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Abstract. The problem of video object segmentation can become extremely chal-

lenging when multiple instances co-exist. While each instance may exhibit large

scale and pose variations, the problem is compounded when instances occlude

each other causing failures in tracking. In this study, we formulate a deep re-

current network that is capable of segmenting and tracking objects in video si-

multaneously by their temporal continuity, yet able to re-identify them when

they re-appear after a prolonged occlusion. We combine temporal propagation

and re-identification functionalities into a single framework that can be trained

end-to-end. In particular, we present a re-identification module with template

expansion to retrieve missing objects despite their large appearance changes.

In addition, we contribute an attention-based recurrent mask propagation ap-

proach that is robust to distractors not belonging to the target segment. Our ap-

proach achieves a new state-of-the-art G-mean of 68.2 on the challenging DAVIS

2017 benchmark (test-dev set), outperforming the winning solution. Project Page:

http://mmlab.ie.cuhk.edu.hk/projects/DyeNet/.

1 Introduction

Video object segmentation aims at segmenting foreground instance object(s) from the

background region in a video sequence. Typically, ground-truth masks are assumed to

be given in the first frame. The goal is to begin with these masks and track them in

the remaining sequence. This paradigm is sometimes known as semi-supervised video

object segmentation [24, 3, 27]. A notable and challenging benchmark for this task is

2017 DAVIS Challenge [28]. An example of a sequence is shown in Fig. 1. The DAVIS

dataset presents real-world challenges that need to be solved from two key aspects. First,

there are multiple instances in a video. It is very likely that they will occlude each other

causing partial or even full obstruction of a target instance. Second, instances typically

experience substantial variations in both scale and pose across frames.

To address the occlusion problem, notable studies such as [3, 39] adapt generic se-

mantic segmentation deep model to the task of specific object segmentation. These

methods follow a notion reminiscent of the template matching based methods that are

widely used in visual tracking task [2, 33]. Often, a fixed set of templates such as the

masks of target objects in the first frame are used for matching targets. This paradigm

fails in some challenging cases in DAVIS (see Fig. 1(a)), as using a fixed set of templates



2 X. Li and C. C. Loy

(a) Template matching approach 

(c) DyeNet

(b) Temporal propagation approach 

Fig. 1. We focus on the bicycle in this example. (a) shows the result of template matching ap-

proach, which is affected by large scale and pose variations. As shown in (b), temporal propaga-

tion is incapable of handling occlusion. The proposed DyeNet joints them into a unified frame-

work, first retrieves high confidence starting points and then propagates their masks bidirection-

ally to address those issues. The result of DyeNet is visualized in (c). Best viewed in color.

cannot sufficiently cover large scale and pose variations. To mitigate the variations in

both scale and pose across frames, existing studies [32, 35, 15, 26, 34, 16] exploit tem-

poral information to maintain continuity of individual segmented regions across frames.

On unconstrained videos with severe occlusions, such as that shown in Fig. 1(b), ap-

proaches based on temporal continuity are prone to errors since there is no mechanism

to re-identify a target when it reappears after missing in a few video frames. In addi-

tion, these approaches may fail to track instances in the presence of distractors such as

cluttered backgrounds or segments from other objects during temporal propagation.

Solving video object segmentation with multiple instances requires template match-

ing for coping with occlusion and temporal propagation for ensuring temporal continu-

ity. In this study, we bring both approaches into a single unified network. Our network

hinges on two main modules, namely a re-identification (Re-ID) module and a recur-

rent mask propagation (Re-MP) module. The Re-ID module helps to establish confident

starting points in non-successive frames and retrieve missing segments caused by oc-

clusions. Based on the segments provided by the Re-ID module, the Re-MP module

propagates their masks bidirectionally by a recurrent neural network to the entire video.

The process of conducting Re-ID followed by Re-MP may be imagined as dyeing a
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fabric with multiple color dots (i.e., choosing starting points with re-identification) and

the color disperses from these dots (i.e., propagation). Drawing from this analogy, we

name our network as DyeNet.

There are a few methods [17, 21] that improve video object segmentation through

both temporal propagation and re-identification. Our approach differs by offering a uni-

fied network that allows both tasks to be optimized in an end-to-end network. In addi-

tion, unlike existing studies, the Re-ID and Re-MP steps are conducted in an iterative

manner. This allows us to identify confidently predicted mask in each iteration and

expand the template set. With a dynamic expansion of template set, our Re-ID mod-

ule can better retrieve missing objects that reappear with different poses and scales.

In addition, the Re-MP module is specially designed with attention mechanism to dis-

regard distractors such as background objects or segments from other objects during

mask propagation. As shown in Fig. 1(c), DyeNet is capable of segmenting multiple

instances across a video with high accuracy through Re-ID and Re-MP. We provide a

more detailed discussion against [17, 21] in the related work section.

Our contributions are summarized as follows. (1) We propose a novel approach that

joints template matching and temporal propagation into a unified deep neural network

for addressing video object segmentation with multiple instances. The network can be

trained end-to-end. It does not require online training (i.e., fine-tune using the masks

of the first frame) to do well but can achieve better results with online training. (2) We

present an effective template expansion approach to better retrieve missing targets that

reappear with different poses and scales. (3) We present a new attention-based recurrent

mask propagation module that is more resilient to distractors.

We use the challenging DAVIS 2017 dataset [28] as our key benchmark. The winner

of this challenge [21] achieves a global mean (Region Jaccard and Boundary F measure)

of 66.1 on the test-dev partition. Our method obtains a global mean of 68.2 on this

partition. Without online training, DyeNet can still achieve a competitive G-mean of

62.5 while the speed is an order of magnitude faster. Our method also achieves state-of-

the-art results on DAVIS 2016 [27], SegTrackv2 [19] and YouTubeObjects [29] datasets.

2 Related Work

Image segmentation. The goal of semi-supervised video object segmentation is differ-

ent to semantic image segmentation [4, 41, 23, 20, 40] and instance segmentation [8, 9,

22, 10] that perform pixel-wise class labeling. In video object segmentation, the class

type is always assumed to be undefined. Thus, the challenge lies in performing accurate

object-agnostic mask propagation. Our network leverages semantic image segmentation

task to learn generic representation that encompasses semantic level information. The

representation learned is strong, allowing our model to be applied in a dataset-agnostic

manner, i.e., it is not trained with any first frame annotation of each video in the target

dataset as training/tuning set, but it can also be optionally fine-tuned and adapted into

the targeted video domain as practiced in [16] to obtain better results. We will examine

both possibilities in the experimental section.

Visual tracking. While semi-supervised video object segmentation can be seen as a

pixel-level tracking task, video object segmentation differs in its more challenging na-
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ture in terms of object scale variation across video frames and inter-object scale differ-

ences. In addition, the pose of objects is relatively stable in the tracking datasets, and

there are few prolonged occlusions. Importantly, the problem differs in that conven-

tional tracking tasks only need bounding box level tracking results, and concern about

causality (i.e., tracker does not use any future frames for estimation). In contrast, semi-

supervised video object segmentation expects precise pixel-level tracking results, and

typically does not assume causality.

Video object segmentation. Prior to the prevalence of deep learning, most approaches

to semantic video segmentation are graph based [7, 18, 37, 25]. Contemporary methods

are mostly based on deep learning. A useful technique reminiscent of template matching

is commonly applied. In particular, templates are typically formed by the ground-truth

masks in the first frame. For instance, Caelles et al [3] adapt a generic semantic im-

age segmentation network to the templates for each testing video individually. Yoon et

al [39] distinguish the foreground objects based on the pixel-level similarity between

candidates and templates, which is measured by a matching deep network. Another

useful technique is to exploit temporal continuity for establishing spatiotemporal cor-

relation. Tsai et al [32] estimate object segmentation and optical flow synergistically

using an iterative scheme. Jampani et al [15] propagate structured information through

a video sequence by a bilateral network that performs learnable bilateral filtering opera-

tions cross video frames. Perazzi et al [26] and Jang et al [34] estimate the segmentation

mask of the current frame by using the mask from the previous frame as a guidance.

Differences against existing methods that combine template matching and tem-

poral continuity. There are a few studies that combine the merits of the two afore-

mentioned techniques. Khoreva et al [16] show that a training set closer to the target

domain is more effective. They improve [3] by synthesizing more training data from

the first frame of testing videos and employ mask propagation during the inference.

Instance Re-Identification Flow (IRIF) [17] divides foreground objects into human and

non-human object instances, and then apply person re-identification network [36] to re-

trieve missing human during mask propagation. For non-human object instances, IRIF

degenerates to a conventional mask propagation method. Our method differs to these

studies in that we do not synthesize training data from the first frames and do not ex-

plicitly divide foreground objects into human and non-human object instances.

Li et al [21] adapt person re-identification approach [36] to a generic object re-

identification model and employ a two-stream mask propagation model [26]. Their

method (VS-ReID) achieved the highest performance in the 2017 DAVIS Challenge [21],

however, its shortcomings are also obvious: (1) VS-ReID only uses the masks of target

objects in the first frame as templates. It is thus more susceptible to pose variations. (2)

Their method is much slower compared to ours due to its redundant feature extraction

steps and less efficient inference method. Specifically, the inference of VS-ReID takes

∼3 seconds per frame on DAVIS dataset. The speed is 7 times slower than DyeNet.

(3) VS-ReID does not have any attention mechanism in its mask propagation. Its ro-

bustness to distractors and background clutters is thus inferior to DyeNet. (4) VS-ReID

cannot perform end-to-end training. By contrast, DyeNet performs joint learning of re-

identification and temporal propagation.



Video Object Segmentation via DyeNet 5

Nfeat

Ii
fi

templates

Re-ID Module

Re-MP Module

……

tracklets

starting

points

… …

……

Fig. 2. The pipeline of DyeNet. The network hinges on two main modules, namely a re-

identification (Re-ID) module and a recurrent mask propagation (Re-MP) module. Best viewed

in color.

3 Methodology

We provide an overview of the proposed approach. Figure 2 depicts the architecture of

DyeNet. It consists of two modules, namely the re-identification (Re-ID) module and

the recurrent mask propagation (Re-MP) module. The network first performs feature

extraction, which will be detailed next.

Feature extraction. Given a video sequence with N frames {I1, ..., IN}, for each frame

Ii, we first extract a feature fi by a convolutional feature network Nfeat, i.e., fi =
Nfeat(Ii). Both Re-ID and Re-MP modules employ the same set of features in order to

save computation in feature extraction. Considering model capacity and speed, we use

ResNet-101 [11] as the backbone of Nfeat. More specifically, ResNet-101 consists of

five blocks named as ‘conv1’, ‘conv2 x’ to ‘conv5 x’. We employ ‘conv1’ to ‘conv4 x’

as our feature network. To increase the resolution of features, we decrease the con-

volutional strides in ‘conv4 x’ block and replace convolutions in ‘conv4 x’ by dilated

convolutions similar to [4]. Consequently, the resolution of feature maps is 1/8 of the

input frame.

Iterative inference with template expansion. After feature extraction, DyeNet runs

Re-ID and Re-MP in an iterative manner to obtain segmentation masks of all instances

across the whole video sequence. We assume the availability of masks given in the

first frame and use them as templates. This is the standard protocol of the benchmarks

considered in Sec. 4.

In the first iteration, the Re-ID module generates a set of masks from object pro-

posals and compares them with templates. Masks with a high similarity to templates

are chosen as the starting points for Re-MP. Subsequently, Re-MP propagates each

selected mask (i.e., starting point) bidirectionally, and generates a sequence of segmen-

tation masks, which we call tracklet. After Re-MP, we can additionally consider post-
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Fig. 3. (a) The network architecture of the re-identification (Re-ID) module. (b) Illustration of

bi-direction mask propagation. (c) The network architecture of the recurrent mask propagation

(Re-MP) module. Best viewed in color.

processing steps to link the tracklets. In subsequent iterations, DyeNet chooses con-

fidently predicted masks to expand the template set and reapplies Re-ID and Re-MP.

Template expansion avoids heavy reliance on the masks provided by the first frame,

which may not capture sufficient pose variations of targets.

Note that we do not expect to retrieve all the masks of target objects in a given

sequence. In the first iteration, it is sufficient to obtain several high-quality starting

points for the mask propagation step. After each iteration of DyeNet, we select predic-

tions with high confidence to augment the template set. In practice, the first iteration

can retrieve nearly 25% masks as starting points on DAVIS 2017 dataset. After three

iterations, this rate will increase to 33%. In this work, DyeNet stops the iterative pro-

cess when no more high-confident masks can be found by the Re-ID module. Next, we

present the Re-ID and Re-MP modules.

3.1 Re-identification

We introduce the Re-ID module to search for targets in the video sequences. The mod-

ule has several unique features that allow it to retrieve a missing object that reappears

in different scales and poses. First, as discussed previously, we expand the template set

in every iteration we apply Re-ID and Re-MP. Template expansion enriches the tem-

plate set for more robust matching. Second, we employ the object proposal method to

estimate the location of target objects. Since these proposals are generated based on

anchors of various sizes, which cover objects of various scales, the Re-ID module can

handle large scale variations.

Figure 3(a) illustrates the Re-ID module. For the i-th frame, besides the feature fi,
the Re-ID module also requires the object proposals {bi1, ..., b

i
M} as input where M

indicates the number of proposal bounding boxes on this frame. We employ a Region

Proposal Network (RPN) [30] to propose candidate object bounding boxes on every

frame. For convenience, our RPN is trained separately from DyeNet, but their backbone

networks are shareable. For each candidate bounding box bij , we first extract its feature

from fi, and resize the feature into a fixed size m×m (e.g., 28×28) by RoIAlign [10],
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which is an improved form of RoIPool that removes harsh quantization. The extracted

features are fed into two shallow sub-networks. The first sub-network is a mask network

that predicts a m ×m binary mask that represents the segmentation mask of the main

instance in candidate bounding box bij . The second sub-network is a re-identification

network that projects the extracted features into an L2-normalized 256-dimensional

subspace to obtain the mask features. The templates are also projected onto the same

subspace for feature extraction.

By computing the cosine similarities between the mask and template features, we

can measure the similarity between candidate bounding boxes and templates. If a can-

didate bounding box is sufficiently similar to any template, that is, the cosine similarity

is larger than a threshold ρreid, we will keep its mask as a starting point for mask prop-

agation. In practice, we set ρreid with a high value to establish high-quality starting

points for our next step.

We employ ‘conv5 x’ block of ResNet-101 as the backbone of the sub-networks.

However, some modifications are necessary to adapt them to the respective tasks. In

particular, we decrease the convolutional strides in the mask network to capture more

details of prediction. For the re-identification network, we keep the original strides and

append a global average pooling layer and a fully connected layer to project the features

into the target subspace.

3.2 Recurrent Mask Propagation

As shown in Fig. 3(b), we bi-directionally extend the retrieved masks (i.e., starting

points) to form tracklets by using the Re-MP module. By incorporating short-term

memory, the module is capable of handling large pose variations, which complements

the re-identification module. We formulate the Re-MP module as a Recurrent Neural

Network (RNN). Figure 3(c) illustrates the mask propagation process between adjacent

frames. For brevity, we only describe the forward propagation. A backward propagation

can be conducted with the same approach.

Suppose ŷ is a retrieved segmentation mask for instance k in the i-th frame, and

we have propagated ŷ from i-th frame to (j − 1)-th frame, {yi+1, yi+2, ..., yj−1} is the

sequence of binary masks that we obtain. We now aim to predict yj , i.e., the mask for

instance k in the j-th frame. In a RNN framework, the prediction of yj can be solved as

hj = NR(h(j−1)→j , xj), (1)

yj = NO(hj), (2)

where NR and NO are the recurrent function and output function, respectively.

We first explain Eq. (1). We begin with estimating the location, i.e., the bounding

box, of instance k in the j-th frame from yj−1 by flow guided warping. More specifi-

cally, we use FlowNet 2.0 [13] to extract the optical flow F(j−1)→j between (j − 1)-th
and j-th frames. Other flow estimation methods [12, 31] are applicable too. The binary

mask yj−1 is warped to y(j−1)→j according to F(j−1)→j by a bilinear warping func-

tion. After that, we obtain the bounding box of y(j−1)→j as the location of instance k
in the j-th frame. Similar to the Re-ID module, we extract the feature map according

to this bounding box from fj by RoIAlign operation. The feature of this bounding box
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(a) Vanilla Re-MP 

(b) Re-MP with Attention Mechanism 

Fig. 4. Region attention in mask propagation.

is denoted as xj . The historical information of instance k from i-th frame to (j − 1)-
th frame is expressed by a hidden state or memory hj−1 ∈ R

m×m×d, where m × m
denotes the feature size and d represents the number of channels. We warp hj−1 to

h(j−1)→j by optical flow for spatial consistency. With both xj and h(j−1)→j we can

estimate hj by Eq. (1). Similar to the mask network described in Sec. 3.1, we employ

‘conv5 x’ block of ResNet-101 as our recurrent function NR. The mask for the instance

k in the j-th frame, yj , can then be obtained by using the output function in Eq. (2).

The output function NO is modeled by three convolutional layers.

Region attention. The quality of propagation to obtain yj relies on how accurate the

model in capturing the shape of target instance. In many cases, a bounding box may

contain distractors that can jeopardize the quality of mask propagated. As shown in

Fig 4(a), if we directly generate yj from hj , a model is likely to be confused by distrac-

tors that appear in the bounding box. To overcome this issue, we leverage the attention

mechanism to filter out potentially noisy regions. It is worth pointing out that attention

mechanism has been used in various computer vision tasks [1, 38] but not mask propa-

gation. Our work presents the first attempt to incorporate attention mechanism in mask

propagation.

Specifically, given the warped hidden state h(j−1)→j , we first feed it into a single

convolutional layer and then a softmax function, to generate the attention distribution

aj ∈ R
m×m×1 over the bounding box. Figure 4(b) shows the attention distributions

we learned. Then we multiply the current hidden state hj by aj across all channels to

focus on the regions we interested. And the mask yj is generated from enhanced hj by

using Eq. (2). As shown in Fig. 4, the Re-MP module concentrates on the tracked object

thanks to the attention mechanism. The mask propagation of an object aborts when its

size is too small, indicating a high possibility of occlusion. Finally, ŷ is extended to

a tracklet {yk1, ..., yi+1, ŷ, yi+1, ..., yk2} after the forward and backward propagation.

This process is applied to all the starting points to generate a set of tracklets. However,

in some cases, different starting points may produce the same tracklet, which leads

to redundant computation. To speed up the algorithm, we sort all starting points de-

scendingly by their cosine similarities against templates. We extend the starting points

according to the sorted order. If a starting point’s mask highly overlaps with a mask in
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existing tracklets, we skip this starting point. This step does not affect the results; on

the contrary, it greatly accelerates the inference speed.

Linking the tracklets. The previous mask propagation step generates potentially seg-

mented tracklets. We introduce a greedy approach to link those tracklets into consistent

mask tubes. It sorts all tracklets descendingly by cosine similarities between their re-

spective starting point and templates. Given the sorted order, tracklets with the highest

similarities are assigned to the respective templates. The method then examines the re-

maining tracklets in turn. A tracklet is merged with a tracklet of higher order if there

is no contradiction between them. In practice, this simple mechanism works well. We

will investigate other plausible linking approaches (e.g., conditional random field) in

the future.

3.3 Inference and Training

Iterative inference. During inference, we are given a video sequence {I1, ..., IN}, and

the masks of target objects in the first frame. As mentioned, we employ those masks as

the initial templates. DyeNet is iteratively applied to the whole video sequence until no

more high confidence instances can be found. The set of templates will be augmented

by the predictions with high confidences after each iteration.

Training details. The overall loss function of DyeNet is formulated as: L = Lreid +
λ(Lmask + Lremp), where Lreid is the re-identification loss of re-identification net-

work in Sec. 3.1, which follows Online Instance Matching (OIM) loss in [36]. Lmask

and Lremp indicate the pixel-wise segmentation losses of the mask network in Sec. 3.1

and recurrent mask propagation module in Sec. 3.2. The overall loss is a linear combi-

nation of those three losses, where λ is a weight that balances the scale of those lose

terms. Following [21, 16], the feature network is pre-trained by the semantic segmen-

tation task. The DyeNet is then jointly trained on the DAVIS training sets using 24k

iterations. We fix a mini-batch size of 32 images (from 8 videos, 4 frames for each

video), momentum 0.9 and weight decay of 5−4. The initial learning rate is 10−3 and

dropped by a factor of 10 after every 8k iterations.

4 Experiments

Datasets. To demonstrate the effectiveness and generalization ability of DyeNet, we

evaluate our method on DAVIS 2016 [27], DAVIS 2017 [28], SegTrackv2 [19] and You-

TubeObjects [29] datasets. DAVIS 2016 (DAVIS16) dataset contains 50 high-quality

video sequences (3455 frames) with all frames annotated with pixel-wise object masks.

Since DAVIS16 focuses on single-object video segmentation, each video has only one

foreground object. There are 30 training and 20 validation videos. DAVIS 2017 (DAVIS17)

supplements the training and validation sets of DAVIS16 with 30 and 10 high-quality

video sequences, respectively. It also introduces another 30 development test videos

and 30 challenge testing videos, which makes DAVIS17 three times larger than its pre-

decessor. Besides that, DAVIS17 re-annotates all video sequences with multiple objects.

All of these differences make it more challenging than DAVIS16. SegTrackv2 dataset

contains 14 low resolution video sequences (947 frames) with 24 generic foreground
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Table 1. Ablation study on Re-MP with DAVIS17 val.

Variant J -mean F -mean G-mean

MSK [26] ResNet-101 63.3 67.2 65.3

Re-MP
no attention 65.3 69.7 67.5

full 67.3 71.0 69.1

objects. For YouTubeObjects [29] dataset, we consider a subset of 126 videos with

around 20000 frames, and the pixel-level annotation are provided by [14].

Evaluation metric. For DAVIS17 dataset, we follow [28] that adopts region (J ), bound-

ary (F) and their average (G) measures for evaluation. To be consistent with existing

studies [34, 16, 26, 3], we use mean intersection over union (mIoU) averaged across all

instances to evaluate the performance in DAVIS16, SegTrackv2 and YouTubeObjects.

Training modalities. In existing studies [26, 16], training modalities can be divided

into offline training and online training. In offline training a model is only trained on

the training set without any annotations from the test set. Since the first frame annota-

tions are provided in the testing stage, we can use them for tuning the model, namely

online training. Online training can be further divided into per-dataset and per-video

training. In per-dataset online training, we fine-tune a model based on all the first frame

annotations from the test set, to obtain a dataset-specific model. Per-video online train-

ing adapts the model weights to each testing video, i.e., there will be as many video

specific models as the testing videos during the testing stage.

4.1 Ablation Study

In this section, we investigate the effectiveness of each component in DyeNet. Unless

otherwise indicated we employ the train set of DAVIS17 for training. All performance

are reported on the val set of DAVIS17. Offline training modality is used.

Effectiveness of Re-MP module. To demonstrate the effectiveness of Re-MP module,

we do not involve the Re-ID module in this experiment. Re-MP module is directly ap-

plied to extend the annotations in the first frame to form mask tubes. This variant degen-

erates our method to a conventional mask propagation pipeline but with an attention-

aware recurrent structure. We compare Re-MP module with the state-of-the-art mask

propagation method, MSK [26]. To ensure a fair comparison, we re-implement MSK

to have the same backbone ResNet-101 as DyeNet. We do not use online training and

any post-processing in MSK either. The re-implemented MSK achieves 78.7 J -mean

on DAVIS16 val set, which is much higher than the original result 69.9 reported in [26].

As shown in Table 1, MSK achieves 65.3 G-mean on DAVIS17 val set. Unlike MSK

that propagates predicted masks only, the proposed Re-MP propagates all historical

information by the recurrent architecture, and RoIAlign operation allows our network to

focus on foreground regions and produce high-resolution masks, which makes Re-MP

outperform MSK. The Re-MP with attention mechanism is more focused on foreground

regions, which further improves G-mean by 1.6.

Figure 5 shows propagation results of different methods. In this video, a dog passes

in front of a woman and another dog. MSK dyes the woman and the back dog with the
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Fig. 5. Examples of mask propagation. Best viewed in color.

Table 2. Ablation study on Re-ID with DAVIS17 val. The improvement of G-mean between rows

is because of template expansion.

ρreid 0.9 0.8 0.7 0.6

preci. recall G-mean preci. recall G-mean preci. recall G-mean preci. recall G-mean

Iter. 1 97.0 16.0 72.3 87.1 22.2 73.2 78.9 26.2 73.2 76.5 29.2 73.4

Iter. 2 90.3 29.3 73.3 75.6 32.5 73.7 68.9 33.5 74.1 65.5 34.1 74.0

Iter. 3+ 90.7 30.1 73.6 74.6 32.6 73.7 68.8 33.5 74.1 65.3 34.2 73.9

instance id of the front dog. The plain Re-MP does not dye other instances, but it is still

confused during the crossing and assigns the front dog with two instance ids. Thanks

to the attention mechanism, our full Re-MP is not distracted by other instances. Due to

occlusion, the masks of other instances are lost, and they will be retrieved by the Re-ID

module in the complete DyeNet.

Effectiveness of Re-ID module with template expansion. In DyeNet, we employ the

Re-ID module to search for target objects in the video sequence. By choosing an ap-

propriate similarity threshold ρreid, we can establish high-quality starting points for the

Re-MP module. The threshold ρreid controls the trade-off between precision and recall

of retrieved objects. Table 2 lists the precision and recall of retrieved starting points

in each iteration as ρreid varies, and corresponding overall performance. Tracklets are

linked by greedy algorithm in this experiment.

Overall, the G-mean is increased after each iteration due to the template expansion.

When ρreid decreases, more instances are retrieved in the first iteration, which leads

to high recall and G-mean. It also produces some imprecise starting points and further

affects the quality of templates in subsequent iterations, so the increase of performance

between each iteration is limited. In contrast, Re-ID module with high ρreid is stricter.

As the template set expands, it can still achieve satisfying recall rate gradually. In prac-

tice, the iterative process stops in about three rounds. Due to our greedy algorithm, the

overall performance is less sensitive to ρreid. When ρreid = 0.7, DyeNet achieves the

best G-mean. This value is used in all the following experiments.



12 X. Li and C. C. Loy

Table 3. Ablation study of each module in DyeNet with DAVIS17 test-dev.

Variant J -mean F -mean G-mean ∆G-mean

MSK[26] ResNet-101 50.9 52.6 51.7 -

Re-MP
no attention 55.4 60.5 58.0 + 6.2

full 59.1 62.8 61.0 + 9.2

+ Re-ID 65.8 70.5 68.2 + 7.2

offline offline only 60.2 64.8 62.5 - 5.6
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Fig. 6. Stage-wise performance increment according to specific attributes. Best viewed in color.

Effectiveness of each component in DyeNet. Table 3 summarizes how performance

gets improved by adding each component step-by-step into our DyeNet on the test-dev

set of DAVIS17. Our re-implemented MSK is chosen as the baseline. All models in this

experiment are first offline trained on the train and val set, and then per-dataset online

trained on the test-dev set.

Compared with MSK, our Re-MP module with attention mechanism significantly

improves G-mean by 9.2. The full DyeNet that contains both Re-ID and Re-MP mod-

ules achieves 68.2 by using greedy algorithm to link the tracklets. More remarkably,

without online training, our DyeNet achieves a competitive G-mean of 62.5.

To further investigate the contribution of each module in DyeNet, we categorize

instances in test-dev set by specific attributes, including:

– Size: Instances are categorized into ‘small’, ‘medium’, and ‘large’ according to

their size in the first frames’ annotations.

– Scale Variation: The area ratio among any pair of bounding boxes enclosing the

target object is smaller than 0.5. The bounding boxes are obtained from our best

prediction.

– Occlusion: An object is not, partially, or heavily occluded.

– Pose Variation: Noticeable pose variation, due to object motion or relative camera-

object rotation.

We choose the best version of DyeNet in Table 3, and visualize its stage-wise perfor-

mance according to specific attributes in Fig. 6. We find that object’s size and occlusion

are most important factors that affect the performance, and scale variation has more

influence on the performance than pose variation. By inspecting closer, we observe that

our Re-MP module can well track those small objects, which is the shortcoming of con-

ventional mask propagation methods. It also avoids the distraction from other objects

in partial occlusion cases. Complementary to Re-MP, Re-ID module retrieves missing
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Fig. 7. Visualization of DyeNet’s prediction. The first column shows the first frame of each video

sequence with ground truth masks. The frames are chosen at equal interval. Best viewed in color.

Table 4. Results on DAVIS17 test-dev.

online training J -mean F -mean G-mean
dataset video

OnAVOS†[34]
√ √

53.4 59.6 56.5

LucidTracker[16]
√ √

60.1 68.3 64.2

VS-ReID[21]
√

× 64.4 67.8 66.1

LucidTracker†[16]
√ √

63.4 69.9 66.6

DyeNet (offline) × × 60.2 64.8 62.5

DyeNet
√

× 65.8 70.5 68.2

instances due to heavy occlusions, greatly improves the performance in heavy occlusion

cases. Even with large pose variations, template expansion ensures Re-ID works well, .

4.2 Benchmark

In this section, we compare our DyeNet with other existing methods and show that it can

achieve the state-of-the-art performance on standard benchmarks, including DAVIS16,

DAVIS17, SegTrackv2 and YouTubeObjects datasets. In this section, DyeNet is tested

on a single scale without any post-processing. Table 4 lists the J , F and G-means on

DAVIS17 test-dev. Approaches with ensemble are marked with †. DyeNet is trained on

train and val sets of DAVIS17 and achieves a competitive G-mean of 62.5. It further im-

proves G-mean to 68.2 through online fine-tuning, which is the best-performing method

on DAVIS17 benchmark.

To show the generalization ability and transferability of DyeNet, we next evalu-

ate DyeNet on three other benchmarks, DAVIS16, SegTrackv2 and YouTubeObjects,

which contain diverse videos. For DAVIS16, DyeNet is trained on its train set. Since

there is no video for offline training in SegTrackv2 and YouTubeObjects, we directly

employ the model of DAVIS17 as their offline model. As summarized in Table 5, of-

fline DyeNet obtains promising performance, and after online fine-tuning, our model
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Table 5. Results (mIoU) across three datasets.

online training
DAVIS16 SegTrackv2 YoutbObjs

dataset video

VPN[15] × × 75.0 - -

SegFlow[5]
√ √

76.1 - -

OSVOS[3]
√ √

79.8 65.4 72.5

MSK[26]
√ √

80.3 70.3 72.6

LucidTracker[16]
√ √

84.8 77.6 76.2

OnAVOS[34]
√ √

85.7 - 77.4

DyeNet (offline) × × 84.7 78.3 74.9

DyeNet
√

× 86.2 78.7 79.6

achieves state-of-the-art performance on all three datasets. Note that although the videos

in SegTrackv2 and YouTubeObjects are very different from videos in DAVIS17, DyeNet

trained on DAVIS17 still gains outstanding performance on those datasets without any

fine-tuning, which shows its great generalization ability and transferability to diverse

videos. We also find that our offline predictions on YouTubeObjects are even better

than most ground-truth annotations, and performance losses are mainly caused by an-

notation bias. In Fig. 7, we demonstrate some examples of DyeNet’s predictions.

Speed Analysis. Most of existing methods require online training with post-processing

to achieve a competitive performance. Because of those time consuming processes, their

speed of inference is slow. For example, the full OnAVOS [34] takes roughly 13 seconds

per frame to achieve 85.7 mIoU on DAVIS16 val set. LucidTracker [16] that achieves

84.8 mIoU requires 40k iterations per-dataset, 2k per-video online training and post-

processing[6]. Our offline DyeNet is capable of obtaining similar performance (84.7
mIoU) at 2.4 FPS on a single Titan Xp GPU. After 2k per-dataset online training, our

DyeNet achieves 86.2 mIoU, and the corresponding running time is 0.43 FPS.

5 Conclusion

We have presented DyeNet, which joints re-identification and attention-based recurrent

temporal propagation into a unified framework to address challenging video object seg-

mentation with multiple instances. This is the first end-to-end framework for this prob-

lem with a few compelling components. First, to cope with pose variations of targets,

we relaxed the reliance of template set in the first frame by performing template expan-

sion in our iterative algorithm. Second, to achieve robust video segmentation against

distractors and background clutters, we proposed attention mechanism for recurrent

temporal propagation. DyeNet does not require online training to obtain competitive

accuracies at a faster speed than many existing methods. With online training, DyeNet

achieves state-of-the-art performance on a wide range of standard benchmarks (includ-

ing DAVIS, SegTrackv2 and YouTubeObjects).
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9. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation

and fine-grained localization. In: CVPR (2015)

10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR

(2016)

12. Hui, T.W., Tang, X., Loy, C.C.: LiteFlowNet: A lightweight convolutional neural network

for optical flow estimation. In: CVPR (2018)

13. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: Evolution

of optical flow estimation with deep networks. In: CVPR (2017)

14. Jain, S.D., Grauman, K.: Supervoxel-consistent foreground propagation in video. In: ECCV

(2014)

15. Jampani, V., Gadde, R., Gehler, P.V.: Video propagation networks. In: CVPR (2017)

16. Khoreva, A., Benenson, R., Ilg, E., Brox, T., Schiele, B.: Lucid data dreaming for object

tracking. In: CVPRW (2017)

17. Le, T.N., Nguyen, K.T., Nguyen-Phan, M.H., Ton, T.V., Nguyen, T.A., Trinh, X.S., Dinh,

Q.H., Nguyen, V.T., Duong, A.D., Sugimoto, A., Nguyen, T.V., Tran, M.T.: Instance re-

identification flow for video object segmentation. In: CVPRW (2017)

18. Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV

(2011)

19. Li, F., Kim, T., Humayun, A., Tsai, D., Rehg, J.M.: Video segmentation by tracking many

figure-ground segments. In: ICCV (2013)

20. Li, X., Liu, Z., Luo, P., Loy, C.C., Tang, X.: Not all pixels are equal: difficulty-aware semantic

segmentation via deep layer cascade. In: CVPR (2017)

21. Li, X., Qi, Y., Wang, Z., Chen, K., Liu, Z., Shi, J., Luo, P., Tang, X., Loy, C.C.: Video object

segmentation with re-identification. In: CVPRW (2017)

22. Li, Y., Qi, H., Dai, J., Ji, X., Wei, Y.: Fully convolutional instance-aware semantic segmen-

tation. In: CVPR (2017)

23. Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Deep learning markov random field for semantic

segmentation. TPAMI (2017)

24. Märki, N., Perazzi, F., Wang, O., Sorkine-Hornung, A.: Bilateral space video segmentation.

In: CVPR (2016)



16 X. Li and C. C. Loy

25. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: ICCV

(2013)

26. Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video

object segmentation from static images. In: CVPR (2017)

27. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.:

A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR

(2016)

28. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The
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