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Abstract. Employing part-level features offers fine-grained information
for pedestrian image description.A prerequisite of part discovery is that
each part should be well located. Instead of using external resources
like pose estimator, we consider content consistency within each part for
precise part location. Specifically, we target at learning discriminative
part-informed features for person retrieval and make two contributions.
(i) A network named Part-based Convolutional Baseline (PCB). Given
an image input, it outputs a convolutional descriptor consisting of sev-
eral part-level features. With a uniform partition strategy, PCB achieves
competitive results with the state-of-the-art methods, proving itself as
a strong convolutional baseline for person retrieval. (ii) A refined part
pooling (RPP) method. Uniform partition inevitably incurs outliers in
each part, which are in fact more similar to other parts. RPP re-assigns
these outliers to the parts they are closest to, resulting in refined parts
with enhanced within-part consistency. Experiment confirms that RPP
allows PCB to gain another round of performance boost. For instance, on
the Market-1501 dataset, we achieve (77.4+4.2)% mAP and (92.3+1.5)%
rank-1 accuracy, surpassing the state of the art by a large margin. Code
is available at: https://github.com/syfafterzy/PCB_RPP
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1 Introduction

Person retrieval, also known as person re-identification (re-ID), aims at retriev-
ing images of a specified pedestrian in a large database, given a query person-of-
interest. Presently, deep learning methods dominate this community, with con-
vincing superiority against hand-crafted competitors [44]. Deeply-learned repre-
sentations provide high discriminative ability, especially when aggregated from
deeply-learned part features. The latest state of the art on re-ID benchmarks
are achieved with part-informed deep features [39,31,41].
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Fig. 1. Partition strategies of several deep part models in person retrieval. (a) to (e):
Partitioned parts by GLAD [35], PDC [31], DPL [39], Hydra-plus [25] and PAR [41],
respectively.(f): Our method employs a uniform partition and then refines each stripe.
Both PAR [41] and our method conduct “soft” partition, but our method differs sig-
nificantly from [41], as detailed in Section 2.

An essential prerequisite of learning discriminative part features is that parts
should be accurately located. Recent state-of-the-art methods vary on their par-
tition strategies and can be divided into two groups accordingly. The first group
[42,31,35] leverage external cues, e.g., assistance from human pose estimation
[26,36,16,29,2]. They rely on external human pose estimation datasets and so-
phisticated pose estimator. The underlying datasets bias between pose estima-
tion and person retrieval remains an obstacle against ideal semantic partition on
person images. The other group [39,41,25] abandon cues from semantic parts.
They require no part labeling and yet achieve competitive accuracy with the
first group. Some partition strategies are compared in Fig. 1. Against this back-
ground of progress on learning part-level deep features, we rethink the problem
of what makes well-aligned parts. Semantic partitions may offer stable cues to
good alignment but are prone to noisy pose detections. This paper, from another
perspective, lays emphasis on the consistency within each part, which we spec-
ulate is vital to the spatial alignment. Then we arrive at our motivation that
given coarsely partitioned parts, we aim to refine them to reinforce within-part
consistency. Specifically, we make the following two contributions:

First, we propose a network named Part-based Convolutional Baseline (PCB)
which conducts uniform partition on the conv-layer for learning part-level fea-
tures. It does not explicitly partition the images. PCB takes a whole image as
the input and outputs a convolutional feature. Being a classification net, the ar-
chitecture of PCB is concise, with slight modifications on the backbone network.
The training procedure is standard and requires no bells and whistles. We show
that the convolutional descriptor has much higher discriminative ability than the
commonly used fully-connected (FC) descriptor. On the Market-1501 dataset,
for instance, the performance increases from 85.3% rank-1 accuracy and 68.5%
mAP to 92.3% (+7.0%) rank-1 accuracy and 77.4% (+8.9%) mAP, surpassing
many state-of-the-art methods by a large margin.
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Second, we propose an adaptive pooling method named Refined Part Pooling
(RPP) to improve the uniform partition. We consider the motivation that within
each part the contents should be consistent. We observe that under uniform
partition, there exist outliers in each part. These outliers are, in fact, closer to
contents in some other part, implying within-part inconsistency. Therefore, we
refine the uniform partition by relocating those outliers to the part they are
closest to, so that the within-part consistency is reinforced. An example of the
refined parts is illustrated in Fig. 1(f). RPP does not require part labels for
training and improves the retrieval accuracy over the high baseline achieved by
PCB. For example on Market-1501, RPP further increases the performance to
93.8% (+1.5%) rank-1 accuracy and 81.6% (+4.2%) mAP.

2 Related works

Hand-crafted part features for person retrieval. Before deep learning
methods dominated the re-ID research community, hand-crafted algorithms had
developed approaches to learn part or local features. Gray and Tao [13] partition
pedestrians into horizontal stripes to extract color and texture features. Similar
partitions have then been adopted by many works [9,45,28,23]. Some other works
employ more sophisticated strategy. Gheissari et al. [12] divide the pedestrian
into several triangles for part feature extraction. Cheng et al. [4] employ pictorial
structure to parse the pedestrian into semantic parts. Das et al. [6] apply HSV
histograms on the head, torso and legs to capture spatial information.

Deeply-learned part features. The state of the art on most person re-
trieval datasets is presently maintained by deep learning methods [44]. When
learning part features for re-ID, the advantages of deep learning over hand-
crafted algorithms are two-fold. First, deep features generically obtain stronger
discriminative ability. Second, deep learning offers better tools for parsing pedes-
trians, which further benefits the part features. In particular, human pose estima-
tion and landmark detection have achieved impressive progress [26,29,2,36,16].
Several recent works in re-ID employ these tools for pedestrian partition and re-
port encouraging improvement [42,31,35]. However, the underlying gap between
datasets for pose estimation and person retrieval remains a problem when di-
rectly utilizing these pose estimation methods in an off-the-shelf manner. Others
abandon the semantic cues for partition. Yao et al. [39] cluster the coordinates
of max activations on feature maps to locate several regions of interest. Both
Liu et al. [25] and Zhao et al. [41] embed the attention mechanism [38] in the
network, allowing the model to decide where to focus by itself.

Deeply-learned part with attention mechanism. A major contribution
of this paper is the refined part pooling. We compare it with a recent work, PAR
[39] by Zhao et al. in details. Both works employ a part-classifier to conduct
“soft” partition on pedestrian images, as shown in Fig. 1. Two works share the
merit of requiring no part labeling for learning discriminative parts. However,
the motivation, training methods, mechanism, and final performance of the two
methods are quite different, to be detailed below.
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Fig. 2. Structure of PCB. The input image goes forward through the stacked convo-
lutional layers from the backbone network to form a 3D tensor T . PCB replaces the
original global pooling layer with a conventional pooling layer, to spatially down-sample
T into p pieces of column vectors g. A following 1× 1 kernel-sized convolutional layer
reduces the dimension of g. Finally, each dimension-reduced column vector h is input
into a classifier, respectively. Each classifier is implemented with a fully-connected (FC)
layer and a sequential Softmax layer. Either p pieces of g or h are concatenated to form
the final descriptor of the input image.

Motivation: PAR aims at directly learning aligned parts while RPP aims to
refine the pre-partitioned parts. Working mechanism: using attention method,
PAR trains the part classifier in an unsupervised manner, while the training of
RPP can be viewed as a weakly-supervised process. Training process: RPP firstly
trains an identity classification model with uniform partition and then utilizes
the learned knowledge to induce the training of part classifier. Performance: the
slightly more complicated training procedure rewards RPP with better interpre-
tation and significantly higher performance. For instance on Market-1501, mAP
achieved by PAR, PCB cooperating attention mechanism and the proposed RPP
are 63.4%, 74.6% and 81.6%, respectively. In addition, RPP has the potential to
cooperate with various partition strategies.

3 Proposed Method

Sec. 3.1 first proposes a part-based convolutional baseline (PCB). PCB employs
the simple strategy of uniform partition on convolutional features. Sec. 3.2 de-
scribes the phenomenon of within-part inconsistency, which reveals the problem
of uniform partition. Sec. 3.3 proposes the refined part pooling (RPP) method.
RPP reduces the partition errors by conducting pixel-level refinement on the
convolutional feature. RPP is also featured for learning without part label infor-
mation, which is detailed in Sec. 3.4.

3.1 PCB: A Part-based Convolutional Baseline

Backbone network. PCB can take any network without hidden fully-connected
layers designed for image classification as the backbone, e.g., Google Inception
[33] and ResNet [14]. This paper mainly employs ResNet50 with consideration
of its competitive performance as well as its relatively concise architecture.
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From backbone to PCB. We reshape the backbone network to PCB with
slight modifications, as illustrated in Fig. 2. The structure before the original
global average pooling (GAP) layer is maintained exactly the same as the back-
bone model. The difference is that the GAP layer and what follows are removed.
When an image undergoes all the layers inherited from the backbone network,
it becomes a 3D tensor T of activations. In this paper, we define the vector of
activations viewed along the channel axis as a column vector. Then, with a
conventional average pooling, PCB partitions T into p horizontal stripes and
averages all the column vectors in a same stripe into a single part-level col-
umn vector gi (i = 1, 2, · · · , p, the subscripts will be omitted unless necessary).
Afterwards, PCB employs a convolutional layer to reduce the dimension of g.
According to our preliminary experiment, the dimension-reduced column vectors
h are set to 256-dim. Finally, each h is input into a classifier, which is imple-
mented with a fully-connected (FC) layer and a following Softmax function, to
predict the identity (ID) of the input.

During training, PCB is optimized by minimizing the sum of Cross-Entropy
losses over p pieces of ID predictions. During testing, either p pieces of g or h

are concatenated to form the final descriptor G or H, i.e., G = [g1, g2, · · · , gp]
or H = [h1,h2, · · · ,hp]. As observed in our experiment, employing G achieves
slightly higher accuracy, but at a larger computation cost, which is consistent
with the observation in [32].

Important Parameters. PCB benefits from fine-grained spatial integra-
tion. Several key parameters, i.e., the input image size (i.e., [H,W ]), the spatial
size of the tensor T (i.e., [M,N ]), and the number of pooled column vectors
(i.e., p) are important to the performance of PCB. Note that [M,N ] is de-
termined by the spatial down-sampling rate of the backbone model, given the
fixed-size input. Some deep object detection methods, e.g., SSD [24] and R-FCN
[5], show that decreasing the down-sampling rate of the backbone network effi-
ciently enriches the granularity of feature. PCB follows their success by removing
the last spatial down-sampling operation in the backbone network to increase
the size of T . This manipulation considerably increases retrieval accuracy with
very light computation cost added. The details can be accessed in Section 4.4.

Through our experiment, the optimized parameter settings for PCB are:

– The input images are resized to 384 × 128, with a height to width ratio of
3:1.

– The spatial size of T is set to 24× 8.

– T is equally partitioned into 6 horizontal stripes.

3.2 Within-Part Inconsistency

Uniform partition for PCB is simple, effective, and yet to be improved. It in-
evitably introduces partition errors to each part and consequentially compro-
mises the discriminative ability of the learned feature. We analyze the partition
errors from a new perspective: the within-part inconsistency.
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Fig. 3. Visualization of within-part inconsistency. T . Left: T is equally partitioned to
p = 6 horizontal stripes (parts) during training. Right: Every column vector in T is
denoted with a small rectangle and painted in the color of its closest part.

With focus on the tensor T to be spatially partitioned, our intuition of within-
part inconsistency is: column vector f in a same part of T should be similar to
each other and be dissimilar to column vectors in other parts; otherwise the
phenomenon of within-part inconsistency occurs, implying that the parts are
partitioned inappropriately.

After training PCB to convergence, we compare the similarities between each
f and gi (i = 1, 2, · · · , p), i.e., the average-pooled column vector of each part,
by measuring cosine distance. By doing this, we find the closest part to each
f , as exampled in Fig. 3. Each column vector is denoted by a small rectangle
and painted in the color of its closest part. We observe that there exist many
outliers, while designated to a specified horizontal stripe (part) during training,
which are more similar to another part. The existence of these outliers suggests
that they are inherently more consistent with column vectors in another part.

3.3 Refined Part Pooling

We propose the refined part pooling (RPP) to correct within-part inconsistency.
Our goal is to assign all the column vectors according to their similarities to each
part, so that the outliers will be relocated. More concretely, we quantitatively
measure the similarity value S(f ↔ Pi) between column vector f and each part
Pi. Then the column vector f is sampled into part Pi according to the similarity
value S(f ↔ Pi), which is formulated by,

Pi = {S(f ↔ Pi)f, ∀f ∈ F}, (1)

where F is the complete set of column vectors in tensor T , {•} denotes the
sampling operation to form an aggregate.

It is non-trivial to directly measure the similarity value between a given f

and each part. Assume that we have performed a sampling operation defined
in Eq. 1 to update each part, then the “already-measured” similarities don’t
stand anymore. We have to perform the “similarity measuring” → “sampling”
procedure iteratively until convergence, which evolves a non-trivial clustering
embedded in deep learning.
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Fig. 4. PCB in combination with refined part pooling. The 3D tensor T is denoted
simply by a rectangle instead of a cube as we focus on the spatial partition. Layers
before T are omitted as they remain unchanged compared with Fig. 2. A part classifier
predicts the probability of each column vector belonging to p parts. Then each part is
sampled from all the column vectors with the corresponding probability as the sampling
weight. GAP denotes global average pooling.

So instead of measuring the similarity between each f and each Pi, RPP
employs a part classifier to predict the value of S(f ↔ Pi) (which can also be
interpreted as the probability of f belonging to Pi) as follows:

S(f ↔ Pi) = softmax(WT
i f) =

exp(WT
i f)

p∑

j=1

exp(WT
j f)

, (2)

where p is the number of pre-defined parts (i.e., p = 6 in PCB), and W is the
trainable weight matrix of the part classifier.

The proposed refined part pooling conducts a “soft” and adaptive partition to
refine the original “hard” and uniform partition, and the outliers originated from
the uniform partition will be relocated. In combination with refined part pooling
described above, PCB is further reshaped into Fig. 4. Refined part pooling,
i.e., the part classifier along with the following sampling operation, replaces the
original average pooling. The structure of all the other layers remains exactly
the same as in Fig. 2.

W has to be learned without part label information. To this end, we design
an induced training procedure, as detailed in the following Section 3.4.

3.4 Induced Training for Part Classifier

The key idea of the proposed induced training is that: without part label in-
formation, we can use the already-learned knowledge in the pre-trained PCB to
induce the training of the newly-appended part classifier. The algorithm is as
follows.

– First, a standard PCB model is trained to convergence with T equally par-
titioned.

– Second, we remove the original average pooling layer after T and append a
p-category part classifier on T . New parts are sampled from T according to
the prediction of the part classifier, as detailed in Section 3.3.
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– Third, we set all the already learned layers in PCB fixed, leaving only the
part classifier trainable. Then we retrain the model on training set. In this
condition, the model still expects the tensor T to be equally partitioned,
otherwise it will predict incorrect about the identities of training images. So
Step 3 penalizes the part classifier until it conducts partition close to the
original uniform partition, whereas the part classifier is prone to categorize
inherently similar column vectors into a same part. A state of balance will
be reached as a result of Step 3.

– Finally, all the layers are allowed to be updated. The whole net, i.e., PCB
along with the part classifier are fine-tuned for overall optimization.

In the above training procedure, PCB model trained in Step1 induces the
training of the part classifier. Step3 and 4 converges very fast, requiring 10 more
epochs in total.

Algorithm 1: Induced training for part classifier

Step 1. A standard PCB is trained to convergence with uniform partition.
Step 2. A p-category part classifier is appended on the tensor T .
Step 3. All the pre-trained layers of PCB are fixed. Only the part classifier is
trainable. The model is trained until convergence again.
Step 4. The whole net is fine-tuned to convergence for overall optimization.

4 Experiments

4.1 Datasets and Settings

Datasets.We three datasets for evaluation, i.e.,Market-1501 [43],DukeMTMC-
reID [30,47], and CUHK03 [19]. The Market-1501 dataset contains 1,501 iden-
tities observed under 6 camera viewpoints, 19,732 gallery images and 12,936
training images detected by DPM [10]. The DukeMTMC-reID dataset contains
1,404 identities, 16,522 training images, 2,228 queries, and 17,661 gallery images.
With so many images captured by 8 cameras, DukeMTMC-reID manifests itself
as one of the most challenging re-ID datasets up to now. The CUHK03 dataset
contains 13,164 images of 1,467 identities. Each identity is observed by 2 cam-
eras. CUHK03 offers both hand-labeled and DPM-detected bounding boxes, and
we use the latter in this paper. CUHK03 originally adopts 20 random train/test
splits, which is time-consuming for deep learning. So we adopt the new train-
ing/testing protocol proposed in [48]. For Market-1501 and DukeMTMC-reID,
we use the evaluation packages provided by [43] and [47], respectively. All the
experiment evaluates the single-query setting. Moreover, for simplicity we do not
use re-ranking algorithms which considerably improve mAP [48]. Our results are
compared with reported results without re-ranking.
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4.2 Implementation details

Implementation of IDE for comparison. We note that the IDE model speci-
fied in [44] is a commonly used baseline in deep re-ID systems [44,42,37,11,32,46,47,49].
In contrast to the proposed PCB, the IDE model learns a global descriptor.
For comparison, we implement the IDE model on the same backbone network,
i.e., ResNet50, and with several optimizations over the original one in [44], as
follows. 1) After the “pool5” layer in ResNet50, we append a fully-connected
layer followed by Batch Normalization and ReLU. The output dimension of the
appended FC layer is set to 256-dim. 2) We apply dropout on “pool5” layer.
Although there are no trainable parameters in “pool5” layer, there is evidence
that applying Dropout on it, which outputs a high dimensional feature vector of
2048d, effectively avoids over-fitting and gains considerable improvement [46,47].
We empirically set the dropout ratio to 0.5. On Market-1501, our implemented
IDE achieves 85.3% rank-1 accuracy and 68.5% mAP, which is a bit higher than
the implementation in [49].

Implementation of two Potential Alternative Structures of PCB
for comparison. Given a same backbone network, there exist several potential
alternative structures to learn part-level features. We enumerate two structures
for comparison with PCB.

– Variant 1. Instead of making an ID prediction based on each hi (i = 1, 2, · · · , p),
it averages all hi into a single vector h, which is then fully connected to an
ID prediction vector. During testing, it also concatenates g or h to form the
final descriptor. Variant 1 is featured by learning a convolutional descriptor
under a single loss.

– Variant 2. It adopts exactly the same structure as PCB in Fig. 2. However,
all the branches of FC classifiers in Variant 2 share a same set of parameters.

Training. The training images are augmented with horizontal flip and nor-
malization. We set batch size to 64 and train the model for 60 epochs with base
learning rate initialized at 0.1 and decayed to 0.01 after 40 epochs. The backbone
model is pre-trained on ImageNet [7]. The learning rate for all the pre-trained
layers are set to 0.1× of the base learning rate. When employing refined part
pooling for boosting, we append another 10 epochs with learning rate set to
0.01. With two NVIDIA TITAN XP GPUs and Pytorch as the platform, train-
ing an IDE model and a standard PCB on Market-1501 (12,936 training images)
consumes about 40 and 50 minutes, respectively. The increased training time
of PCB is mainly caused by the cancellation of the last spatial down-sample
operation in the Conv5 layer, which enlarges the tensor T by 4×.

4.3 Performance evaluation

We evaluate our method on three datasets, with results shown in Table 4.3. Both
uniform partition (PCB) and refined part pooling (PCB+RPP) are tested.
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Table 1. Comparison of the proposed method with IDE and 2 variants. pool5: output of
Pool5 layer in ResNet50. FC: output of the appended FC layer for dimension reduction.
G (H): feature representation assembled with column vectors g (h). Both g and h are
illustrated in Fig. 2

Models Feature dim
Market-1501 DukeMTMC-reID CUHK03
R-1 mAP R-1 mAP R-1 mAP

IDE pool5 2048 85.3 68.5 73.2 52.8 43.8 38.9
IDE FC 256 83.8 67.7 72.4 51.6 43.3 38.3
Variant 1 G 12288 86.7 69.4 73.9 53.2 43.6 38.8
Variant 1 H 1536 85.6 68.3 72.8 52.5 44.1 39.1
Variant 2 G 12288 91.2 75.0 80.2 62.8 52.6 45.8
Variant 2 H 1536 91.0 75.3 80.0 62.6 54.0 47.2

PCB G 12288 92.3 77.4 81.7 66.1 59.7 53.2
PCB H 1536 92.4 77.3 81.9 65.3 61.3 54.2
PCB+RPP G 12288 93.8 81.6 83.3 69.2 62.8 56.7
PCB+RPP H 1536 93.1 81.0 82.9 68.5 63.7 57.5

PCB is a strong baseline. Comparing PCB and IDE, the prior commonly
used baseline in many works [44,42,37,11,32,46,47,49], we clearly observe the sig-
nificant advantage of PCB: mAP on three datasets increases from 68.5%, 52.8%
and 38.9% to 77.4% (+8.9%), 66.1% (+13.3%) and 54.2% (+15.3%), respec-
tively. This indicates that integrating part information increases the discrimina-
tive ability of the feature. The structure of PCB is as concise as that of IDE,
and training PCB requires nothing more than training a canonical classification
network. We hope it will serve as a baseline for person retrieval task.

Refined part pooling (RPP) improves PCB especially in mAP. From
Table 4.3, while PCB already has a high accuracy, RPP brings further improve-
ment to it. On the three datasets, the improvement in rank-1 accuracy is +1.5%,
+1.6%, and +3.1%, respectively; the improvement in mAP is +4.2%, +3.1%, and
+3.5%, respectively. The improvement is larger in mAP than in rank-1 accuracy.
In fact, rank-1 accuracy characterizes the ability to retrieve the easiest match in
the camera network, while mAP indicates the ability to find all the matches. So
the results indicate that RPP is especially beneficial in finding more challenging
matches.

The benefit of using p losses. To validate the usage of p branches of losses
in Fig. 2, we compare our method with Variant 1 which learns the convolutional
descriptor under a single classification loss. Table 4.3 suggests that Variant 1
yields much lower accuracy than PCB, implying that employing a respective
loss for each part is vital for learning discriminative part features.

The benefit of NOT sharing parameters among identity classifiers.
In Fig. 2, PCB inputs each column vector h to a FC layer before the Softmax
loss. We compare our proposal (not sharing FC layer parameters) with Variant
2 (sharing FC layer parameters). From Table 4.3, PCB is higher than Variant 2
by 2.4%, 3.3%, and 7.4% on the three datasets, respectively. This suggests that
sharing parameters among the final FC layers is inferior.
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Table 2. Comparison of the proposed method with the art on Market-1501. The
compared methods are categorized into 3 groups. Group 1: hand-crafted methods.
Group 2: deep learning methods employing global feature. Group 3: deep learning
methods employing part features. * denotes those requiring auxiliary part labels. Our
method is denoted by “PCB” and “PCB+RPP”

Methods R-1 R-5 R-10 mAP

BoW+kissme [43] 44.4 63.9 72.2 20.8
WARCA[17] 45.2 68.1 76.0 -
KLFDA[18] 46.5 71.1 79.9 -

SOMAnet[1] 73.9 - - 47.9
SVDNet[32] 82.3 92.3 95.2 62.1
Triplet Loss [15] 84.9 94.2 - 69.1
DML [40] 87.7 - - 68.8
Cam-GAN [50] 88.1 - - 68.7

MultiRegion [34] 66.4 85.0 90.2 41.2
PAR [41] 81.0 92.0 94.7 63.4
MultiLoss [20] 83.9 - - 64.4
PDC* [31] 84.4 92.7 94.9 63.4
MultiScale [3] 88.9 - - 73.1
GLAD* [35] 89.9 - - 73.9
HA-CNN [21] 91.2 - - 75.7

PCB 92.3 97.2 98.2 77.4
PCB+RPP 93.8 97.5 98.5 81.6

Comparison with state of the art. We compare PCB and PCB+RPP
with state of the art. Comparisons on Market-1501 are detailed in Table 2. The
compared methods are categorized into three groups, i.e., hand-crafted methods,
deep learning methods with global feature and deep learning methods with part
features. Relying on uniform partition only, PCB surpasses all the prior methods,
including [31,35] which require auxiliary part labeling to deliberately align parts.
The performance lead is further enlarged by the proposed refined part pooling.

Comparisons on DukeMTMC-reID and CUHK03 (new training/testing pro-
tocol) are summarized in Table 3. In the compared methods, PCB exceeds [3]
by +5.5% and 17.2% in mAP on the two datasets, respectively. PCB+RPP
(refined part pooling) further surpasses it by a large margin of +8.6% mAP
on DukeMTMC-reID and +20.5% mAP on CUHK03. PCB+RPP yields higher
accuracy than “TriNet+Era” and “SVDNet+Era” [49] which are enhanced by
extra data augmentation.

In this paper, we report mAP = 81.6%, 69.2%, 57.5% and Rank-1
= 93.8%, 83.3% and 63.7% for Market-1501, Duke and CUHK03,
respectively, setting new state of the art on the three datasets. All the re-
sults are achieved under the single-query mode without re-ranking. Re-ranking
methods will further boost the performance especially mAP. For example, when
“PCB+RPP” is combined with the method in [48], mAP and Rank-1 accuracy
on Market-1501 increases to 91.9% and 95.1%, respectively.
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Table 3. Comparison with prior art on DukeMTMC-reID and CUHK03. Rank-1 ac-
curacy (%) and mAP (%) are shown

Methods
DukeMTMC-reID CUHK03
rank-1 mAP rank-1 mAP

BoW+kissme [43] 25.1 12.2 6.4 6.4
LOMO+XQDA [23] 30.8 17.0 12.8 11.5
GAN [47] 67.7 47.1 - -
SVDNet [32] 76.7 56.8 41.5 37.3
MultiScale [3] 79.2 60.6 40.7 37.0
SVDNet+Era [49] 79.3 62.4 48.7 43.5
Cam-GAN [50] 75.3 53.5 - -
HA-CNN [21] 80.5 63.8 41.7 38.6

PCB (UP) 81.8 66.1 61.3 54.2
PCB (RPP) 83.3 69.2 63.7 57.5

4.4 Parameters Analysis

We analyze some important parameters of PCB (and with RPP) introduced in
Section 3.1 on Market-1501. Once optimized, the same parameters are used for
all the three datasets.

The size of images and tensor T . We vary the image size from 192× 64
to 576 × 192, using 96 × 32 as interval. Two down-sampling rates are tested,
i.e., the original rate, and a halved rate (larger T ). We train all these models on
PCB and report their performance in Fig. 5. Two phenomena are observed.

First, a larger image size benefits the learned part feature. Both mAP and
rank-1 accuracy increase with the image size until reaching a stable performance.

Second, a smaller down-sampling rate, i.e., a larger spatial size of tensor
T enhances the performance, especially when using relatively small images as
input. In Fig. 5 (a), PCB using 384× 128 input and halved down-sampling rate
achieves almost the same performance as PCB using 576 × 192 input and the

(a) Impact of the size (b) Impact of p
Fig. 5. Parameter analysis. (a): The impact of image size. We use the original and
halved down-sampling rates. (b): The impact of number of parts p. We compare PCB
with and without the refined part pooling.
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Fig. 6. Visualization of the refined parts under different p values. When p = 8 or 12,
some parts repeat with others or become empty.

original down-sampling rate. We recommend the manipulation of halving the
down-sampling rate with consideration of the computing efficiency.

The number of parts p. Intuitively, p determines the granularity of the part
feature. When p=1, the learned feature is a global one. As p increases, retrieval
accuracy improves at first. However, accuracy does not always increase with p, as
illustrated in Fig. 5 (b). When p = 8 or 12, the performance drops dramatically,
regardless of using refined part pooling. A visualization of the refined parts offers
insights into this phenomenon, as illustrated in Fig. 6. When p increases to 8 or
12, some of the refined parts are very similar to others and some may collapse
to an empty part. As a result, an over-increased p actually compromises the
discriminative ability of the part features. In real-world applications, we would
recommend to use p = 6 parts.

4.5 Induction and Attention Mechanism

In this work, when training the part classifier in Alg. 1, a PCB pre-trained with
uniform partition is required. The knowledge learned under uniform partition
induces the subsequent training of the part classifier. Without PCB pre-training,

the network learns to partition T under no induction and becomes similar to

methods driven by attention mechanism. We conduct an ablation experiment on
Market-1501 and DukeMTMC-reID to compare the two approaches. Results are
presented in Table 4, from which three observations can be drawn.

First, no matter which partition strategy is applied in PCB, it significantly
outperforms PAR [41], which learns to partition through attention mechanism.
Second, the attention mechanism also works based on the structure of PCB.
Under the “RPP (w/o induction)” setting, the network learns to focus on sev-
eral parts through attention mechanism, and achieves substantial improvement
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Table 4. Ablation study of induction on Market-1501. PAR learns to focus on several
parts to discriminate person with attention mechanisms. RPP (w/o induction) means
no induction for learning the refined parts and the network learns to focus on several
parts with attention mechanism. It is equivalent to PAR on the structure of PCB

Methods
Market-1501 DukeMTMC-reID
rank-1 mAP rank-1 mAP

PAR [41] 81.0 63.4 - -
IDE 85.3 68.5 73.2 52.8
RPP (w/o induction) 88.7 74.6 78.8 60.9
PCB 92.3 77.4 81.7 66.1
PCB+RPP 93.8 81.6 83.3 69.2

over IDE, which learns a global descriptor. Third, the induction procedure (PCB
training) is critical. When the part classifier is trained without induction, the re-
trieval performance drops dramatically, compared with the performance achieved
by “PCB+RPP”. It implies that the refined parts learned through induction is
superior to the parts learned through attention mechanism. Partitioned results
with induction and attention mechanism are visualized in Fig. 1.

Moreover, for learning the part classifier without labeling information, we
compare RPP with another potential method derived from Mid-level Element
Mining [22,27,8]. Specifically, we follow [8] by assigning each stripe on tensor T
with a pseudo part label to train the part classifier. Then we slide the trained
part classifier on T to predict the similarity between every column vector on T

and each part. The predicted similarity values are used for refining the uniformly-
partitioned stripes of PCB, as the same in RPP. The above described approach
achieves 93.0% (82.1%) rank-1 accuracy and 79.0% (66.9%) mAP on Market-
1501 (DukeMTMC-reID). It also improves PCB, but is inferior to RPP. We guess
the superiority of RPP originates from: given no part labels, the part classifier of
RPP and the ID classifier are jointly optimized to recognize training identities,
and thus gains better pedestrian discriminative ability.

5 Conclusion

This paper makes two contributions to solving the pedestrian retrieval prob-
lem. First, we propose a Part-based Convolutional Baseline (PCB) for learning
part-informed features. PCB employs a simple uniform partition strategy and
assembles part-informed features into a convolutional descriptor. PCB advances
the state of the art to a new level, proving itself as a strong baseline for learn-
ing part-informed features. Despite the fact that PCB with uniform partition
is simple and effective, it is yet to be improved. We propose the refined part
pooling to reinforce the within-part consistency in each part. After refinement,
similar column vectors are concluded into a same part, making each part more
internally consistent. Refined part pooling requires no part labeling information
and improves PCB considerably.
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