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Abstract. Ego-pose estimation, i.e., estimating a person’s 3D pose with
a single wearable camera, has many potential applications in activity
monitoring. For these applications, both accurate and physically plau-
sible estimates are desired, with the latter often overlooked by exist-
ing work. Traditional computer vision-based approaches using temporal
smoothing only take into account the kinematics of the motion without
considering the physics that underlies the dynamics of motion, which
leads to pose estimates that are physically invalid. Motivated by this,
we propose a novel control-based approach to model human motion
with physics simulation and use imitation learning to learn a video-
conditioned control policy for ego-pose estimation. Our imitation learn-
ing framework allows us to perform domain adaption to transfer our
policy trained on simulation data to real-world data. Our experiments
with real egocentric videos show that our method can estimate both ac-
curate and physically plausible 3D ego-pose sequences without observing
the cameras wearer’s body.

Keywords: first-person vision, pose estimation, imitation learning

Fig. 1. Our 3D ego-pose estimation results using egocentric videos.

1 Introduction

Our task is to use a single head-mounted wearable camera to estimate the 3D
body pose sequence of the camera wearer, such that the estimated motion se-
quence obeys basic rules of physics (e.g., joint limits are observed, feet contact
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the ground, motion conserves momentum). Employing a single wearable camera
to estimate the pose of the camera wearer is useful for many applications. In
medical monitoring, the inferred pose sequence can help doctors diagnose pa-
tients’ condition during motor rehabilitation or general activity monitoring. For
athletes, egocentric pose estimation provides motion feedback without instru-
menting the environment with cameras, which may be impractical for sports like
marathon running or cross-country skiing. In virtual reality games, the headset
wearer’s poses can be reproduced in the virtual environment to create a better
multi-player gaming experience without additional sensors. In many applica-
tions, accurate and physically-valid pose sequences are desired.

However, estimating physically-valid 3D body poses from egocentric videos
is challenging. First, egocentric cameras typically face forward and have almost
no view of the camera wearer’s body. The task of estimating 3D pose is under-
constrained as the video only encodes information about the position and ori-
entation of the camera’s viewpoint. Second, with a single wearable camera, we
have no access to the forces being applied to the body, such as joint torques or
ground contact forces. Without observations of these forces, it is very difficult
to learn the relationship between camera-based motion features and body pose
using physics simulation in a data-driven way. Most traditional approaches to
human pose estimation in computer vision side-step the issue of physics com-
pletely by focusing primarily on the kinematics of human motion. Unfortunately,
this can sometimes result in awkward pose estimates that allow the body to float
in the air or joints to flex beyond what is physically possible, which makes it
difficult to use for motion analysis applications. New technical approaches are
needed to tackle these challenges of generating physically-valid 3D body poses
from egocentric video.

In light of these challenges, we take a radical departure from the kinematics-
based representation traditionally used in computer vision towards a control-
based representation of humanoid motion commonly used in robotics. In the
traditional kinematics-based representation used for pose estimation from videos,
a human pose sequence is typically modeled as a sequence of poses {p1, . . . , pT }.
It is common to use a temporal sequence model (e.g., hidden Markov model,
linear chain CRF, recurrent neural network) where the estimate of each pose pt
is conditioned on image evidence It and a prior pose pt−1 (or some sufficient
statistics of the past, e.g., hidden layer in the case of RNN). While it is often
sufficient to reason only about the kinematics of the pose sequence for pose
estimation, when one would like to evaluate the physical validity of the sequence,
it becomes necessary to understand the control input that has generated each
pose transition. In other words, we must make explicit the torque (control input)
that is applied to every joint to move a person from pose pt to pt+1. Under
a control-based method, a human pose sequence needs to be described by a
sequence of states and actions (control inputs) {s1, a1, s2, a2, . . . , sT } where state
st contains both the pose pt and velocity vt of the human. A control-based model
explicitly takes into account the control input sequence and learns a control
policy π(a|s), that maps states to actions for optimal control. Making explicit
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the control input is essential for generating a state sequence based on the laws
of physics.

The use of a control-based method requires access to interaction with real-
world physics or in our scenario, a physics simulator. The use of a physics sim-
ulator for learning a control policy provides two major advantages. First, the
physical properties of the virtual humanoid, such as joint actuation limits and
range limits, used in the simulator serve as a gating mechanism to constrain
the learning process to generate actions that are humanly possible. Second, the
physical constraints of the simulation environment ensure that only physically-
valid pose sequences are estimated such that the feet will not penetrate the
ground or slip during contact. Within the confines of the physic simulator, the
goal of control policy learning is to learn a virtual humanoid policy that maps
the current state (pose and velocity, optionally egocentric video) to an action
(joint torques). Formally, we frame first-person pose estimation as a sequential
decision process using a Markov decision process (MDP). The state of the MDP
is the state of our humanoid model defined in terms of joint positions, joint ve-
locities and the observed first-person POV video. The action is the joint torques
exerted by joint actuators. The transition probability is the humanoid dynam-
ics provided by the physics simulation environment. In our imitation learning
framework, the reward function is based on the similarity between the generated
pose and its corresponding training pose. Based on this MDP, we perform imita-
tion learning (IL) to obtain a humanoid control policy that is conditioned on the
egocentric video. Once an optimal policy is learned, it can be used to generate
a physically-grounded pose sequence given an egocentric video sequence.

The use of imitation learning to estimate pose from egocentric video requires
a set of demonstrated ‘expert behaviors’ which in our scenario would be a set of
egocentric videos labeled with 3D joint positions and joint torques. However, it is
not easy to obtain such data without instrumenting the body with other sensors
such as an exoskeleton [6]. Instead, we propose a two-step imitation learning
process to learn a video-conditioned humanoid control policy for ego-pose esti-
mation. In the first step, following Merel et al. [11], we learn a set of humanoid
control policies imitating different human behaviors in motion capture data to
generate virtual humanoid pose sequences, from which we can render first-person
POV videos. In the second step, imitation learning is again used to learn a video-
conditioned policy which maps video features to optimal joint torques, to yield
a physically valid 3D pose sequence. In this way, we are able to learn a video-
conditioned control policy without the need for direct measurements of joint
torques from the camera wearer.

We note that the two-stage imitation learning process described thus far
relies only on simulations in a virtual environment and overlooks the problem
of the domain gap between the virtual and real data. Thus, we further propose
to fine-tune the video-conditioned policy at test time using real data to perform
domain adaptation. We use regression to estimate the best initial state that
maximizes the policy’s expected return and fine-tune the policy with policy
gradient methods. We evaluate our approach on both virtual world data and
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real-world data and show that our pose estimation technique can generalize well
to real first-person POV video data despite being trained on virtual data.

In this work, we aim to show that a decision-theoretic approach to human
motion estimation offers a powerful representation that can naturally map the
visual input of the human visual system (i.e., egocentric video) to body dynamics
while taking into account the role of physics. Towards this aim, we focus on
estimating the pose of human locomotion using a head-mounted camera. To
the best of our knowledge, this is the first work to utilize physically grounded
imitation learning to generate ego-pose estimates using a wearable camera.

2 Related work

Third-person pose estimation. Pose estimation from third-person images or
videos has been studied for decades [21, 10]. Existing work leverages the fact
that full human body can be seen by the third-person camera. In contrast, we
consider the case where the person is entirely out of sight. Thus, existing pose
estimation methods are not immediately applicable to our problem setting. Some
of these methods use regression to map from images to pose parameters [1, 24,
31, 26], including the recent work DeepPose [31] that uses convolutional neural
networks. It is tempting to directly apply regression-based methods to egocentric
pose estimation. However, such approaches are inadequate since the egocentric
images only contain information about the position and orientation of the cam-
era. Even if the method can perfectly reconstruct the motion of the camera,
the underlying human poses are still under-constrained. Without prior informa-
tion as regularization, unnatural human poses will emerge. This motivates us to
physically model and simulate the human, and use the human dynamics as a
natural regularization.
Egocentric pose estimation. Limited amount of research has looked into the
problem of inferring human poses from egocentric images or videos. Most of ex-
isting methods still assume the estimated human body or part of the body is
visible [8, 9, 16, 2, 17]. The “inside-out” mocap approach of [25] gets rid of the
visibility assumption and infer the 3D locations of 16 or more body-mounted
cameras via structure from motion. Recently, [7] show that it is possible to esti-
mate human pose using a single wearable camera. They construct a motion graph
from the training data and recover the pose sequence by solving for the optimal
pose path. In contrast, we explicitly model and simulate human dynamics, and
learns a video-conditioned control policy.
Adversarial imitation learning. Our problem suits a specific setting of imita-
tion learning in which the learner only has access to samples of expert trajectories
and is not allowed to query the expert during training. Behavior cloning [15],
which treats the problem as supervised learning and directly learns the mapping
from state to action for each timestep, suffers from compounding error caused by
covariate shift [18, 19]. Another approach, inverse reinforcement learning (IRL)
[20, 12], learns a cost function by prioritizing expert trajectories over others and
thus avoid the compounding error problem common in methods that fit single-
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timestep decisions. However, IRL algorithms are very expensive to run because
they need to solve a reinforcement learning problem in the inner loop. Generative
adversarial imitation learning (GAIL; [4]) extends the GAN framework to solve
this problem. A policy acts as a generator to produce sample trajectories and
a discriminator is used to distinguish between expert trajectories and generated
ones. It uses reinforcement learning algorithms to optimize the policy and the
policy is rewarded for fooling the discriminator. The key benefit of GAIL is that
no explicit hand-designed metric is needed for measuring the similarity between
imitation and demonstration data.
Learning human behaviors. There have been two types of approach for mod-
eling human movements: one is purely kinematic, and the other is physical
control-based. For the former, a good amount of research models the kinematic
trajectories of human from motion capture data in the absence of physics [29, 27,
5]. The latter has long been studied in graphics community and is more relevant
to our scenario. Many of these methods are model-based and require significant
domain expertise. With rapid development in deep reinforcement learning (Deep
RL), exciting recent work has used Deep RL for locomotion of 2D creatures [13]
and 3D humanoid [14]. More recently, adversarial imitation learning from mo-
tion capture data [11] has shown beautiful results. They use context variables to
learn a single policy for different behaviors such as walking and running. As a
follow-up work, [32] propose to learn the context variables by a variational auto
encoder (VAE).

Fig. 2. Overview of our proposed pose estimation pipeline.

3 Approach

Towards our goal of estimating a physically valid 3D body pose sequence of a per-
son using video acquired with a head-mounted camera, we propose a two-step
imitation learning technique that leverages motion capture data, a humanoid
model and a physics simulator. As shown in Figure 2, in our first phase, our
proposed method starts with learning an initial set of C expert policies {π̂c}

C
c=1,
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each of which represents a specific type of human behavior, e.g., walking or
running. In the second phase, virtual demonstrations of the humanoid are gen-
erated from each of the C policies, including state and action sequences of the
humanoid, along with virtual egocentric video sequences captured by the hu-
manoid’s head-mounted camera. With this virtual expert demonstration data,
we again use imitation learning to learn a video-conditioned policy that can
map egocentric video features directly to joint torques which generate the pose
sequence.

Fig. 3. Left: The humanoid model. Green arrows illustrate 3D vectors from the root
to the feet, head and hands provided to the policy and discriminator. Right: Selected
key frames of running and walking clips in motion capture data animated using the
humanoid model.

Humanoid Model. By design, our underlying control policy assumes a pre-
defined humanoid model which can be actuated in a virtual environment (see
Figure 3). The humanoid model we use consists of 31 rigid bodies, 56 hinge joints
and 63 degrees of freedom (DoFs). All the hinge joints can be actuated and have
torque limits and range limits. The joints also have physical properties such as
stiffness and damping. It is important to note here that the careful design of the
humanoid is critical for solving the under-constrained problem of pose estimation
from egocentric videos because the model must be similar enough to the human
body for the physics simulation to match real human motion.

Humanoid Control Policy. It is common to use a Markov decision process
(MDP) to model the effect of control on the dynamics of a system. In our sce-
nario, given the humanoid model, we can formulate human(oid) motion as the
output of an MDP, where any given 3D body pose sequence is assumed to be
generated by an optimal policy derived from the MDP. The MDP is defined by a
tuple M = 〈S,A, P,R, γ〉, where S is the state space, A is the action (or control)
space, T is the state transition dynamics, γ is the discount factor and R is the
reward or cost function typically defined over the state and action space. In our
formulation, the state s represents the state of the humanoid and optionally the
egocentric video (second step of our learning task). The state z of the humanoid
consists of the pose p and velocity v. The pose p contains the position and ori-
entation of the root, as well as the 56 joint angles. The velocity v consists of the
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linear and angular velocities of the root as well as the joint velocities. The action
is composed of the joint torques of all actuated hinge joints. The dynamics of the
humanoid is denoted by P (st+1|st, at) (i.e., how the control or action a affects
the pose transition) which is determined by the simulation environment (we use
the MuJoCo simulator [30]).

The solution of a given MDP is an optimal policy π that maximizes the ex-
pected return. We use π(a|s) to denote the policy, which outputs the probability
of choosing action a ∈ A when the agent is in state s ∈ S. We use a multivariate
normal distribution to model the policy π where the mean and log standard
deviation are parameterized by neural networks. In our final task, we want to
learn a video-conditioned policy that maps humanoid state z and egocentric
video V1:T to joint torques, to estimate a physically valid 3D pose sequence. In
what follows, we describe a two-step imitation learning method for learning this
video-conditioned policy.

3.1 Stage 1: Imitation Learning for Data Generation

Instead of directly generating virtual egocentric POV videos using motion cap-
ture data, we propose to first learn a set of expert control policies imitating the
human behaviors from the motion capture data and then use the expert pol-
icy for egocentric video generation. This provides two advantages. First, motion
capture data is often noisy and our humanoid model cannot perfectly match the
real human motion sequence. In contrast, an expert policy successfully learned
from motion capture data can generate pose sequences that are noise free and
realizable by our humanoid model. Second, the imitation learning procedure
solves the inverse dynamics problem (i.e., the control policy π(a|s) is learned
from observed state transition dynamics p(s′|s)) and the policy provides the
joint torques for generating novel pose sequences and egocentric videos, which
we show later is needed for learning the video-conditioned policy.

Our method first learns a set of expert policies {π̂c}
C
c=1 from motion capture

data using generative adversarial imitation learning (GAIL) following Merel et
al. [11]. Each of the expert policies represents a specific type of human behavior.
In this stage, the state s of the MDP is just the state of the humanoid z as no
video input is involved. Similar to GAN, the loss function of GAIL takes the
form:

ℓ(θ, φ) = Ez∼πθ
[log (1−Dφ(z))] + Eẑ∼π̂[log (Dφ (ẑ))] , (1)

where πθ is the policy we want to learn and π̂ is the expert policy implicitly rep-
resented by expert demonstrations {ẑi}

N

i=1. At each iteration, the policy acts as
a generator to collect samples {zi}

M
i=1 and rewards {ri}

M
i=1. Using these samples

and rewards, policy gradient methods (e.g., TRPO [22], PPO [23]) are employed
to update the policy and thus decrease the loss ℓ w.r.t θ. Once the generator
update is done, we also need to update the discriminator to distinguish between
generated samples and expert demonstrations. As argued by Merel et al. [11],
using the full state z of the humanoid performs poorly because our simplified
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Algorithm 1 Video-conditioned generative adversarial imitation learning

Input: Set of expert demonstrations {τ̂i}
N
i=1

Output: Learned policy πθ (a|z, V1:T )
Randomly Initialize policy πθ and discriminator Dφ

repeat

// Perform generator updates
for k in 1 . . . N do

Sample an expert trajectory τ̂k from {τ̂i}
N
i=1

Conditioned on V̂ k

1:T̂k
, execute policy πθ to collect learner’s trajectory τk

Compute rewards rkt = − log
(

1 − Dφ(z
k
t , V̂

k

1:T̂k
)
)

− α||pk
t − p̂k

t ||2 + β

end for

Update θ by policy gradient methods (e.g. TRPO, PPO) using rewards {rkt }
// Perform discriminator updates
for j in 1 . . . J do

ℓ(φ) = 1

N

∑N
k=1

[

1

Tk

∑Tk
t=1

log
(

1 − Dφ(z
k
t , V̂

k

1:T̂k
)
)

+ 1

T̂k

∑T̂k
t=1

log
(

Dφ(ẑ
k
t , V̂

k

1:T̂k
)
)

]

Update φ by a gradient method w.r.t. ℓ(φ)
end for

until Max iteration reached

humanoid model cannot perfectly match the real human. Thus, we only use a
partial state representation of the humanoid as state input z to both the policy
and discriminator. Our partial state includes the root’s linear and rotational ve-
locities axis-aligned to the root orientation frame, upward direction of the root,
as well as 3D displacement vectors from the root to each foot, each hand, and
head, also in the root coordinate frame (see Figure 3 (Left)). We also added the
orientation of the head in the root coordinate to the partial state for GAIL to
learn natural head motions. After we train expert policies {π̂c}

C
c=1 using GAIL,

we can generate a large amount of expert trajectories {τ̂i}
N

i=1 from different hu-
man behaviors, where each expert trajectory τ̂i contains a state sequence ẑi

1:T̂i
,

an action sequence âi
1:T̂i

and a virtual egocentric video sequence V̂ i

1:T̂i
.

3.2 Stage 2: Imitation Learning for Ego-Pose Estimation

Using the expert trajectories {τ̂i}
N

i=1 generated in the first stage, we can now
learn a video-conditioned policy πθ (a|z, V1:T ) with our video-conditioned GAIL
(VGAIL) algorithm outlined in Algorithm 1. As we only care about the motion
of the camera, we extract optical flow from egocentric videos and overload the
notation to use optical flow as the video motion features V1:T . In this stage, the
state s of the MDP is the combination of the state z of the humanoid and the
egocentric optical flow V1:T . The VGAIL loss becomes

ℓ(θ, φ) = Ez∼πθ

[

log
(

1−Dφ(z, V̂1:T )
)]

+ Eẑ∼π̂

[

log
(

Dφ

(

ẑ, V̂1:T

))]

. (2)

We use V̂1:T in above equation since the policy is trained on egocentric videos in
expert demonstrations. In GAIL, expert demonstrations are a set of expert states
{ẑi} of the humanoid and their temporal correlation is dismissed. In VGAIL,
expert demonstrations become a set of expert trajectories {τ̂i} with sampled
expert trajectory τ̂k containing a state sequence ŝk

1:T̂k
(poses p̂k

1:T̂k
and velocities



3D Ego-Pose Estimation via Imitation Learning 9

v̂k
1:T̂k

), an action sequence âk
1:T̂k

and a video sequence V̂ k

1:T̂k
. This provides two

benefits. First, as we want our policy-generated pose sequence pk1:Tk
to match

with the expert pose sequence, we use the expert pose sequence p̂k
1:T̂k

to augment

the reward with an additional pose alignment term −||pkt − p̂
k
t ||2, which uses L2-

norm to penalize pose difference. Second, we can use the action sequence âk
1:T̂k

to pre-train the policy with behavior cloning [15], which accelerates the training
significantly. The reward for VGAIL is

rkt = − log
(

1−Dφ(z
k
t , V̂

k
1:Tk

)
)

− α||pkt − p̂kt ||2 + β , (3)

where α is a weighting coefficient and β is a ‘living’ bonus to encourage longer
episode (the simulation episode will end if the humanoid falls down). α and β
are set to 3.0 and 5.0 respectively in our implementation.

Again, we use the partial state of the humanoid discussed in Section 3.1
as humanoid state z to both the policy and discriminator. As shown in Fig-
ure 4(Bottom), for both the policy and discriminator networks, we use a CNN
to extract visual motion features and pass them to a bidirectional LSTM to
process temporal information, and a multilayer perceptron (MLP) following the
LSTM outputs the action distribution (policy) or the classification probabil-
ity (discriminator). Once the video-conditioned policy πθ (a|z, V1:T ) is learned,
given an egocentric video with its optical flow V1:T and the initial state of the
humanoid, we execute the policy πθ inside the physics simulator and always
choose mean actions to generate the corresponding pose sequence of the video.

3.3 Initial State Estimation and Domain Adaptation

The straightforward use of the video-conditioned policy on real egocentric video
data will lead to failure for two reasons. First, without a mechanism for reli-
ably estimating the initial state z1 of the humanoid, the actions generated by
the policy cause the humanoid to fall down in the physics simulator because it
cannot reconcile extreme offset between the phase of the body motion and the
video motion. Second, the visual features learned from the optical flow in the
virtual world (checkered floor and sky box) is usually very different from the
environment in real egocentric videos, and therefore the policy is not able to
accurately interpret the optical flow. We propose two important techniques to
enable pose estimation with real-world video data.
Initial state estimation. We propose to learn a set of state estimators {fc}

C
c=1

where fc maps an optical flow V1:T to its corresponding state sequence z1:T and is
learned using expert trajectories generated by expert policy π̂c. The state at time
t can be extracted by fc(V1:T )t. fc is implemented as the state estimation network
in Figure 4(Bottom). Visual motion features from the optical flow are extracted
by a CNN and passed to a bidirectional LSTM before going into a multilayer
perceptron (MLP) which makes the state predictions. We use the mean square

error as loss which takes the form lc(ψ) =
1
T

∑T

t=1 ||fc(V1:T )t − zt||
2, where ψ is

the parameters of fc. We can get an optimal fc by a SGD-based method. The
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state estimators are used for initial state estimation in the policy fine-tuning
step described below.
Policy fine-tuning. Our imitation learning framework allows us to fine-tune
the policy on test data (of course without requiring any ground truth pose data).
This fine-tuning step is essentially a reinforcement learning step that adapts the
policy network to the video input V1:T while maximizing the reward for matching
the training data distribution. In order to utilize a policy gradient method to
improve and adapt the policy, we need a reward function and an initial state
estimate. We define a reward function that will help to ensure that the fine-tuned
policy generates pose sequences that are similar to the training data. Given the
test video’s optical flow V1:T , the fine-tuning reward is defined as

rt = − log (1−Dφ(zt, V1:T )) + ξ , (4)

where ξ is a ‘living’ bonus (set to 0.5 in our implementation). The initial state
estimate can be obtained using the state estimators described above by solving
the following optimization problem:

c∗, b∗ = argmax
c=1...C, b=1...10

Ez1=fc(V1:T )b, at∼πθ

[

T
∑

t=1

γtrt

]

, (5)

where c∗ is the index of the optimal estimator and b∗ is the optimal start
frame offset. This step enables our method to find the best initial state esti-
mator fc∗ and the best start frame b∗ by maximizing the expected return, where
the expected return can be estimated by sampling trajectories from the video-
conditioned policy. We then perform fine-tuning by sampling trajectories of the
policy starting from the initial state fc∗(V1:T )b∗ and computing rewards using
Equation 4. We employ policy gradient methods (e.g., PPO [23]) to update the
policy using the sampled trajectories and rewards.

4 Experimental Setup

To evaluate our proposed method’s ability to estimate both accurate and phys-
ically valid pose sequence from an egocentric video, we tested our method on
two datasets. The first one is a synthetic dataset using the same expert poli-
cies we learned in Section 3.1. The synthetic dataset will allow us to evaluate
the accuracy of the 3D pose estimates and control actions since we have access
to the ground truth through the simulator. The second dataset is composed of
real-world first-person videos of different people walking and running. Our aim is
to show the robustness of our technique through domain adaptation and initial
pose estimation for real-world videos. Evaluations, however, are based on noisy
ground truth estimates using a 2D projection of joint positions using a second
static camera.
Baselines. We compare our methods against two baselines:

1. Pose regression: direct regression from video motion features to poses.
Similar to the initial state estimation in Section 3.3, pose regression learns a
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Fig. 4. Top: Humanoid falling down due to the error in initial state estimate. Mid:

After fine-tuning for 20 iterations, the policy can generate correct walking estimates.
Bottom: Network architecture for the policy, discriminator and state estimator. All
three networks employ the same architecture for processing the optical flow: a CNN
with three convolutional layers of kernel size 4 and stride 4 is used and the size of its
hidden channels are (32, 32, 8), and a bidirectional LSTM is used to distill temporal
information from the CNN features. For the policy and discriminator, we concatenate
the LSTM output with the humanoid state z and pass it to a MLP with hidden size
(300, 300, 200, 100), which outputs the action distribution (policy) or classification
probability (discriminator). For the state estimation network, the LSTM output is
passed to a MLP with hidden size (300, 300, 200) which outputs the state estimate.

mapping from egocentric optical flow V1:T to its corresponding pose sequence
p1:T . The regression network is the same as the state estimation network in
Figure 4(Bottom), except the final outputs are poses instead of states.

2. Path pose: an adaptation of the method proposed by Jiang and Grauman
[7]. This method maps a sequence of planar homographies to poses along
with temporal conditional random field (CRF) smoothing to estimate the
pose sequence. We do not use static scene cues as the original work since our
training data is synthetic.

Both of these baselines do not impose any physical constraints on their so-
lutions but rather attempt to directly estimate body poses.
Evaluation Metrics. To evaluate the accuracy and physical soundness of all
methods, we use both pose-based and physics-based metrics:

1. Pose error: Pose-based metric that measures the euclidean distance be-
tween the generated pose sequence p1:T and the true pose sequence p̂1:T . It
can be calculated as 1

T

∑T

t=1 ||pt − p̂t||2.
2. 2D projection error: Pose-based metric used for real-world dataset where

the ground-truth 3D pose sequence of the person is unknown. We project
3D joint locations of our estimated pose into a 2D image plane using a
side-view virtual camera. The 2D projection error can be calculated as
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1
TJ

∑T

t=1

∑J

j=1 ||q
j
t − q̂jt ||2 where qjt is the j-th joint’s 2D position of our

estimated pose and q̂jt is the ground-truth. We use OpenPose [3] to extract
the ground-truth 2D joint positions from the side-view video. To comply
with OpenPose, we only evaluate 12 joints (hips, knees, ankles, shoulders,
elbows and wrists). For the 2D poses from our method and OpenPose, we
align their positions of the center of the hips and scale the 2D coordinates
to make the distance between shoulder and hip equals 0.5.

3. Velocity error: Physics-based metric that measures the euclidean distance
between generated velocity sequence v1:T and true velocity sequence v̂1:T . It
can be calculated as 1

T

∑T

t=1 ||vt − v̂t||2. vt can be approximated by (pt+1 −
pt)/h using finite difference method where h is the time step and v̂t is com-
puted in the same fashion.

4. Smoothness: Physics-based metric that uses average magnitude of joint
accelerations to measure the smoothness of the generated pose sequence. It
can be calculated as 1

TG

∑T

t=1 ||at||1 where G is the number of actuated DoFs
and at can be approximated by (vt+1 − vt)/h.

4.1 Implementation Details

Motion capture data and simulation.We use CMU graphics lab motion cap-
ture database to learn expert policies as described in Section 3.1. The humanoid
is similarly constructed as the CMU humanoid model in DeepMind control suite
[28] with tweaks on joint stiffness, damping and torque limits. We learn 4 expert
policies from 4 clips (0801, 0804, 0807, 0901) of the motion capture data corre-
sponding to three styles of walking (slow, normal, fast) and one style of running.
The physics simulation environment has a simulation timestep of 6.67ms and a
control timestep of 33.3ms (control changes after 5 simulation steps).
Imitation learning parameters. The video-conditioned policy is pre-trained
using behavior cloning for 100 iterations. In VGAIL, at every iteration, the
policy generates sample trajectories with a total batch size of 50k timesteps.
We perform online z-filtering of state inputs for normalization. The standard
deviation for each action dimension is initialized to 0.1. The reward is clipped
with a max value of 10 and advantages are normalized. For policy optimization,
we use proximal policy optimization (PPO [23]) with a 0.2 clipping threshold.
The discount factor γ is 1. The learning rate for the policy and discriminator is
5e-5 and 1e-5 respectively with the discriminator updated 5 times in the inner
loop. We terminate the training after 6000 iterations to prevent over-fitting.
When fine-tuning the policy, we reduce the batch size to 5k and it takes about
2s per iteration on a GTX 1080Ti.

5 Virtual World Validation

We first evaluate our method on a test dataset generated using expert policies
learned in Section 3.1. The dataset consists of 20 trajectories, each of which is
100 timesteps long. The policy is fine-tuned for 20 iterations for each sequence.
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Smoothness Velocity error Pose error

Ours 11.9876 6.5143 0.9779
Pose regression 36.1628 9.0611 0.8310

Path pose [7] 198.6509 45.0189 1.7643

Smoothness Velocity error Pose error

Ours 11.9876 6.5143 0.9779
Ours-IE 12.2472 7.5337 1.2219
Ours-GTI 12.2968 6.0761 0.6688

Smoothness 2D projection error

Ours 11.54 0.1325

Pose regression 44.11 0.1621
Path pose [7] 214.21 0.1738

Table 1. Top: Results for pose-based and physics-based metrics on virtual test dataset.
Mid: Ablation Study. (Ours-GTI) our method with ground-truth initial state. (Ours-
IE) Our method with estimated initial state before fine-tuning. Bottom: Results for
physics-based and pose-based metrics on real-world data.

Fig. 5. Qualitative results on real world dataset. (a)(d) Our method (yellow box);
(b)(e) Pose regression; (c)(f) Path pose [7]. Yellow and orange bones correspond to the
left arm and leg respectively.
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Table 1(Top) shows a comparison of our method against the two baselines
(pose regression and path pose). We observe that our method outperforms the
baselines in terms of physics-based metrics (acceleration and velocity error), and
the pose estimation is reasonably accurate.
Ablation Study. As shown in Table 1(Mid), the accuracy of initial state plays
an important role in our method. As expected, our method with ground-truth
initial state is much more accurate than with estimated initial state. This is
because sometimes the humanoid falls down due to the error in the initial state
estimate as shown in Figure 4(Top). Our fine-tuning approach can adapt the
policy to recover from the error in initial state and generate a more accurate
pose sequence (see Figure 4(Mid)).

6 Real World Validation

To understand the true utility of our approach, we must evaluate its performance
on real-world first-person videos. In this experiment, we apply our virtually
trained video-conditioned policy on real video data and show that our approach
is able to estimate both accurate and physically-valid pose sequences. Since we
do not have access to the true 3D poses of the person recording the egocentric
video, we use a secondary static camera (third-person POV) to measure the error
of our pose estimation based on 2D projections of joint positions.

We evaluate our proposed method on 12 video sequences composed of 3 dif-
ferent people performing the walking activity and running activity, in both out-
door and indoor scenes. Each egocentric video is 3-7 seconds long and obtained
by a head-mounted GoPro camera. For each sequence, the policy is fine-tuned
for 50 iterations. As indicated in Table 1(Bottom), our method estimates much
smoother (3.8x, 18.5x) pose sequences and is also more accurate in terms of 2D
projection error (18%, 24%). Figure 5 shows a qualitative comparison of our
approach against the two baselines.

7 Conclusion

We proposed a physically-grounded approach for ego-pose estimation that learns
a video-conditioned control policy to generate the pose estimates in physics
simulation. We evaluated our method on both simulation data and real-world
data and show that our approach significantly outperforms baseline methods
in terms of physics-based metrics and is also accurate. Our experiments also
demonstrated the effectiveness of our proposed fine-tuning approach for domain
adaptation from synthetic to real data. We believe our work is one of the first to
open new research directions that consider the role of physics in understanding
human motion in computer vision.
Acknowledgment. This work was sponsored in part by JST CREST (JP-
MJCR14E1) and IARPA (D17PC00340).
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