Gaussian term to
weight neighboring pixels. Similarly as bilateral filter, our method integrates the
geometric relation of pixels into basic operations of CNN, i.e. convolution and
pooling, where we use a weighted kernel and force every neuron to have different
contributions to the output. This weighted kernel is defined by depth and is able
to incorporate geometric relationships without introducing any parameter.

3 Depth-aware CNN

In this section, we introduce two depth-aware operations: depth-aware convo-
lution and depth-aware average pooling. They are both simple and intuitive.
Both operations require two inputs: the input feature map x ∈ R

ci×h×w and
the depth image D ∈ R

h×w, where ci is the number of input feature chan-
nels, h is the height and w is the width. The output feature map is denoted as
y ∈ R

co×h×w, where co is the number of output feature channels. Although x

and y are both 3D tensors, the operations are explained in 2D spatial domain
for notation clarity and they remain the same across different channels.

*
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(a) Depth-aware Convolution (b) Depth-aware Average Pooling

Fig. 2. Illustration of information propagation in Depth-aware CNN. Without loss of
generality, we only show one filter window with kernel size 3 × 3. In depth similarity
shown in figure, darker color indicates higher similarity while lighter color represents
that two pixels are less similar in depth. In (a), the output activation of depth-aware
convolution is the multiplication of depth similarity window and the convolved window
on input feature map. Similarly in (b), the output of depth-aware average pooling is
the average value of the input window weighted by the depth similarity.

3.1 Depth-aware Convolution

A standard 2D convolution operation is the weighted sum of a local grid. For
each pixel location p0 on y, the output of standard 2D convolution is
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y(p0) =
∑

pn∈R

w(pn) · x(p0 + pn), (1)

where R is the local grid around p0 in x and w is the convolution kernel. R can
be a regular grid defined by kernel size and dilation [37], and it can also be a
non-regular grid [7].

As is shown in Figure 1, pixel A and pixel B have different semantic labels
and different depths while they are not separable in RGB space. On the other
hand, pixel A and pixel C have the same labels and similar depths. To exploit the
depth correlation between pixels, depth-aware convolution simply adds a depth
similarity term, resulting in two sets of weights in convolution: 1) the learnable
convolution kernel w; 2) depth similarity FD between two pixels. Consequently,
Equ. 1 becomes

y(p0) =
∑

pn∈R

w(pn) · FD(p0,p0 + pn) · x(p0 + pn). (2)

And FD(pi,pj) is defined as

FD(pi,pj) = exp(−α|D(pi)−D(pj)|), (3)

where α is a constant. The selection of FD is based on the intuition that pixels
with similar depths should have more impact on each other. We will study the
effect of different α and different FD in Section 4.2.

The gradients for x and w are simply multiplied by FD. Note that the FD

part does not require gradient during back-propagation, therefore, Equ. 2 does
not integrate any parameters by the depth similarity term.

Figure 2(a) illustrates this process. Pixels which have similar depths with the
convolving center will have more impact on the output during convolution.

3.2 Depth-aware Average Pooling

The conventional average pooling computes the mean of a grid R over x. It is
defined as

y(p0) =
1

|R|

∑

pn∈R

x(p0 + pn). (4)

It treats every pixel equally and will make the object boundary blurry. Geo-
metric information is useful to address this issue.

Similar to as in depth-aware convolution, we take advantage of the depth
similarity FD to force pixels with more consistent geometry to make more contri-
bution on the corresponding output. For each pixel location p0, the depth-aware
average pooling operation then becomes

y(p0) =
1

∑

pn∈R
FD(p0,p0 + pn)

∑

pn∈R

FD(p0,p0 + pn) · x(p0 + pn). (5)
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The gradient should be multiplied by FD∑
pn∈R

FD(p0,p0+pn)
during back prop-

agation. As illustrated in Figure 2(b), this operation prevent suffering from the
fixed geometric structure of standard pooling.

3.3 Understanding Depth-aware CNN

A major advantage of CNN is its capability of using GPU to perform parallel
computing and accelerate the computation. This acceleration mainly stems from
unrolling convolution operation with the grid computation structure. However,
this limits the ability of CNN to model geometric variations. Researchers in 3D
deep learning have focused on modeling geometry in deep neural networks in the
last few years. As the volumetric representation [32,31] is of high memory and
computation cost, point clouds are considered as a more proper representation.
However, deep learning frameworks [26,27] on point cloud are based on building
kNN. This not only suffers from high computation complexity, but also breaks
the pixel-wise correspondence between RGB and depth, which makes the frame-
work is not able to leverage the efficiency of CNN’s grid computation structure.
Instead of operating on 3D data, we exploit the raw depth input. By augmenting
the convolution kernel with a depth similarity term, depth-aware CNN captures
geometry with transformable receptive field.

Wall Floor Bed Chair Table All
Variance 0.57 0.65 0.12 0.23 0.34 1.20

Table 1. Mean depth variance of different cate-
gories on NYUv2 dataset. “All” denotes the mean
variance of all categories. For every image, pixel-
wise variance of depth for each category is calcu-
lated. Averaged variance is then computed over
all images. For “All”, all pixels in a image are
considered to calculate the depth variance. Mean
variance over all images is further computed.

Many works have studied
spatial transformable receptive
field of CNN. Dilated convo-
lution [4,37] has demonstrated
that increasing receptive field
boost the performance of net-
works. In deformable CNN [7],
Dai et al. demonstrate that
learning receptive field adap-
tively can help CNN achieve
better results. They also show
that pixels within the same ob-
ject in a receptive field contribute more to the output unit than pixels with
different labels. We observe that semantic labels and depths have high correla-
tions. Table 1 reports the statistics of pixel depth variance within the same class
and across different classes on NYUv2 [23] dataset. Even the pixel depth vari-
ances of large objects such as wall and floor are much smaller than the variance
of a whole scene. This indicates that pixels with the same semantic labels tend
to have similar depths. This pattern is integrated in Equ. 2 and Equ. 5 with
FD. Without introducing any parameter, depth-aware convolution and depth-
aware average pooling are able to enhance the localization ability of CNN. We
evaluate the impact on performance of different depth similarity functions FD

in Section 4.2.
To get a better understanding of how depth-aware CNN captures geome-

try with depth, Figure 3 shows the effective receptive field of the given input
neuron. In conventional CNN, the receptive fields and sampling locations are
fixed across feature map. With the depth-aware term incorporated, they are ad-
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justed by the geometric variance. For example, in the second row of Figure 3(d),
the green point is labeled as chair and the effective receptive field of the green
point are essentially chair points. This indicates that the effective receptive field
mostly have the same semantic label as the center. This pattern increases CNN’s
performance on semantic segmentation.

(a) (b) (c) (d)

Fig. 3. Illustration of effective receptive field of Depth-aware CNN. (a) is the input
RGB images. (b), (c) and (d) are depth images. For (b), (c) and (d), we show the
sampling locations (red dots) in three levels of 3× 3 depth-aware convolutions for the
activation unit (green dot).

3.4 Depth-aware CNN for RGB-D Semantic Segmentation

In this paper, we focus on RGB-D semantic segmentation with depth-aware
CNN. Given an RGB image along with depth, our goal is to produce a seman-
tic mask indicating the label of each pixel. Both depth-aware convolution and
average pooling easily replace their counterpart in standard CNN.

layer name conv1 x conv2 x conv3 x conv4 x conv5 x conv6 & conv7

Baseline
DeepLab

C3-64-1 C3-128-1 C3-256-1 C3-512-1 C3-512-2 C3-1024-12
C3-64-1 C3-128-1 C3-256-1 C3-512-1 C3-512-2 C1-1024-0
maxpool maxpool C3-256-1 C3-512-1 C3-512-2 globalpool+concat

maxpool maxpool avgpool

D-CNN

DC3-64-1 DC3-128-1 DC3-256-1 DC3-512-1 DC3-512-2 DC3-1024-12
C3-64-1 C3-128-1 C3-256-1 C3-512-1 C3-512-2 C1-1024-0
maxpool maxpool C3-256-1 C3-512-1 C3-512-2 globalpool+concat

maxpool maxpool Davgpool

Table 2. Network architecture. DeepLab is our baseline with a modified version of
VGG-16 as the encoder. The convolution layer parameters are denoted as “C[kernel
size]-[number of channels]-[dilation]”. “DC” and “Davgpool” represent depth-aware
convolution and depth-aware average pooling respectively.

DeepLab[4] is a state-of-the-art method for semantic segmentation. We adopt
DeepLab as our baseline for semantic segmentation and a modified VGG-16
network is used as the encoder. We replace layers in this network with depth-
aware operations. The network configurations of the baseline and depth-aware
CNN are outlined in Table 2. Suppose conv7 has C channels. Following [27],
global pooling is used to compute a C-dim vector from conv7. This vector is
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then appended to all spatial positions and results in a 2C-channel feature map.
This feature map is followed by a 1×1 conv layer and produce the segmentation
probability map.

4 Experiments

Evaluation is performed on three popular RGB-D datasets:

– NYUv2 [23]: NYUv2 contains of 1, 449 RGB-D images with pixel-wise labels.
We follow the 40-class settings and the standard split with 795 training
images and 654 testing images.

– SUN-RGBD [30,16]: This dataset have 37 categories of objects and consists
of 10, 335 RGB-D images, with 5, 285 as training and 5050 as testing.

– Stanford Indoor Dataset (SID) [1]: SID contains 70, 496 RGB-D images with
13 object categories. We use Area 1, 2, 3, 4 and 6 as training, and Area 5 as
testing.

Four common metrics are used for evaluation: pixel accuracy (Acc), mean
pixel accuracy of different categories (mAcc), mean Intersection-over-Union of
different categories (mIoU), and frequency-weighted IoU (fwIoU). Suppose nij

is the number of pixels with ground truth class i and predicted as class j, nC

is the number of classes and si is the number of pixels with ground truth class
i, the total number of all pixels is s =

∑

i si. The four metrics are defined as
follows: Acc =

∑

i
nii

s
, mAcc = 1

nC

∑

i
nii

si
, mIoU = 1

nC

∑

i
nii

si+
∑

j nji−nii
, fwIoU

= 1
s

∑

i si
nii

si+
∑

j nji−nii
.

Implementation Details For most experiments, DeepLab with a modified
VGG-16 encoder (c.f. Table 2) is the baseline. Depth-aware CNN based on
DeepLab outlined in Table 2 is evaluated to validate the effectiveness of our
approach and this is referred as “D-CNN” in the paper. We also conduct ex-
periments with combining HHA encoding [9]. Following [29,27,8], two baseline
networks consume RGB and HHA images separately and the predictions of both
networks are summed up in the last layer. This two-stream network is dubbed
as “HHA”. To make fair comparison, we also build depth-aware CNN with this
two-stream fashion and denote this as “D-CNN+HHA”. In ablation study, we
further replace VGG-16 with ResNet-50 [11] as the encoder to have a better
understanding of the functionality of depth-aware operations.

We use SGD optimizer with initial learning rate 0.001, momentum 0.9 and
batch size 1. The learning rate is multiplied by (1 − iter

max iter
)0.9 for every 10

iterarions. α is set to 8.3. (The impact of α is studied in Section 4.2.) The
dataset is augmented by randomly scaling, cropping, and color jittering. We use
PyTorch deep learning framework. Both depth-aware convolution and depth-
aware average pooling operators are implemented with CUDA acceleration. Code
is available at github.com/laughtervv/DepthAwareCNN.

4.1 Main Results

Depth-aware CNN is compared with both its baseline and the state-of-the-art
methods on NYUv2 and SUN-RGBD dataset. It is also compared with the base-
line on SID dataset.

https://github.com/laughtervv/DepthAwareCNN
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RGB Depth GT Baseline HHA D-CNN DCNN+HHA

Fig. 4. Segmentation results on NYUv2 test dataset. “GT” denotes ground truth. The
white regions in “GT” are the ignoring category. Networks are trained from pre-trained
models.

NYUv2 Table 3 shows quantitative comparison results between D-CNNs and
baseline models. Since D-CNN and its baseline are in different function space,
all networks are trained from scratch to make fair comparison in this experi-
ment. Without introducing any parameters, D-CNN outperforms the baseline
by incorporating geometric information in convolution operation. Moreover, the
performance of D-CNN also exceeds “HHA” network by using only half of its
parameters. This effectively validate the superior capability of D-CNN on han-
dling geometry over “HHA”. We also compare our results with the state-of-
the-art methods. Table 4 illustrates the good performance of D-CNN. In this
experiment, the networks are initialized with the pre-trained parameters in [4].
Long et al. [29] and Eigen et al. [8] both use the two-stream network with
HHA/depth encoding. Yang et al. [12] compute optical flows and superpixels
to augment the performance with spatial-temporal information. D-CNN with
only one VGG network is superior to their methods. Qi et al. [27] built a 3D
graph on the top of VGG encoder and use RNN to update the graph, which
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Baseline HHA D-CNN D-CNN+HHA

Acc (%) 50.1 59.1 60.3 61.4

mAcc (%) 23.9 30.8 39.3 35.6
mIoU (%) 15.9 21.9 27.8 26.2
fwIoU (%) 34.2 43.0 44.9 45.7

Table 3. Comparison with baseline CNNs on NYUv2 test set. Networks are trained
from scratch.

[29] [8] [12] [27] HHA D-CNN D-CNN+HHA DM-CNN+HHA [20] D-ResNet-152

mAcc (%) 46.1 45.1 53.8 55.2 51.1 53.6 56.3 58.4 58.9 61.1

mIoU (%) 34.0 34.1 40.1 42.0 40.4 41.0 43.9 44.7 46.5 48.4

Table 4. Comparison with the state-of-the-arts on NYUv2 test set. Networks are
trained from pre-trained models.

introduces more network parameters and higher computation complexity. By re-
placing max-pooling layers in Conv1, Conv2, Conv3 as depth-aware max-pooling
(defined as y(p0) = maxpn∈R FD(p0,p0 + pn) · x(p0 + pn)), we can get further
performance improvement, and this experiment is referred as DM-CNN-HHA in
Table 4. We also replace the baseline VGG with ResNet-152 (pre-trained with
[20]) and compare with its baseline [20] in Table 4. As is shown in Table 4,
D-CNN is already comparable with these state-of-the-art methods. By incorpo-
rating HHA encoding, our method achieves the state-of-the-art on this dataset.
Figure 4 visualizes qualitative comparison results on NYUv2 test set. .

SUN-RGBD The comparison results between D-CNN and its baseline are
listed in Table 5. The networks in this table are trained from scratch. D-CNN
outperforms baseline by a large margin. Substituting the baseline with the two-
stream “HHA” network is able to further improve the performance.

By comparing with the state-of-the-art methods in Table 6, we can further see
the effectiveness of D-CNN. Similarly as in NYUv2, the networks are initialized
with pre-trained model in this experiment. Figure 5 illustrates the qualitative
comparison results on SUN-RGBD test set. Our network achieves comparable
performance with the state-of-the-art method [27], while their method is more
time-consuming. We will further compare the runtime and numbers of model
parameters in Section 4.3.

Baseline HHA D-CNN D-CNN+HHA

Acc (%) 66.6 72.6 72.4 72.9

mAcc (%) 31.5 37.9 38.6 41.2

mIoU (%) 22.8 28.8 29.7 31.3

fwIoU (%) 51.4 58.5 58.2 59.3

Table 5. Comparison with baseline CNNs on SUN-RGBD test set. Networks are
trained from scratch.



Depth-aware CNN for RGB-D Segmentation 11

[18] [27] HHA D-CNN D-CNN+HHA

mAcc (%) 48.1 55.2 50.5 51.2 53.5
mIoU (%) - 42.0 40.2 41.5 42.0

Table 6. Comparison with the state-of-the-arts on SUN-RGBD test set. Networks are
trained from pre-trained models.

Baseline D-CNN
Acc (%) 64.3 65.4

mAcc (%) 46.7 55.5

mIoU (%) 35.5 39.5

fwIoU (%) 48.5 49.9

Table 7. Comparison with baseline CNNs
on SID Area 5. Networks are trained from
scratch.

SID The comparison results on SID
between D-CNN with its baseline are
reported in Table 7. Networks are
trained from scratch. Using depth im-
ages, D-CNN is able to achieve 4% IoU
over CNN while preserving the same
number of parameters and computa-
tion complexity.

4.2 Ablation Study

In this section, we conduct ablation studies on NYUv2 dataset to validate ef-
ficiency and efficacy of our approach. Testing results on NYUv2 test set are
reported.

Depth-aware CNN To verify the functionality of both depth-aware convolu-
tion and depth-aware average pooling, the following experiments are conducted.

– VGG-1: Conv1 1, Conv2 1, Conv3 1, Conv4 1, Conv5 1 and Conv6 in VGG-16
are replaced with depth-aware convolution. This is the same as in Table 2.

– VGG-2: Conv4 1, Conv5 1 and Conv6 in VGG-16 are replaced with depth-
aware convolution. Other layers remain the same as in Table 2.

– VGG-3: The depth-aware average pooling layer listed in Table 2 is replaced
with regular pooling. Other layers remain the same as in Table 2.

– VGG-4: Only Conv1 1, Conv2 1, Conv3 1 are replaced with depth-aware con-
volution.

Results are shown in Table 8. Compared to VGG-2, VGG-1 adds depth-aware
convolution in bottom layers. This helps the network propagate more fine-grained
features with geometric relationships and increase segmentation performance by
6% in IoU. VGG-1 also outperforms VGG-4. Top layers conv4, 5 have more
contextual information, and applying D-CNN on these layers still benefits the
prediction. As is shown in [25], not all contextual information is useful. D-CNN
helps to capture more effective contextual information. The depth-aware average
pooling operation is able to further promote the accuracy.

We also replace VGG-16 to ResNet as the encoder. We test depth-aware
operations on ResNet. The Conv3 1, Conv4 1, and Conv5 1 in ResNet-50 are
replaced with depth-aware convolution. ResNet-50 is initialized with parame-
ters pre-trained on ADE20K [38]. Detailed architecture and training details for
ResNet can be found in Supplementary Materials. Results are listed in Table 9.
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RGB Depth GT Baseline HHA D-CNN DCNN+HHA

Fig. 5. Segmentation results on SUN-RGBD test dataset. “GT” denotes ground truth.
The white regions in “GT” are the ignoring category. Networks are trained from pre-
trained models.

Depth Similarity Function We modify α and FD to further validate the effect
of different choices of depth similarity function on performance. We conduct the
following experiments:

– α8.3: α is set to 8.3. The network architecture is the same as Table 2.
– α20: α is set to 20. The network architecture is the same as Table 2.
– α2.5: α is set to 2.5. The network architecture is the same as Table 2.
– clipFD: The network architecture is the same as Table 2. FD is defined as

FD(pi,pj) =

{

0, |D(pi)−D(pj)| ≥ 1

1, otherwise
(6)

Table 10 reports the test performances with different depth similarity func-
tions. Though the performance varies with different α, they are all superior to
baseline and even “HHA”. The result of clipFD is also comparable with “HHA”.
This validate that the effectiveness of using a depth-sensitive term to weight the
contributions of neurons.
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Baseline HHA VGG-1 VGG-2 VGG-3 VGG-4

Acc (%) 50.1 59.1 60.3 56.0 59.3 59.5
mAcc (%) 23.9 30.8 39.3 32.2 39.2 37.3
mIoU (%) 15.9 21.9 27.8 22.4 27.4 26.6
fwIoU (%) 34.2 43.0 44.9 40.2 44.0 43.8

Table 8. Results of using depth-aware opera-
tions in different layers. Experiments are con-
ducted on NYUv2 test set. Networks are trained
from scratch.

VGG-1 ResNet-50 D-ResNet-50

Acc (%) 69.4 68.9 69.6

mAcc (%) 53.6 50.2 53.3
mIoU (%) 41.0 38.8 41.5

fwIoU (%) 54.5 54.4 54.4

Table 9. Results of using depth-
aware operations in ResNet-50.
Networks are trained from pre-
trained models.

Baseline HHA α8.3 α20 α2.5 clipFD

Acc (%) 50.1 59.1 60.3 58.5 58.5 53.0
mAcc (%) 23.9 30.8 39.3 35.2 35.9 29.8
mIoU (%) 15.9 21.9 27.8 24.9 25.3 20.1
fwIoU (%) 34.2 43.0 44.9 42.6 42.9 37.5

Table 10. Results of using different α and FD. Experiments are conducted on NYUv2
test set. Networks are trained from scratch.

Performance Analysis To have a better understanding of how depth-aware
CNN outperforms the baseline, we visualize the improvement of IoU for each
semantic class in Figure 6(a). The statics shows that D-CNN outperform baseline
on most object categories, especially these large objects such as ceilings and
curtain. Moreover, we observe depth-aware CNN has a faster convergence than
baseline, especially trained from scratch. Figure 6(b) shows the training loss
evolution with respect to training steps. Our network gains lower loss values
than baseline. Depth similarity helps preserving edge details, however, when
depth values vary in a single object, depth-aware CNN may lose contextual
information. Some failure cases can be found in supplemental material.

(a) (b)

Fig. 6. Performance Analysis. (a) Per-class IoU improvement of D-CNN over base-
line on NYUv2 test dataset. (b) Evolution of training loss on NYUv2 train dataset.
Networks are trained from scratch.

4.3 Model Complexity and Runtime Analysis

Table 11 reports the model complexity and runtime of D-CNN and the state-
of-the-art method [27]. In their method, kNN takes O(kN) runtime at least,
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where N is the number of pixels. We leverage the grid structure of raw depth
input. As is shown in Table 11, depth-aware operations do not incorporate any
new parameters. The network forward time is only slightly greater than its base-
line. Without increasing any model parameters, D-CNN is able to incorporate
geometric information in CNN efficiently.

Baseline HHA [27] D-CNN D-CNN-HHA

net. forward (ms) 32.5 64.2 214 39.3 79.7
# of params 47.0M 92.0M 47.25M 47.0M 92.0M

Table 11. Model complexity and runtime comparison. Runtime is tested on Nvidia
1080Ti, with input image size 425× 560× 3.

5 Conclusion

We present a novel depth-aware CNN by introducing two operations: depth-
aware convolution and depth-aware average pooling. Depth-aware CNN aug-
ments conventional CNN with a depth similarity term and encode geometric
variance into basic convolution and pooling operations. By adapting effective re-
ceptive field, these depth-aware operations are able to incorporate geometry into
CNN while preserving CNN’s efficiency. Without introducing any parameters
and computational complexity, this method is able to improve the performance
on RGB-D segmentation over baseline by a large margin. Moreover, depth-aware
CNN is flexible and easily replaces its plain counterpart in standard CNNs.
Comparison with the state-of-the-art methods and extensive ablation studies on
RGB-D semantic segmentation demonstrate the effectiveness and efficiency of
depth-aware CNN.

Depth-aware CNN provides a general framework for vision tasks with RGB-
D input. Moreover, depth-aware CNN takes the raw depth image as input and
bridges the gap between 2D CNN and 3D geometry. In future works, we will
apply depth-aware CNN on various tasks such as 3D detection, instance seg-
mentation and we will perform depth-aware CNN on more challenging dataset.
Apart from depth input, we will exploit more geometric input such as normal
map.
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