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Abstract. While deep neural networks have demonstrated competitive
results for many visual recognition and image retrieval tasks, the major
challenge lies in distinguishing similar images from different categories
(i.e., hard negative examples) while clustering images with large varia-
tions from the same category (i.e., hard positive examples). The current
state-of-the-art is to mine the most hard triplet examples from the mini-
batch to train the network. However, mining-based methods tend to look
into these triplets that are hard in terms of the current estimated net-
work, rather than deliberately generating those hard triplets that really
matter in globally optimizing the network. For this purpose, we pro-
pose an adversarial network for Hard Triplet Generation (HTG) to op-
timize the network ability in distinguishing similar examples of different
categories as well as grouping varied examples of the same categories.
We evaluate our method on the real-world challenging datasets, such
as CUB200-2011, CARS196, DeepFashion and VehicleID datasets, and
show that our method outperforms the state-of-the-art methods signifi-
cantly.
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1 Introduction

Deep metric learning is of great practical importance and has shown promising
results in many tasks, such as image retrieval [20, 32, 44, 31], face recognition [26,
34, 40], person re-identification [1, 28, 46], etc. In spite of various forms of deep
metric learning in different tasks, it shares a common goal of learning an optimal
image representation that pulls semantically similar images close to each other
while pushing dissimilar ones apart in a learned feature space.

⋆ This work was done when the author was visiting Alibaba as a research intern.
⋆⋆ Corresponding author.



2 Yiru Zhao, Zhongming Jin, Guo-jun Qi, Hongtao Lu, Xian-sheng Hua

Deep metric learning often considers images in triplets as its training units
inside a mini-batch. A triplet contains a query along with a relevant and an
irrelevant example. Then a deep metric learning algorithm seeks to push the
relevant (irrelevant) example towards (away from) the query in the underlying
embedding space. It is obvious that randomly choosing triplets can be very
inefficient to train a deep embedding network, as not all triplets are equally
informative [44]. Some triplets contain harder examples that cannot be well
handled by the current embedding network, where the irrelevant example is
closer to the query than the relevant counterpart. Using these harder triplets for
training can not only result in faster convergence of the learning algorithm [31],
but also better improve the global structure of the embedding space by learning
sharper boundaries between relevant and irrelevant examples for given queries
[32]. This leads to several recent works to mine hard examples for training [2,
29].

However, mining-based methods aim to find those triplets from existing train-
ing examples that are hard in terms of the current network. This is essentially
a greedy algorithm, which could make the trained feature embedding network
vulnerable to a bad local optimum [44, 20]. In this paper, we seek an approach
that can deliberately generate hard triplets to optimize the network globally,
instead of using a greedy strategy to explore existing samples only for the cur-
rent network. The objective of generating hard triplets should also be integrated
with the objective of learning an optimal feature embedding network for different
tasks. For this purpose, we propose an adversarial learning algorithm, where a
hard triplet generator and an embedding network are jointly optimized in an ad-
versarial fashion to mutually benefit each other. Our overarching goal is to learn
an optimal embedding of images that is adequate in distinguishing between the
relevant and the irrelevant examples even for the most challenging queries in the
hardest triplets.

2 Related Works

2.1 Metric Learning

The goal of distance metric learning is to learn an embedding representation such
that similar samples are mapped to nearby points on a manifold and dissimilar
ones are mapped apart from each other [41]. Thanks to the success of deep neural
networks(DNNs) [14, 35, 30], deep metric learning has shown great superiority
on many visual recognition tasks [20, 44, 26, 34, 1, 9, 42].

In a standard deep metric learning network, a DNN model f is trained to
embed an input image x into a new representation f(x) by minimizing triplet
loss [27, 39] that showed better performance than contrastive loss [6]. However,
triplet loss is quite sensitive to a proper selection of triplets and often suffers
from slow convergence and poor local optima. To address this, [16] proposed
a coupled clusters loss to make the training more stable and achieved higher
accuracy. [20] proposed a lifted structured embedding where each positive pair
compared its distance against those of all negative pairs weighted by the margin
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constraint. [31] presented multi-class N -pairs loss to improve the triplet loss by
pushing away multiple negative examples simultaneously at each iteration.

Indeed, not all triplets are equally informative to train a model. Hence mining
hard triplet examples plays a very important role to effectively train deep metric
networks [29, 2]. The mining-based method is often performed by sampling hard
triplets from existing training examples in a mini-batch. These hard triplets
reflect the cases that cannot be well handled by the current model. Thus it is
essentially a greedy algorithm that could be vulnerable to bad local minimum
[20]. [44] presented a family of models with different levels of complexities in a
cascaded manner to mine hard examples adaptively. These methods select hard
examples only based on the absolute distances and are sensitive to the threshold
set manually.

Inspired by the development of generative adversarial networks (GANs) [5],
we propose to learn an adversarial network that can deliberately generate hard
triplets in a principled fashion to improve the feature embedding network, instead
of greedily mining from existing training examples.

2.2 Generative Adversarial Networks

Recently, generative adversarial networks (GANs) [5] have shown very promising
results for many generative tasks such as image generation [3, 24] and transla-
tion [11, 47, 43]. More important, the adversarial training and its ability of mod-
eling data distributions have been utilized to improve many discriminative tasks
as well.

For example, [33] combined neural network classifiers with an adversar-
ial generative model to regularize a discriminatively trained classifiers, which
yields classification performance compared with state-of-the-art results for semi-
supervised learning. [15] proposed Perceptual GANs that generate super-resolution
representations for small objects to boost detection accuracy by leveraging itera-
tively updated generator networks and discriminator networks. [22] presented a
Lipschitz regularized GAN to explore the margin between different classes of ex-
amples and their generated counterparts in both supervised and semi-supervised
settings, and it is extended to a loss-sensitive learning framework by pull-backing
original full-dimensional data onto a latent manifold representation to explore
the distribution of both labeled and unlabeled samples [4]. [23] instead localized
GAN-based parameterization of data manifolds so that the Laplace-Beltrami
operator for semi-supervised learning can be accurately formalized without re-
sorting to Graph Laplacian approximation. [38] learned an adversarial network
by generating examples with occlusions and deformations to challenge original
object detectors. Such an adversarial learning strategy significantly boosts de-
tection performance. In contrast, in this paper, we propose a generative network
in the feature embedding space to produce challenging triplets by pulling nega-
tive pairs closer and pushing positive pairs apart. Through these generated hard
triplets, we wish to boost the performance of the associated feature embedding
network so that it can correctly retrieve relevant examples even in adversarial
cases.
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Fig. 1. Architecture of the adversarial training method.

3 Hard Triplet Generation

Our goal is to learn a feature embedding network to extract features from im-
ages. The obtained features ought to be resilient against inter-class similarity
(i.e., hard negative examples) as well as intra-class variance (i.e., hard positive
examples). In contrast to existing mining-based methods that merely rely on ex-
isting examples, we present an alternative approach by generating hard triplets
to challenge the ability of feature embedding network correctly distinguishing
relevant examples from irrelevant counterparts in these triplets. The architec-
ture of the proposed method is shown in Figure 1.

Formally, we denote the feature embedding network by F , whose output for
an input image x is F (x) ∈ R

L. Given a triplet < a, p, n >, < a, p > is a positive
(relevant) pair and < a, n > is a negative (irrelevant) pair. The original objective
function to train F is to minimize the following triplet loss,

L′
F,tri = [d(F (a), F (p))− d(F (a), F (n)) +m]+ (1)

where d(x1, x2) = ‖ x1

‖x1‖
− x2

‖x2‖
‖2 is the squared Euclidean distance between two

l2-normalized feature vectors, and [·]+ , max(·, 0) takes the positive component
of its input. Then, the network is trained to find an embedding where the distance
between the negative pair ought to be larger than the distance between the
positive pair by at least a margin m.

3.1 Adversarial Triplet Generator G

Now let us consider a hard example generator G that generates a new adversarial
sample G(F (x)) ∈ R

L by manipulating the feature representation F (x) of an
input x. Specifically, G learns to produce challenging triplets of examples by
pushing apart the vectors from the same category while pulling closer the vectors
from different categories.

Formally, We can minimize the following adversarial triplet loss to train G,

LG,tri = [d(G(F (a)), G(F (n)))− d(G(F (a)), G(F (p))) +m]+ (2)
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Then, given a fixed G, the objective function to train F in our method
becomes

LF,tri = [d(G(F (a)), G(F (p)))− d(G(F (a)), G(F (n))) +m]+ (3)

Clearly, LF,tri and LG,tri constitute an adversarial loss pair. Compared with
the original training loss (1), F is trained through hard triplets of examples
generated by G by pulling the positive pair closer and pushing the negative pair
apart to meet the margin m.

3.2 Multi-category Discriminator D

However, the above adversarial mechanism alone is insufficient to train a reliable
G because it could arbitrarily manipulate the feature representation F with no
suitable constraints. For example, G could simply output random vectors to
achieve a lower value of LG,tri, which was useless for training a better F . Thus,
to properly constrain the triplet generator G, we require its output features
should not change the label of its input features F (x).

Consider a discriminator D. Given a feature vector, D categories it into
(K+1) categories, where the first K categories represent real classes of examples
and the last one denotes a fake class. For a triplet < a, p, n > and their labels
< la, lp, ln >, we have la = lp for the positive pair and la 6= ln for the negative
pair. Then, we minimize the following loss function to train D

LD = LD,real + βLD,fake (4)

Here, the first term enforces D to correctly classify the feature vectors in the
triplet,

LD,real =
1

3
(Lsm(D(F (a)), la) + Lsm(D(F (p)), lp) + Lsm(D(F (n)), ln)) (5)

where Lsm denotes the softmax loss. Meanwhile, the second term enables D to
distinguish generated features from real ones,

LD,fake =
1

3
(Lsm(D(G(F (a))), lfake)

+Lsm(D(G(F (p))), lfake) + Lsm(D(G(F (n))), lfake))
(6)

where lfake represents the fake class.
Once we have D, as aforementioned, G ought to preserve the label of its

input features. Thus we have the following loss to enforce this label preservation
assumption,

LG,cls =
1

3
(Lsm(D(G(F (a))), la)

+Lsm(D(G(F (p))), lp) + Lsm(D(G(F (n))), ln))
(7)

Putting together with (2), now we will minimize the following loss to train
the hard triplet generator G,

LG = LG,tri + γLG,cls (8)
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Fig. 2. Visualization of feature embedding on MNIST dataset.

3.3 Summary

Figure 1 illustrates the architecture of the proposed adversarial method. In sum-
mary, the proposed method contains an alternate optimization problem to train

i) the feature embedding network F by minimizing the triplet loss (3) com-
bined with the classification loss (5):

LF,tri + µLD,real (9)

where the classification loss ensures the learned features F can correctly
classify different categories of real examples.

ii) the discriminator D in (4), and
iii) the hard triplet generator G in (8).
It is not hard to see that G and F form a pair of adversarial players who

compete to learn feature representation resilient against hard triplets. On the
other hand, D and G is another adversarial pair playing the similar role as the
discriminator and generator in the classic GAN, except that G is trained to
preserve labels of given examples.

Fig 2 visualizes the feature space with and without adversarial training on
MNIST dataset by t-SNE [19]. It demonstrates that G pushes F (x) away from
the middle of the cluster, while F learns a tighter distribution of feature with
the effect of G. More details will be further discussed in the next section.

4 Algorithm Details

We will discuss more details about our method in this section. First, a basic
model that jointly minimizes the softmax loss and the triplet loss is presented.
Then the adversarial triplet generator is added to the basic model. Finally, we
also elaborate on the network details.

4.1 Basic Model

The basic model of learning the feature embedding network is illustrated in
Figure 3. The output (embedded) feature layer is followed by one fully-connected
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Fig. 3. (a) Architecture of the basic model with joint no-bias softmax loss and triplet
loss. (b) Illustration of the feature space in 2-dimensional with conventional softmax
loss and no-bias softmax loss. Hollow dots denote the feature points and filled dots
denote the points projected to the unit circle after l2-norm. The solid line represent
the decision boundary of softmax. The embedded feature points with no-bias softmax
loss have longer inter-class distance than those with conventional softmax loss.

layer for the softmax loss and one l2-normalization layer for the similarity loss.
The softmax loss was combined with similarity loss in several previous works
[45, 34, 21], but the relationship between softmax loss and similarity loss has not
been well studied.

In the feature embedding space, all the data points of the same class ought
to be grouped together on the unit hyper sphere after l2-normalization. The de-
cision boundaries between different classes divide the feature space for K classes
and this global structure helps accelerate convergence and achieve optimal re-
sults. However, the conventional softmax loss is not naturally compatible with
distance-based similarity loss. See the left of Figure 3(b) for example. The deci-
sion boundaries by minimizing conventional softmax loss may not pass through
the origin due to the existence of a bias b. Thus, the data points from dif-
ferent classes may overlap each other after l2-normalization. This results in a
short inter-class distance that impacts the performance of feature embedding.
Hence, we propose to use softmax loss without a bias. As shown in the right
of Figure 3(b), all the decision boundaries from such no-bias softmax loss pass
through the origin and the decision area for a class is cone-shaped with its vertex
located at the origin. Thus, a class of examples have a separate projection on the
unit hyper sphere, which ensures a long inter-class distance between examples
from different classes.

Given a training tuple < a, p, n, l >, where the anchor image a is labeled as
class l, the no-bias softmax loss is defined as

LF,cls = − log
eWlF (a)

∑K

k=1 e
WkF (a)

(10)

where F (·) denotes the output feature of a CNN model. Then the network F is
trained by minimizing LF = LF,cls+λL′

F,tri by stochastic gradient descent, and
λ is the weight to control the trade-off between the no-bias softmax loss and the
original triplet loss (1).
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4.2 Adversarial Training

The above basic model trains a benchmark feature extractor F , and here we
will show that it can benefit from the hard triplets generated by an adversarial
generator. In the basic model, F is trained by randomly sampling triplets from
a training set without considering their hardness. Now we attempt to train a
hard triplet generator at the feature level.

As shown in the left dotted box in Figure 4, the generator denoted by G takes
an input feature vector F (x) ∈ R

L output from F and produces a generated fea-
ture vector of the same dimension. The generator G consists of 4 fully-connected
layers, first two of which reduce the input feature dimension by half as a bot-
tleneck and then the last two layers redouble it to the original dimension. Each
layer is followed with BatchNormalization [10] and ReLU [18], and the output
vector is calculated by performing an element-wise addition between the output
fully-connected layer and the input vector. Such residual structure enforces G
to learn the offset of the input vector, which yields faster convergence of G in
the training phase. In this fashion, G only needs to learn how to move a feature
vector in the feature space instead of generating features from scratch.

On the other hand, the discriminator D also takes an input feature vector
F (x) ∈ R

L from F and classifies it into one of K+1 classes. D also has four fully-
connected layers, where the first three are followed with BatchNormalization and
ReLU and the last one is a softmax layer.

We use mini-batch SGD with the learning rate α to train the networks F ,
D, and G step by step with the loss functions introduced in Section 3.

i) Update the feature embedding network F with LF = LF,tri + µLD,real,
where F is trained by ensuring the distance of a positive pair should be smaller
than that of the negative pair by at least a margin m in a hard triplet generated
by G; meanwhile, all feature vectors of F should be correctly classified by D.

ii) Update the discriminator D with LD = LD,real + βLD,fake, where D is
learned by distinguishing real vectors F from the fake counterparts generated
by G, and LD,real is also used to train D to classify the labeled examples.

iii) Update the hard triplet generator G with LG = LG,tri + γLG,cls, where
G is trained to produce hard triplets that can challenge F while it is regularized
by preserving the labels of training examples.
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4.3 Harder Triplet Generation from Local Details

Furthermore, we attempt to build a more powerful extractor F allowing the HTG
to create harder triplets from fine-grained local details, thus a visual recogntion
model can be challenged with harder triplet examples to become more robust.

Indeed, local features play a critical role in many fine-grained visual recog-
nition tasks. Typical deep neural networks designed for image classification are
good at extracting high-level global features, but the features of local details
are often missing. This could limit the HTG in exploring local details to create
harder triplets. For example, without local details, the HTG could not generate
such hard triplets that could force a model to focus on most discriminative parts
such as logos, lights and sunroof in identifying different cars.

To address this problem, we introduce keypoint maps for training HTG by
focusing on local details. For example ResNet-18 consists of four sequential con-
volution blocks, and the output of the fully-connected (FC) layer following the
last convolution block is used as the global feature fglobal. The output feature
map of a convolution block-l is denoted by X l ∈ R

C×W×H . Then we add a local
branch called keypoint block, which has an architecture similar to a convolution
block, to localize the distribution of keypoints that could focus on the most dis-
criminative parts to create harder triplets. The high-level semantic feature maps
are sparse and we assume that each channel of a keypoint layer corresponds to a
particular type of keypoint, thus we apply channel-wise softmax on the output
feature map of the keypoint layer to estimate the density of a keypoint over
different image locations:

M l
cij =

eP
l
cij

∑W

w=1

∑H

h=1 e
P l

cwh

(11)

with P l
cij being the output feature of channel c at (i, j) in keypoint block-l.

This softmax output is used as a channel-wise keypoint mask, which allows
us to perform element-wise product of X l and M l. The resulting local feature
f l of block-l is calculated by a channel-wise summation over locations: f l

c =
∑W

i=1

∑H

j=1 X
l
cijM

l
cij .

In experiments, we will extract such local features at block-3 and block-4,
which are then concatenated with the global feature to form the final output
feature fout = [fglobal; f

3; f4].

5 Experiments

We evaluate the proposed method on four real-world datasets in two performance
metrics, i.e., Recall@K [12] and mAP. For the network architecture, we choose
ResNet-18 [8] pre-trained on ImageNet ILSVRC-2012 [25]. The keypoint blocks
described in Section 4.3 are initialized with the same weights as the ResNet-
18 convolution blocks. We use the same hyper parameters in all experiments
without tuning them. Input images are first resized to 256 × 256 and cropped
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at 224 × 224. For the data augmentation, we use random crops with random
horizontal mirroring for training and a single center crop for testing.

For training basic model in Section 4.1, mini-batch size is 128, triplet margin
is m = 0.1, and λ = 1. The learning rate α starts from 0.01 and is divided by 10
every 5 epochs to train the model for 15 epochs.

For training adversarial triplet generator in Section 4.2, mini-batch size is
64, and µ = β = γ = 1. The generator network is trained for 10 epochs with the
learning rate α being initialized to 0.001 and divided by 10 every 5 epochs.

5.1 Datasets

We use four datasets in our experiments which are commonly used in many fine-
grained visual recognition tasks. We follow the standard experiment protocol to
split train and test sets for a fair comparison with existing methods.

– CUB200 [36] dataset has 200 classes of birds with 11, 788 images, in which
the first 100 classes (5,864 images) are used for training and the rest 100
classes (5,924 images) are used for testing. Both query and gallery sets are
from the test set.

– CARS196 [13] dataset has 196 classes of cars with 16,185 images, where the
first 98 classes (8,054 images) are used for training and the rest 98 classes
(8,131 images) are used for testing. Also, both query and gallery sets are
from the test set.

– In-Shop Clothes Retrieval is one of the three benchmarks used in [17],
which has 7,982 classes of clothes with 52,712 images. Among them, 3,997
classes (25,882 images) are used for training and the other 3,985 classes
(28,760 images) are used for testing. The test images are partitioned to a
query set and a gallery set. The query set contains 14,218 images and the
gallery set has 12,612 images.

– VehicleID [16] dataset contains 221,763 images of 26,267 vehicles, where
the training set contains 110,178 images of 13,134 vehicles and the test
set contains 111,585 images of 13,133 vehicles. It is more challenging than
CARS196 because different identities of vehicles are considered as different
classes, even though they share the same car model. Following the proto-
col in [16], there are three test sets of different sizes. The smallest test set
contains 7,332 images of 800 vehicles. The medium test set contains 12,995
images of 1600 vehicles. The largest test set contains 20,038 images of 2,400
vehicles.

5.2 Generation-based Method v.s. Mining-based Method

We start by demonstrating the improvements of our proposed HTG method. We
focus on the CARS196 dataset and evaluate models with different settings on
training stratege. The network architecture is ResNet-18 without any additional
branch. Results are presented in Table 1. We compare random sampling and on-
line hard example mining (OHEM) [29] to our hard triplet generation(HTG). For
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training OHEM, we sample 32 identities with 4 images for each identity to form
a mini-batch, and mine the nearest negative sample and longest positive sample
for each anchor data to constitute a triplet. The experimental results show that
OHEM improves the recall scores by learning from hard triplets and our HTG
method outperforms OHEM further with an absolute 2.4% improvement on Re-
call@1 score. The results of A/D, B/E and C/F prove that removing the bias of
softmax loss offers notable boost on varied training strategies, which means the
no-bias softmax loss is more compatible with distance-based similarity loss.

Table 1. Recall@K(%) on CARS196 with different model settings

model training softmax 1 2 4 8

A random bias 65.4 76.5 84.7 91.0
B OHEM bias 67.1 78.1 86.2 91.7
C HTG bias 69.3 79.2 86.7 92.0
D random no-bias 66.6 77.0 85.2 91.3
E OHEM no-bias 68.2 78.7 86.5 92.0
F HTG no-bias 70.6 79.9 87.3 92.9

5.3 Hard Triplet Generation from Local Attentions

In the last section, we showed the HTG with global ResNet-18 features outper-
formed the other compared methods. We also consider to add a local keypoint
branch to maximize the ability of the HTG in generating hard triplets. This
could allow the HTG to explore local details so that harder triplets with fine-
grained details can be produced to further imporve the recognition accuracy.
Below we will demonstrate more competitive performance can be achieved by
the HTG with various local attentions models.

Table 2. Recall@1(%) score on CARS196

vanilla K-Branch ResAttention KPM

random 66.6 71.9 72.3 72.7
OHEM 68.2 72.2 72.6 72.5
HTG 70.6 72.7 73.9 76.5

To this end, we compare the global vanilla model without any modification,
K-branch [46] and ResAttention [37] with our keypoint maps (KPM). These
methods are all based on ResNet-18 backbone for fair comparation. K-branch
designs 8 branch to detect discriminative regions and align local parts. ResAtten-
tion extracts local feature with attention-aware masks. All the architectures are
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Fig. 5. Visualization of keypoint maps on VehicleID, CUB200 and In-Shop Clothes
datasets respectively.

tested with three training strategies and the results are shown in Table 2. The
attention models outperform the base model with different training strategies.

It is worth nothing that on attention models, OHEM does not significantly
outperform random sampling of triplets as on the vanilla model. We attribute
this performance degeneration to the bad local optimum of OHEM. On the
contrary, the proposed HTG successfully boosts the performance on attention
models, especially on KPM model. This demonstrates the competency of HTG
in exploring local details to generate harder triplet examples for training more
competitive recognition models.

In order to demonstrate that KPM is able to find keypoints, we intuitively
illustrate detected keypoints by taking the maximum response over C channels
at different locations:

Vi,j = max
c∈1,··· ,C

{Mc,i,j} (12)

The keypoint maps are superimposed on their input images in Figure 5. On
VehicleID dataset, there are high responses on logo, lights, sunroof and antenna
on the car roof. These are the most discriminative parts to classify car models.
To tell the differences between distinct vehicles of the same model, the model
further localizes more customized landmarks, such as the stickers on the car
window and the small objects put on the car dashboard. It shows that this
model is able to find these subtle keypoints effectively.

Local features play an important role in fine-grained image recognition tasks.
Although the local branch of keypoint blocks does not need any manual anno-
tations, it is expected to localize discriminative parts by learning from the gen-
erated hard triplets to distinguish subtle differences between fine-grained image
classes.

On CUB200 dataset, the detected keypoints often locate in eyes, beaks, wings
and tails, which are useful to classify different species of birds. On In-Shop
Clothes dataset, collar ends, sleeve ends and hem parts are detected. These ex-
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amples demonstrate that the proposed model trained from the generated hard
triplets successfully localizes the most discriminative part in classifying or iden-
tifying images at a very fine-grained level.

5.4 Comparison with the State-of-the-art Methods

On the CUB200 and CARS196 datasets, the proposed model is compared with
five state-of-the-art methods. LiftedStruct [20] uses an algorithm taking full ad-
vantage of the training batches by lifting the vector of pairwise distances within
the batch to the matrix of pairwise distance. StructuredCluster [32] uses struc-
tured prediction that is aware of the global structure of an embedding space.
SmartMining [7] proposes an adaptive controller that automatically adjusts the
smart mining hyper-parameters and speeds up the convergence. N-Pair [31] pro-
poses multi-class N-pair loss to leverage more than one negative examples for
each anchor. HDC [44] ensembles a set of models with increasing complexities
in a cascaded manner to mine hard samples at different levels. Table 3 shows
the Recall@K results on these two datasets. Our proposed method successfully
boosts the Recall@K upon the existing methods and gets an absolute 5.9% im-
provement on Recall@1 compared with HDC on CUB200 dataset, and 2.8%
improvement on CARS196 dataset.

Table 3. Recall@K(%) on CUB200 and CARS196

dataset CUB200 CARS196

Recall@K 1 2 4 8 1 2 4 8

LiftedStruct [20] 43.6 56.6 68.6 79.6 53.0 65.7 76.0 84.3
StructuredCluster [32] 48.2 61.4 71.8 81.9 58.1 70.6 80.3 87.8
SmartMining [7] 49.8 62.3 74.1 83.3 64.7 76.2 84.2 90.2
N-Pair [31] 51.0 63.3 74.3 83.2 71.1 79.7 86.5 91.6
HDC [44] 53.6 65.7 77.0 85.6 73.7 83.2 89.5 93.8

Ours 59.5 71.8 81.3 88.2 76.5 84.7 90.4 94.0

On In-Shop Clothes dataset, FashionNet [17] is a novel deep model that learns
clothing features by jointly predicting landmark locations and massive attributes.
HDC is also included in comparison on this dataset. Table 4 reports the results.
Compared methods suffer from the problem with a large number of classes and
limited images in each class. The proposed method significantly improves the
Recall@1 score from 62.1% to 80.3%. It is worth noting that the proposed method
does not use any manually annotated landmarks and attributes. FashionNet did
not report the numeric results on this task, and the results of FashionNet are
referred to [44].

On VehicleID dataset, Mixed Diff + CCL [16] uses coupled cluster loss and
the mixed difference network structure. Table 5 reports the results on Vehi-
cleID. This dataset contains many hard negative examples that are different
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Table 4. Recall@K(%) on In-Shop Clothes Retrieval, FN is short for FashionNet.

K 1 10 20 30 40

FN+Joints [17] 41.0 64.0 68.0 71.0 73.0
FN+Poselets [17] 42.0 65.0 70.0 72.0 72.0
FN [17] 53.0 73.0 76.0 77.0 79.0
HDC [44] 62.1 84.9 89.0 91.2 92.3

Ours 80.3 93.9 95.8 96.6 97.1

vehicles with the same model, and it is an ideal example showing the advan-
tage of learning from hard triplets. Compared with HDC, our model achieves
an absolute 7.7%/7.5%/9.0% improvement on Small/Medium/Large test set in
mAP, respectively. The results on these four datasets show the proposed method
outperforms the existing state-of-the-art methods.

Table 5. mAP(%) on VehicleID

Method Small Medium Large

VGG+Triple Loss [16] 44.4 39.1 37.1
VGG+CCL [16] 49.2 44.8 38.6
Mixed Diff + CCL [16] 54.6 48.1 45.5
HDC [44] 65.5 63.1 57.5

Ours 73.2 70.6 66.5

6 Conclusion

In this paper, we propose a novel algorithm, Hard Triplet Generation via Adver-
sarial training for learning an optimal embedding of images. A feature extractor
is pushed to distinguish relevant examples from irrelevant ones even for the most
challenging queries in the generated hard triplets. This generation-based method
avoids the problem of being trapped to a bad local optimum by a greedy mining-
based method. Experimental results on four real-world datasets demonstrate the
advantage of the proposed model over the compared state-of-the-art methods.
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