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Abstract. While deeper convolutional networks are needed to achieve maximum

accuracy in visual perception tasks, for many inputs shallower networks are suf-

ficient. We exploit this observation by learning to skip convolutional layers on a

per-input basis. We introduce SkipNet, a modified residual network, that uses a

gating network to selectively skip convolutional blocks based on the activations

of the previous layer. We formulate the dynamic skipping problem in the context

of sequential decision making and propose a hybrid learning algorithm that com-

bines supervised learning and reinforcement learning to address the challenges

of non-differentiable skipping decisions. We show SkipNet reduces computation

by 30− 90% while preserving the accuracy of the original model on four bench-

mark datasets and outperforms the state-of-the-art dynamic networks and static

compression methods. We also qualitatively evaluate the gating policy to reveal a

relationship between image scale and saliency and the number of layers skipped.

1 Introduction

A growing body of research in convolutional network design [10,18,28] reveals a clear

trend: deeper networks are more accurate. Consequently, the best-performing image

recognition networks have hundreds of layers and tens of millions of parameters. These

very deep networks come at the expense of increased prediction cost and latency. How-

ever, a network that doubles in depth may only improve prediction accuracy by a few

percentage points. While these small improvements can be critical in real-world applica-

tions, their incremental nature suggests that the majority of images do not require the

doubling in network depth and that the optimal depth depends on the input image.

In this paper, we introduce SkipNets (see Fig. 1) which are modified residual net-

works with gating units that dynamically select which layers of a convolutional neural

network should be skipped during inference. We frame the dynamic skipping problem as

a sequential decision problem in which the outputs of previous layers are used to decide

whether to bypass the subsequent layer. The objective in the dynamic skipping problem

is then to skip as many layers as possible while retaining the accuracy of the full network.

Not only can skipping policies significantly reduce the average cost of model inference

they also provide insight into the diminishing return and role of individual layers.

While conceptually simple, learning an efficient skipping policy is challenging. To

achieve a reduction in computation while preserving accuracy, we need to correctly

bypass the unnecessary layers in the network. This inherently discrete decision is not

differentiable, and therefore precludes the application of gradient based optimization.
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Fig. 1: The SkipNet learns to skip convolutional layers on a per-input basis. More layers

are executed for challenging images (top) than easy images (bottom)

While some [2,30,31] have proposed soft approximations, we show that the subsequent

hard thresholding required to reduce computation results in low accuracy.

Recent works [4,23] explored the application of reinforcement learning (RL) to

learn hard decision gates. While promising, in our experiments we show that these RL

based techniques are brittle, often getting stuck in poor local minima and producing

networks that are not competitive with the state-of-the-art. One can also apply the

reparametrization techniques [16,21], however, these approaches often find suboptimal

policies partly due to the approximation error introduced by the relaxation (detailed in

later sections).

We explore several SkipNet designs and introduce a hybrid learning algorithm which

combines supervised learning with reinforcement learning to address the challenges

of non-differentiable skipping decisions. We explicitly assign a gating module to each

group of layers. The gating module maps the previous layer activations to the binary

decision to skip or execute the subsequent layer. We train the gating module in two stages.

First, we use a soft-max relaxation of the binary skipping decisions by adopting the

reparameterization trick [16,21], and train the layers and gates jointly with standard cross

entropy loss used by the original model. Then, we treat the probabilistic gate outputs

as an initial skipping policy and use REINFORCE [34] to refine the policy without

relaxation. In the latter stage, we jointly optimize the skipping policy and prediction

error to stabilize the exploration process.

We evaluate SkipNets, using ResNets [10] as the base models, on the CIFAR-10,

CIFAR-100, SVHN and ImageNet datasets. We show that, with the hybrid learning

procedure, SkipNets learn skipping policies that significantly reduce model inference

costs (50% on the CIFAR-10 dataset, 37% on the CIFAR-100 dataset, 86% on the SVHN

dataset and 30% on the ImageNet dataset) while preserving accuracy. We compare

SkipNet with several state-of-the-art models and techniques on both the CIFAR-10 and

ImageNet datasets and find that SkipNet consistently outperforms the previous methods

on both benchmarks. By manipulating the computational cost hyper-parameter, we show

how SkipNets can be tuned for different computation constraints. Finally, we study

the skipping behavior of the learned skipping policy and reveal the relation between

image scale and saliency and the number of layers skipped. Our code is available at

https://github.com/ucbdrive/skipnet.

2 Related Work

Accelerating existing convolutional networks has been a central problem in real-world

deployments and several complementary approaches have been proposed. Much of this

https://github.com/ucbdrive/skipnet
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work focuses on model compression [5,9,12,20] through the application of weight spar-

sification, filter pruning, vector quantization, and distillation [13] to transfer knowledge

to shallower networks. These methods are applied after training the initial networks and

they are usually used as post-processing. Also, these optimized networks do not dynami-

cally adjust the model complexity in response to the input. While these approaches are

complimentary, we show SkipNet outperforms existing static compression techniques.

Several related efforts [6,8,29] explored dynamically scaling computation through

early termination. Graves [8] explored halting in recurrent networks to save computa-

tional cost. Figurnov et al. [6] and Teerapittayanon et al. [29] proposed the use of early

termination in convolutional networks. Closest to our work, Figurnov et al. [6] studied

early termination in each group of blocks of ResNets. In contrast, SkipNet does not exit

early but instead conditionally bypasses individual layers based on the output of the

proceeding layers which we show results in a better accuracy to cost trade-off.

Another line of work [1,22,32] explores cascaded model composition. This work

builds on the observation that many images can be accurately labeled with smaller

models. Bolukabasi et al [1] train a termination policy for cascades of pre-trained models

arranged in order of increasing costs. This standard cascaded approach fails to reuse

features across classifiers and requires substantial storage overhead. Similar to the work

on adaptive time computation, Bolukabasi et al. [1] also explore early termination within

the network. However, in many widely used architectures (e.g., ResNet) layers are

divided into groups; with some layers being more critical than others (Fig. 10a). The

in-network cascading work by [1] is unable to bypass some layers while executing

subsequent layers in future groups. SkipNets explore selecting layers within the network

in a combinatorial way leading to a search space that is a superset of cascading.

The gating modules in SkipNets act as regulating gates for groups of layers. They are

related to the gating designs in recurrent neural networks (RNN) [3,14,27]. Hochreiter

et al. [14] propose to add gates to an RNN so that the network can keep important

memory in network states, while Srivastava et al. [27] introduce similar techniques to

convolutional networks to learn deep image representation. Both [3] and [26] apply gates

to other image recognition problems. These proposed gates are “soft” in the sense that

the gate outputs are continuous, while our gates are “hard” binary decisions. We show in

our experiments that “hard” gating is preferable to “soft” gating for dynamic networks.

3 SkipNet Model Design

SkipNets are convolutional networks in which individual layers are selectively included

or excluded for a given input. The per-input selection of layers is accomplished using

small gating networks that are interposed between layers. The gating networks map the

output of the previous layer or group of layers to a binary decision to execute or bypass

the subsequent layer or group of layers as illustrated in Fig. 2.

More precisely, let xi be the input and F i(xi) be the output of the ith layer or group

of layers, then we define the output of the gated layer (or group of layers) as:

x
i+1 = G

i(xi)F i(xi) + (1−G
i(xi))xi, (1)
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(a) Feed-forward Gate (b) Recurrent Gate

Fig. 2: We study SkipNets with two gating designs. (a) Each residual block has a unique

gating module and gate parameters. (b) A unified recurrent gate is shared across blocks

where G i(xi) ∈ {0, 1} is the gating function for layer i. In order for Eq. 1 to be well

defined, we require F i(xi) and x
i to have the same dimensions. This requirement is

satisfied by commonly used residual network architectures where

x
i+1

ResNet = F
i(xi

ResNet) + x
i
ResNet, (2)

and can be addressed by pooling x
i to match the dimensions of F i(xi).

The gating network design needs to be both sufficiently expressive to accurately

determine which layers to skip while also being computationally cheap. To address

this trade-off between accuracy and computational cost we explore a range of gating

network designs (Sec. 3.1) spanning feed-forward convolutional architectures to recurrent

networks with varying degrees of parameter sharing. In either case, estimating the gating

network parameters is complicated by the discrete gate decisions and the competing

goals of maximizing accuracy and minimizing cost. To learn the gating network we

introduce a two stage training algorithm that combines supervised pre-training (Sec. 3.3)

with based policy optimization (Sec. 3.2) using a hybrid reward function that combines

prediction accuracy with the computational cost.

3.1 Gating Network Design

In this paper, we evaluate two feed-forward convolutional gate designs (Fig. 2a). The

FFGate-I (Fig. 3a) design is composed of two 3× 3 convolutional layers with stride of

1 and 2 respectively followed by a global average pooling layer and a fully connected

layer to output a single dimension vector. To reduce the gate computation, we add a

2× 2 max pooling layer prior to the first convolutional layer. The overall computational

cost of FFGate-I is roughly 19% of the residual blocks [10] used in this paper. As a com-

putationally cheaper alternative, we also introduce the FFGate-II (Fig. 3b), consisting of

one 3× 3 stride 2 convolutional layer followed by the same global average pooling and

fully connected layers as FFGate-I. The computational cost of FFGate-II is 12.5% of

the cost of the residual block. In our experiments, we use FFGate-II for networks with

more than 100 layers and FFGate-I for shallower networks.

The feed-forward gate design is still relatively costly to compute and does not

leverage the decisions from previous gates. Therefore, we introduce a recurrent gate

(RNNGate) design (Fig. 3c) which enables parameter sharing and allows gates to re-use

computation across stages. We first apply global average pooling on the input feature
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(a) FFGate-I (b) FFGate-II

shared

(c) RNNGate

Fig. 3: Gate designs. (a) FFGate-I contains two 3x3 convolutional layers and has roughly

19% of the computation of the residual block. (b) FFGate-II is composed of one convolu-

tional layer with stride of 2 and has about 12.5% of the computation of residual blocks.

(c) RNNGate contains a one-layer LSTM with both input and hidden unit size of 10. The

cost of the RNNGate is negligible at 0.04% of the cost of the residual blocks.

map of the gates and then linearly project the feature to the input size of 10. We adopt a

single layer Long Short Term Memory [14] (LSTM) with hidden unit size of 10. At each

gate, we project the LSTM output to a one-dimensional vector to compute the final gate

decision. Compared to the cost of computing residual blocks, the cost of this recurrent

gate design is negligible (roughly 0.04% of the computation of residual blocks).

In our later experiments, we find that the recurrent gate dominates the feed-forward

gates in both prediction accuracy and computation cost. We also evaluated simpler

feed-forward gate designs without convolution layers and while these matched the

computation cost of the recurrent gates the prediction accuracy suffered. We conjecture

that the recurrent gate design better captures the cross-layer dependencies.

3.2 Skipping Policy Learning with Hybrid RL

During inference the most likely action is taken from the probability distribution encoded

by each gate: the layer is skipped or executed. This inherently discrete and therefore

non-differentiable decision process creates unique challenges for how we train SkipNets.

A natural approximation, similar to that used in Highway Networks [27], would be to

use differentiable soft-max decisions during training and then revert to hard decisions

during inference. While this approach enables gradient based training, it results in poor

prediction accuracy (Sec. 4.3) as the network parameters are not optimized for the

subsequent hard-gating during inference. We therefore explore the use of reinforcement

learning to learn the model parameters for the non-differentiable decision process.

Because SkipNets make a sequence of discrete decisions, one at each gated layer,

we frame the task of estimating the gating function in the context of policy optimization

through reinforcement learning. We define the skipping policy:

π(xi, i) = P(G i(xi) = gi) (3)

as a function from the input xi to the probability distribution over the gate action gi
to execute (gi = 1) or skip (gi = 0) layer i. We define a sample sequence of gating

decisions drawn from the skipping policy starting with input x as:

g = [g1, . . . , gN ] ∼ πFθ
, (4)
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where Fθ =
[

F 1
θ , . . . ,F

N
θ

]

is the sequence of network layers (including the gating

modules) parameterized by θ and g ∈ {0, 1}N . The overall objective is defined as

minJ (θ) = minExEgLθ(g,x)

= minExEg

[

L(ŷ(x,Fθ,g), y)−
α

N

N
∑

i=1

Ri

]

,
(5)

where Ri = (1− gi)Ci is the reward of each gating module. The constant Ci is the cost

of executing F i and the term (1− gi)Ci reflects the reward associated with skipping F i.

In our experiments, all F i have the same cost and so we set Ci = 1. Finally α is a tuning

parameter that allows us to trade-off the competing goals of minimizing the prediction

loss and maximizing the gate rewards.

To optimize this objective, we can derive the gradients with respect to θ as follows.

We define πFθ
(x) = pθ(g|x), L = L(ŷ(x,Fθ,g), y) and ri = −[L − α

N

∑N

j=i Rj ].

∇θJ (θ) = Ex∇θ

∑

g

pθ(g|x)Lθ(g,x)

= Ex

∑

g

pθ(g|x)∇θL+ Ex

∑

g

pθ(g|x)∇θ log pθ(g|x)Lθ(g,x)

= ExEg∇θL − ExEg

N
∑

i=1

∇θ log pθ(gi|x)ri. (6)

The first part of Eq. 6 corresponds to the supervised learning loss while the second

part corresponds to the REINFORCE [34] gradient where ri is the cumulative future

rewards associated the gating modules. We refer to this combined reinforcement learning

and supervised learning procedure as hybrid reinforcement learning. In practice, we

may relax the reward r̂i = −
[

βL − α
N

∑N

j=i Rj

]

to scale down the influence of the

prediction loss as this hybrid reinforcement learning is followed by the supervised pre-

training that will be discussed in the next section. We set β = α
N

in our experiments on

ImageNet and β = 1 for other datasets.

3.3 Supervised Pre-training

Optimizing Eq. 5 starting from random parameters also consistently produces models

with poor prediction accuracy (Sec. 4.3). We conjecture that the reduced ability to learn

is due to the interaction between policy learning and image representation learning. The

gating policy can over-fit to early features limiting future feature learning.

To provide an effective supervised initialization procedure we introduce a form of su-

pervised pre-training that combines hard-gating during the forward pass with soft-gating

during backpropagation. We relax the gate outputs G(x) in Eq. 1 to continuous values

(i.e. approximating G(x) by S (x) ∈ [0, 1]). We round the output gating probability of

the skipping modules in the forward pass. During backpropagation we use the soft-max

approximation [16,21] and compute the gradients with respect to soft-max outputs. The
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Algorithm 1: Hybrid Learning Algorithm (HRL+SP)

Input: A set of images x and labels y

Output: Trained SkipNet

1. Supervised pre-training (Sec. 3.3)

θSP ← SGD(LCross-Entropy, SkipNet-Grelax(x))
2. Hybrid reinforcement learning (Sec. 3.2)

Initialize θHRL+SP with θSP

θHRL+SP ← REINFORCE(J , SkipNet-G(x))

relaxation procedure is summarized by:

Grelax(x) =

{

I(S (x) ≥ 0.5), forward pass

S (x), backward pass
, (7)

where I(·) is the indicator function. This hybrid form of supervised pre-training is able to

effectively leverage labeled data to initialize model parameters for both the base network

and the gating networks. After supervised pre-training we then apply the REINFORCE

algorithm to refine the model and gate parameters improving prediction accuracy and

further reducing prediction cost. Our two stage hybrid algorithm is given in Alg. 1.

4 Experiments

We evaluate a range of SkipNet architectures and our proposed training procedure on

four image classification benchmarks: CIFAR-10/100 [17], SVHN [24] and ImageNet

2012 [25]. We construct SkipNets from ResNet models [10] by introducing hard gates

between residual blocks. In Sec. 4.1, we evaluate the performance of SkipNets with both

gate designs and compare SkipNets with the state-of-the-art models including dynamic

networks and static compression networks which are also complementary approaches

to our methods. We also compare our approach with baselines inspired by [15] to

demonstrate the effectiveness of the learned skipping policy. In Sec. 4.2, we decipher the

dynamic essence of SkipNets with extensive qualitative study and analysis to reveal the

relation between image scale and saliency and number of layers skipped. In Sec. 4.3, we

discuss the effectiveness of the proposed learning algorithm and gating designs.

Datasets: Tab. 1 summarizes the statistics of datasets used in this paper. We follow

the common data augmentation scheme (mirroring/shifting) that is adopted for CIFAR

and ImageNet datasets [7,19,33]. For the SVHN dataset, we use both the training and

provided extra dataset for training and did not perform data augmentation [15]. For

preprocessing, we normalize the data with the channel means and standard deviations.

3 531,131 of the images are extra images of SVHN for additional training.
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Table 1: Dataset statistics

Dataset # Train # Test # Classes

CIFAR-10 50k 10k 10

CIFAR-100 50k 10k 100

SVHN 604k3 26k 10

ImageNet 1.28m 50k 1k

Table 2: Top 1 accuracy of ResNets (R for short)

Model CIFAR-10 CIFAR-100 SVHN Model ImageNet

R-38 92.50% 68.54% 97.94% R-34 73.30%

R-74 92.95% 70.64% 97.92% R-50 76.15%

R-110 93.60% 71.21% 98.09% R-101 77.37%

R-152 - - 98.14% - -

Models: For CIFAR and SVHN, we use the ResNet [10] architecture with 6n + 2
stacked weighted layers for our base models and choose n ={6, 12, 18, 25} to construct

network instances with depth of {38, 74, 110, 152}. For ImageNet, we evaluate ResNet-

34, ResNet-50 and ResNet-101 as described in [10]. We denote our model at depth

x by SkipNet-x. In addition, we add +SP and +HRL to indicate whether supervised

pre-training or hybrid reinforcement learning were used. If no modifier is provided then

we conduct the full two stage training procedure. Finally we will also use +FFGate and

+RNNGate to indicate which gating design is being used. If not specified, RNNGate

is used. We summarize the accuracy of the base models in Tab. 2. In later sections, we

demonstrate SkipNets can preserve the same accuracy (within a variance of 0.5%).

Training: Our two-stage training procedure combines supervised pre-training and

policy refinement with hybrid reinforcement learning. In the first stage, we adopt the

same hyper-parameters used in [10] for CIFAR and ImageNet and [15] for SVHN.

For the policy refining stage, we use the trained models as initialization and optimize

them with the same optimizer with decreased learning rate of 0.0001 for all datasets. We

train a fixed number of iterations (10k iterations for the CIFAR datasets, 50 epochs for

the SVHN dataset and 40 epochs for the ImageNet dataset) and report the test accuracy

evaluated at termination. The training time of the supervised pre-training stage is roughly

the same as training the original models without gating. Our overall training time is

slightly longer with an increase of about 30-40%.

4.1 SkipNet Performance Evaluation

In this subsection, we first provide the overall computation reduction of SkipNets on

four benchmark datasets to demonstrate SkipNet achieves the primary goal of reducing

computation while preserving full network prediction accuracy. We also show that by ad-

justing α, SkipNet can meet different computational cost and accuracy requirements. For

horizontal comparison, we show SkipNet outperforms a set of state-of-the-art dynamic

network and static compression techniques on both ImageNet and CIFAR-10.

Computation reduction while preserving full network accuracy: Fig. 4 and Fig. 5a

show the computation cost (including the computation of the gate networks), measured

in floating point operations (FLOPs), of the original ResNets and SkipNets with both
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Fig. 4: Computation reduction of SkipNet+SP and SkipNet+HRL+SP with feed-forward

gates and recurrent gates while preserving the full network accuracy. The computation

cost includes the computation of gates. We are able to reduce computation costs by 50%,

37% and 86% of the deepest models on the CIFAR-10, 100 and SVHN data. Compared

to using SP only, fine-tuning with HRL can gain another 10% or more computation

reduction. Since feed-forward gates are more expensive, SkipNets with recurrent gates

generally achieve greater cost savings

feed-forward and recurrent gate designs with α tuned to match the same accuracy

(variance less than 0.5%). The trade-off between accuracy and computational cost will

be discussed later. Following [10], we only consider the multiply-adds associated with

convolution operations as others have negligible impact on cost.

We observe that the hybrid reinforcement learning (HRL) with supervised pre-

training (SkipNet+HRL+SP) is able to substantially reduce the cost of computation.

Overall, for the deepest model on each dataset, SkipNet-110+HRL+SP with recurrent

gates reduces computation on the CIFAR-10 and CIFAR-100 datasets by 50% and 37%

respectively. The largest SkipNet-152+HRL+SP model with recurrent gates reduces com-

putation on the SVHN dataset by 86%. On the ImageNet data, the SkipNet-101+HRL+SP

using recurrent gates is able to reduce computation by 30%. Interestingly, as noted earlier,

even in the absence of the cost regularization in the objective, the supervised pre-training

of the SkipNet architecture consistently results in reduced prediction costs. One way to

explain it is that the shallower network is easier to train and thus more favorable. We also

observe that deeper networks tend to experience greater cost reductions which supports

our conjecture that only a small fraction of inputs require extremely deep networks.

Trade-off computational cost and accuracy: Eq. 5 introduces the hyper-parameter

α to balance the computational cost and classification accuracy. In Fig. 5b we plot the

accuracy against the average number of skipped layers for different values of α from

0.0 to 4.0 on ImageNet. We observe similar patterns on other datasets and details can be

found in the supplementary material. By adjusting α, one can trade-off computation and

accuracy to meet various computation or accuracy requirements.
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Fig. 5: ImageNet evaluation. (a) Computation reduction (12 - 30%) achieved by SkipNets

with RNNGates while preserving full network accuracy. (b) Trade-off between accuracy

and cost under different α. With small α, the computation drops faster than the decrease

of accuracy. (c) Comparison of SkipNet with state-of-the-art models. SkipNet consis-

tently outperforms existing approaches on both benchmarks under various trade-off

between computational cost and prediction accuracy

Comparison with state-of-the-art models: We compare SkipNet with existing state-

of-the-art models on both ImageNet (Fig. 5c) and CIFAR-10 (Fig. 6c). The SACT and

ACT models proposed by [6] are adaptive computation time models that attempt to

terminate computation early in each group of blocks of ResNets (Sec. 2). In addition, we

compare SkipNet with static compression techniques: PEFC [20] and LCCL [5] which

are also complementary approaches to our method.

As shown in Fig. 5c, SkipNet-101 outperforms SACT and ACT models by a large

margin on the ImageNet benchmark even though they are using the recent more accu-

rate pre-activation [11] ResNet-101 as the base model. We hypothesize that increased

flexibility afforded by the skipping model formulation enables the SkipNet design to

outperform SACT and ACT. Similar patterns can be observed on CIFAR-10 in Fig. 6c.4

For comparison with the static compression techniques, we plot the computation

FLOPs and the accuracy of the compressed residual networks (may have different depths

from what we used in this paper) in Fig. 5. Though the static compression techniques are

complementary approaches, SkipNet performs similar to or better than these techniques.

Note that, though LCCL [5] uses shallower and cheaper ResNets (34 layers on ImageNet

and 20, 32, 44 layers on CIFAR-10), our approach still obtains comparable performance.

Comparison with stochastic depth network variant: Huang et al.[15] propose stochas-

tic depth networks which randomly drop layers for a each training mini-batch and revert

to using the full network for inference. The original goal of the stochastic depth model

is to avoid gradient vanishing and speed up training. A natural variant of this model in

order to reduce inference computation cost is to skip blocks randomly with a chosen

ratio in both training and inference phases referred as SDV. We compare SkipNet to

SDV on both the CIFAR-10 and CIFAR-100 datasets shown in Fig. 6a and 6b. SkipNet

outperforms SDV by a large margin under networks with different depths.

4 We obtain the CIFAR-10 results by running the code provided by the authors
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Fig. 6: Comparison on CIFAR. (a) Comparison on CIFAR-10 with a variant of the

stochastic depth model (SDV) that randomly drops blocks with chosen ratios during

training and testing. The learned policy of SkipNet outperforms the baseline under

various skipping ratios (b) Comparison on CIFAR-100 with SDV (c) Comparison of

SkipNet with the state-of-the-art models on CIFAR-10. SkipNet is consistently matches

or out-performs state-of-the-art models
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(a) SkipNet +FFGate (b) SkipNet +RNNGate (c) SkipNet +FFGate (d) SkipNet +RNNGate

CIFAR-10 CIFAR-10 SVHN SVHN

Fig. 7: Visualization of easy and hard images in the CIFAR-10 and SVHN with SkipNet-

74. The top two rows are easy examples (with more than 15 layers skipped) and the

bottom two rows are hard examples (with fewer than 8 layers skipped). Easy examples

are brighter and clearer while hard examples tend to be dark and blurry

4.2 Skipping Behavior Analysis and Visualization

In this subsection, we investigate the key factors associated with the dynamic skipping

and qualitatively visualize their behavior. We study the correlation between block skip-

ping and the input images in the following aspects: (1) qualitative difference between

images (2) the scale of the inputs and (3) prediction accuracy per category. We find

that SkipNet skips more aggressively on inputs with smaller scales and on brighter and

clearer images. Moreover, more blocks are skipped for classes with high accuracy.

Qualitative difference between inputs: To better understand the learned skipping

patterns, we cluster the images that SkipNets skip many layers (treated as easy examples)

and keep many layers (treated as hard examples) in Fig. 7 for both CIFAR-10 and SVHN.

Interestingly, we find that images within each cluster share similar characteristics with

respect to saliency and clarity. On both datasets, we observe that the easy examples are
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(b) SVHN

Fig. 8: Distribution of number of blocks executed with multi-scale inputs. The x-axis is

the relative number of blocks executed to scale 1 (#block kept at scale s - #block kept at

scale 1). More blocks are executed for inputs with larger scales.

(a) Median of number of skipped layers (b) Distribution of number of skipped layers

Fig. 9: Correlation of number of skipped layers and the level of complexity of different

classes. (a) SkipNets skip more layers on classes with higher accuracy. (b) The distribu-

tion of the hard class (dogs) is left-skewed while the easy class (trucks) is right-skewed

more salient (bright, clear and with high contrast) while the hard examples are dark and

blurry which are even hard for humans to recognize. These findings suggest that SkipNet

can identify the visual difference of the inputs and skip layers accordingly.

Input scales: We conjecture the input scale affects the skipping decisions of the gates.

To verify this hypothesis, we conduct multi-scale testing of trained models on the

ImageNet and SVHN datasets. We plot the distribution of the number of blocks executed

of different input scales relative to the original scale 1 used in other experiments. We

observe on both datasets that the distributions of smaller scales are skewed left (executing

less blocks than the model with input scale 1) while the distributions of larger scales

are skewed right (more block executed). This observation matches the intuition that

inputs with larger scale require larger receptive field and thus need to execute more

blocks. Another interpretation is that SkipNet dynamically selects layers with appropriate

receptive field sizes for the given inputs with different input scales.

Prediction accuracy per category: We further study the correlation of skipping be-

haviors and the prediction accuracy per class on CIFAR-10. The conjecture is that the

SkipNet skips more on easy classes (class with high accuracy, e.g., truck class) while

skipping less on hard classes (class with low accuracy, e.g., cat and dog classes). We
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Fig. 10: Visualization and analysis on CIFAR-10. (a) Visualization of the skipping ratio

per block of SkipNet-74. The first and last few blocks are more critical in each group;

group 2 is heavily utilized. (b) Accuracy of SkipNet-38+HRL+SP, SkipNet-38+HRL+S

and SkipNet-38+RL with FFGates for different α values. SkipNet-38+RL (not plotted)

can only achieve ∼ 10% accuracy which indicates with pure RL, SkipNet fails to learn

the correct feature representations. Moreover, the accuracy improves consistently with

SP compared with random initialization.

plot the median of number of skipped layers in each class for SkipNet+SP and Skip-

Net+HRL+SP in Fig. 9a. It shows that while all classes tend to skip more aggressively

after applying HRL, SkipNets tend to skip more layers on easy classes. Fig. 9b indicates

that the distribution of hard classes (e.g. dog class) are skewed left, whereas easier classes

(e.g. truck class) are skewed right as SkipNet tends to skip more layers on easier classes.

Skip ratio of different blocks: We visualize the skip ratio of different blocks in SkipNet

in Fig. 10a on CIFAR-10. Visualizations of SkipNets on other datasets (e.g. ImageNet,

CIFAR-100) can be found in the supplementary material. The ResNet model can be

divided into 3 groups where blocks in the same group have the same feature map size

and tend to have similar functionality. Interestingly, we observe less skipping in group 2

than in groups 1 and 3 suggesting group 2 may be more critical to feature extraction.

4.3 SkipNet Design and Algorithm Analysis

Effectiveness of hybrid learning algorithm: We compare the performances of SkipNet-

38 trained using basic RL, hybrid RL from scratch (HRL+S), and hybrid RL plus su-

pervised pre-training (HRL+SP) on CIFAR-10 in Fig. 10b. For SkipNet+HRL+S and

SkipNet+RL, we train both networks for 80k iterations to match the total training steps

of the two-stage training of SkipNet+HRL+SP.

First, we were unable to train the model using the pure RL approach (SkipNet-

38+RL accuracy was roughly 10%). This provides strong evidence for the importance of

supervision in complex vision tasks. Second, SkipNet-38+HRL+SP consistently achieves

higher accuracy than SkipNet-38+HRL+S. The accuracy of SkipNet-38+HRL+S is lower

than the accuracy of the original ResNet-38 model even with very small α. This suggests

that supervised pre-training can provide a more effective initialization which helps the

HRL stage to focus more on skipping policy learning.
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Table 3: “Hard” gating vs “soft” gating. With similar computation, SkipNet (S for short)

with “hard” gating has much better accuracy than SkipNet with “soft” gating.

Data Model Acc. (%) FLOPs (1e8)

CIFAR-10

S-38-Hd 90.83 0.58

S-38-St 66.67 0.61

S-74-Hd 92.38 0.92

S-74-St 52.29 1.03

S-110-Hd 88.11 0.18

S-110-St 23.44 0.05

Data Model Acc.(%) FLOPs (1e8)

CIFAR-100

S-38-Hd 67.68 0.50

S-38-St 21.70 0.62

S-74-Hd 67.79 0.61

S-74-St 25.47 0.89

S-110-Hd 63.66 0.96

S-110-St 9.84 1.00

“Hard” gating and “Soft” gating design During supervised pre-training, we can either

treat gate outputs as “hard” (Sec. 3.3) or “soft” (Sec. 3.2).For “soft” gating, continuous

gating probabilities are adopted for training but discretized values are used for inference

to achieve the desired computation reduction. In Tab. 3, we show the classification

accuracy of SkipNet with “hard” (SkipNet-Hd) and “soft” gating (SkipNet-St) under

similar computation cost5. SkipNet-Hd achieves much higher accuracy than SkipNet-St

which may be due to the inconsistency between training and inference with soft gating.

5 Conclusion

We introduced SkipNet architecture that learns to dynamically skip redundant lay-

ers on a per-input basis, without sacrificing prediction accuracy. We framed the dy-

namic execution problem as a sequential decision problem. To address the inherent

non-differentiability of dynamic execution, we proposed a novel hybrid learning algo-

rithm which combines the strengths of supervised and reinforcement learning.

We evaluated the proposed approach on four benchmark datasets, showing that Skip-

Nets reduce computation substantially while preserving the original accuracy. Compared

to both state-of-the-art dynamic models and static compression techniques, SkipNets

obtain better accuracy with lower computation. Moreover, we conducted a range of

ablation study to further evaluate the proposed network architecture and algorithm.

The dynamic architectures offer the potential to be more computationally efficient

and improve accuracy by specializing and reusing individual components. We believe

that further study in this area will be critical to the long term progress in machine learning

and computer vision.
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