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Abstract. Many previous literatures use landmarks to guide the cor-
respondence of 3D faces. However, these landmarks, either manually or
automatically annotated, are hard to define consistently across differ-
ent faces in many circumstances. We propose a general framework for
dense correspondence of 3D faces without landmarks in this paper. The
dense correspondence goal is revisited in two perspectives: semantic and
topological correspondence. Starting from a template facial mesh, we
sequentially perform global alignment, primary correspondence by tem-
plate warping, and contextual mesh refinement, to reach the final cor-
respondence result. The semantic correspondence is achieved by a local
iterative closest point (ICP) algorithm of kernelized version, allowing
accurate matching of local features. Then, robust deformation from the
template to the target face is formulated as a minimization problem. Fur-
thermore, this problem leads to a well-posed sparse linear system such
that the solution is unique and efficient. Finally, a contextual mesh re-
fining algorithm is applied to ensure topological correspondence. In the
experiment, the proposed method is evaluated both qualitatively and
quantitatively on two datasets including a publicly available FRGC v2.0
dataset, demonstrating reasonable and reliable correspondence results.
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1 Introduction

Current progresses in economical sensors and advanced algorithms have pushed
many 3D facial analysis technologies into real-life applications [1,2]. Compared
to its 2D counterpart, 3D face contains extra geometric information that can be
utilized to resolve problems caused by illumination, pose, and expression varia-
tions. One of the most fundamental and challenging problems in the 3D facial
analysis context is dense correspondence, which can contribute to many applica-
tions of 3D faces [3-5]. The benefit of dense correspondence is generally two-fold:
1) the one-to-one correspondence of points among different faces allows them to
be organized in the same vector space, enabling further data analysis as a whole;
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2) compared to sparse representations such as landmarks only, dense represen-
tations can capture subtle structures of faces, providing more discriminative
information.

Inherited from the 2D literature, the methods using landmarks [6-10] have
also been very popular for 3D face correspondence. Landmarks are some fidu-
cial points on a face, such as the nose tip and the eye corner, which are very
distinctive around their local contexts and can be detected either manually or
automatically. The number of landmarks varies from a few tens to a hundred in
different applications. It is generally considered that landmarks should dominate
over all other points and be used as a guidance to establish full dense point-to-
point correspondence. To date, many techniques have been proposed for accurate
and robust detection of landmarks in 2D situations as well as in 3D [11-13].

Unfortunately, there are some major bottlenecks in using landmarks for 3D
face correspondence. Firstly, manual annotation of landmarks is a laborious task,
which is impractical for large database. Secondly, automatic landmark labeling
is challenging especially for data with non-neutral expressions and variations
in age and ethnicity. While it is easy to locate a landmark on one subject, it
may be difficult to locate it on another subject with significant difference to
ensure the same semantic meaning. Finally, it is even unable to define consistent
number of landmarks across all subjects with data defects and noises, let alone
the precision of these landmarks. All these considerations are demanding for
practical applications.

This work aims at establishing dense point-to-point correspondence of 3D
facial shapes without landmarks. We do not use texture here because texture is
not always consistent with the underlying shape morphology, e.g. for the eye-
brows, although the texture may provide with useful information for detection of
some landmarks. Furthermore, shape is generally more reliable and stable feature
under pose and illumination variations. Our goal is to seek for reasonable and
reliable shape correspondence rather than strict and standard result. Strict corre-
spondence may intuitively and physically exist between different data of the same
subject, however, this problem hardly leads to a standard answer across different
subjects. We restrict the correspondence problem to facial shapes and clarify the
problem in two perspectives. One is semantic correspondence which guarantees
that the corresponded points share the same semantic meaning. The other is
topological correspondence which guarantees that the corresponded points lie in
the same local context. An example for two corresponded faces A and A’ is illus-
trated in Fig 1. It shows the corresponded points p and p’ both denote the nose
tip, and are both located at the center of their corresponded vicinity points.

We propose a fully automatic framework to achieve the semantic and topolog-
ical correspondence goals for 3D faces. A template warping strategy is adopted
here. First a face is chosen as a template and used to initially register the tar-
get faces, which is referred to as global alignment (Sec 3.1). Then preliminary
correspondence (Sec 3.2) and robust deformation (Sec 3.3) from the template
to the target are alternated and iterated for a few times to obtain a prima-
ry correspondence result. At this stage, semantic correspondence is guaranteed.
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nose tip

Fig. 1. Example of two corresponded faces in which points with the same color are in
correspondences.

Finally, a contextual mesh refining algorithm is applied to ensure topological
correspondence (Sec 3.4).

We evaluate the proposed method both qualitatively and quantitatively on
two databases including a publicly available FRGC v2.0 [14] database and our
newly collected HQ3DP database in the experiment. It shows that our method
can achieve reasonable and reliable correspondence results. Except for a fully
automatic algorithm for 3D face dense correspondence, the main contribution
of this work is two-fold: 1) we construct a template warping strategy that takes
both global and local features into consideration for accurate semantic corre-
spondence, where the meaning of “semantic” we designated here is more than
just landmark correspondence; 2) we consider topological correspondence and
propose a mesh refining algorithm to achieve it, and this notion may give new
insights towards the final solid definition for dense correspondence of 3D faces.

2 Related work

For a comprehensive overview of 3D shape correspondence methods which are
not limited to faces one can refer to [15, 5]. Here we only review and summarize
some state-of-the-art representative algorithms for dense point correspondence
of 3D faces.

In the seminal work of 3D Morphable Model (3DMM) [3, 16], Blanz and Vet-
ter propose a novel regularized optic flow based algorithm for dense point corre-
spondence. The 3D coordinates of the facial surface are projected to a cylindrical
“UV” map, with both the third dimension “radius” (i.e. distance to the cylin-
drical axis) and the texture encoded as “pixel intensities” with proper weights.
Coarse-to-fine and local smoothing strategies are applied in the computational
process. Despite its efficiency by reducing the dimensionality of this problem
from 3D to 2D, the potential pitfalls are 1) the mapping from 3D coordinates
to 2D “UV” space may not be one-to-one, 2) mapping from 3D to 2D and then
back to 3D requires resampling and may lose precision of original data.

As an alternative, a thin plate splines (TPS) [17] warp is employed by Patel
and Smith for the correspondence task with some manually labeled annotations.
Gilani et al.[13] also use the TPS for estimating and minimizing the local bend-
ing energy for registering of some seed points which can be much more than
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landmarks, and further incorporating them into the full shape correspondence.
These approaches are considered more robust to handle large variations in facial
identity.

Amberg et al.[18] propose an optimal step nonrigid iterative closest point
(NICP) algorithm for the registration of 3D shapes. It is used as a benchmark
algorithm for face correspondence in some prior arts [19-22]. More recently in
the work of Booth et al.[23,24], landmark detections are automated using the
3D textures in different viewing directions. And then, these landmarks are used
to guide the local affine deformations of NICP with a proper parameter setting.
They also compare the performance of several methods for 3D face correspon-
dence and reach a conclusion that NICP is superior to the TPS and optic flow
based algorithms.

In the rich literature of 3D face correspondence, many algorithms [6, 25—
27] give impressive results by their capability to model identity and expression
variations or both. For example, Bolkart and Wuhrer [27] propose a multilin-
ear groupwise model for 3D face correspondence to decouple both identity and
expression variations. However, a well-established correspondence model is a pre-
requisite in these methods and the correspondence problem is considered in the
restrictive space expressed by the model. Although insightful and practically
useful, a chicken-and-egg problem still remains to be solved. A vital question is,
if the corresponded model has some errors, they may accumulate and propagate
in their subsequent usages.

Existing methods are mostly focusing on semantic correspondence. For ex-
ample, there is functional face proposed by Zhang et al. [28] who incorporate
multiple features into the correspondence strategy by Laplace-Beltrami oper-
ators. Some geodesic preserving methods [29,30] have also shown merits over
Euclidean distance based ones on modeling expression variations. We are not
going to categorize them by the algorithm details, for example, by whether they
employ one-to-one or one-to-many strategies, or they use textures or not. Se-
mantic correspondence may be notably defined in some regions of the face such
as the eyes corners. However in other regions such as the cheek and forehead, it
is even not uniquely identifiable by a human. In this work, we are seeking for a
more definite solution for this problem. The similarity of local data structure,
referred as topological correspondence in this work, is an extra constraint we
take into consideration.

3 Method

3.1 Global alignment

An arbitrary but well enough (noiseless) face is chosen as the template and used
to initially register the target faces on the first stage, referred as global alignment
here. Global alignment aims at aligning two facial shapes such that the true
point-to-point correspondence is close to the nearest one. We use a modified
iterative closest point (ICP) method to achieve global alignment. ICP [31] is a
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Fig. 2. Meanings of co-planarity, co-circularity, and co-normality. The three sub-figures
lead to zero values for each of the three terms, respectively.

simple yet efficient point set registration algorithm that iterates between closest-
point correspondence and rigid-motion estimation until convergence. Given two
sets of corresponded points P = {p1,p2,...,pn} and Q = {q1,¢2,...,qn} in R3,
the rigid-motion estimation is a constraint minimization problem with respect
to the optimal rotation R and translation t,

{R,t} = argmin Y | Rp; +t — gi]5. (1)

’ i=1

And this problem can be solved efficiently by singular value decomposition.

A novel Go-ICP [32,33] algorithm, which is an improved version of ICP for
3D shape registration, guarantees an optimum solution even without a good
initialization by a branch and bound searching strategy in the parameter space.
By virtue of it, detection of some fiducial points (e.g. the nose tip and some other
sparse landmarks) for pose estimation of 3D face which is done in many existing
works is circumvented here, making the proposed method one step further to be
automatic.

3.2 Dichotomic preliminary correspondence

To achieve semantic correspondence, we treat the points on a face differently.
The points on a face are heuristically categorized into two groups. Points that
belongs to the complex regions where the semantic meaning is clear form one
group, and the rests that belongs to smooth regions where the semantic meaning
is not clearly distinctive form the other. Since the face is an ellipsoid-like surface,
the smooth regions can be modeled to be planar or circular. Let p; = p +
d; (j =1,...,k) be the neighbors of point p and let n; (j = 1,...,k) and n be the
corresponding normals. Inspired by the work of [34, 35], we define entropy of a
point p on a facial surface as

M(p) = My(p) + Mc(p) + My (p), (2)

which is the sum of three terms (also illustrated in Fig 2).
1. Co-planarity measures the extent that neighboring vertices lie in each other’s
tangent planes.

k
My(p) = (n"dy)" /k (3)

Jj=1
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Fig. 3. Mapping of entropy on a 3D face. The left and right sub-figures are an entropy-
intensity map with colorbar and a binary map for two classes of points, respectively.

2. Co-circularity measures the extent that neighboring vertices share similar
curvatures.

k
Mop) =3 [(n+n,)7d;) /k (4)

j=1

3. Co-normality measures the extent that neighboring vertices hold the same
normal.

k
M, (p) :ZHn*njHQ/k ()

The neighbors of p can be defined as points within a local patch around
it. Note that all the vectors are normalized to unit length in the computation
process. We then classify the points on the template face into two groups by
sorting their entropies. Entropy gives a measure to the local distinctiveness for
semantic meaning. In this paper we define the top 10% of all points as high-
entropy points and they are a well cover for the eyes, nose, and mouth regions.
Fig 3 shows an entropy-intensity map for all points and a binary map for the
two groups of points on a 3D face.

We simply apply the closest-point rule to the low-entropy points for prelimi-
nary correspondence for computational efficiency. However as to the high-entropy
points, we apply a different local ICP of kernelized version for semantic corre-
spondence. A Gaussian kernel is adopted here to emphasis local features. The
optimal rotation R and translation t are estimated by

k
{R,t} = ar%minZK(pi) IRp: +t — gill3. (6)

’ i=1

Compared to Eq 1, the objective function is reweighted by a kernel function
K(p;). The effect of Gaussian kernel is illustrated in Fig 4. The local shape
differences between the template and the target face are commonly manifested
as stretching or shrinking of curves to accompany with expression and identity
variations. It shows that compared to uniform weighting, Gaussian weighting as
a function of distance to the corresponding point, is capable of matching finer
local details.
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Fig. 4. Effect of Gaussian weighting compared to standard ICP (referred as uniform
weighting). The point p is corresponded to p1 and p2 by the two different ICP weighting
strategies, respectively.

3.3 Nonrigid robust deformation

The template face is deformed into the target face to obtain the correspondence
result after preliminary correspondence is established. Before formulation of the
deformation model, we first give the meaning of some symbols.

— V and P denotes the point sets of the template face and the target face,
respectively.

— wv; is a point on V and its preliminary correspondence on P is p,,.

0; denotes the deformation offset to be solved.

— w; denotes the weight assigned to each corresponded point pair.

Then, the deformation problem is formulated as

. . 2 2
{oili € V} = argmin{} " w; [lpy, — (vi +0) 5+ XY Y lloi—ojll3}, (7)
{oilieV} oy i€V jep®

(

where rl-l) denotes the l-ring neighbors of the point v; and it contains N )

points. The second term in Eq 7 is a local smoothing constraint, which renders
the template face to deform into the target face gradually in each small step.
For each step, we set v;  v; + 0; (¢ € V) and preliminary correspondence is
rebuilt by the method described in Sec 3.2. The iteration is terminated when
the residual error Y ||p,, — vl||§ is smaller than a predefined threshold e.

i€V

Solution to the deformation problem. The overall solution to Eq 7 leads to
a linear system:

[AijInxn - [Oijlnx3 = [Bijlnxs, (8)
where
wi“l‘)\-NrQ) ifi=3j
Aijj=9 -\ ifi#jandjer® (9)
0 otherwise

[Oij]Nx3 = [01,...,0N]T, (10)
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Fig.5. Global reconstruction error of the target face and local registratio n error of
high-entropy points for an example in Fig 6. The errors are normalize d to [0; 1].

and
Bilv 3=[wi (P, Vva);inwn (v W' (11)

N is the total number of points. It is obvious that A is asparse square and strict
diagonal-dominant matrix such that the system is well-posed, computational
e cient, and has a unique solution.
Weighting di erently for each point pair. To ensure more reliable prelim-
inary correspondence customized for nonrigid deformation, the weightdr each
point pair is set by some intuitive rules as follows.
1. Weights for high-entropy points should be larger than some other points sch
that the semantic correspondence of high-entropy points serves as a glgd for
the deformation process.
2. If the distance between the corresponded points is larger than a thashold
or the inner product between the normal vectors of the corresponded qints is
smaller than a threshold, we set the weight to be zero to reject urgasonable
correspondences.
3. If the corresponded point of the target face lies on the boundary of the n&h,
the weight is set to zero.

These rules guarantee reasonable deformation to reconstruct the targeate.
Of course more rules can be devised to meet some speci ed needs pieally. It
is di erent to some landmark guided nonrigid deformation methods [6, 18] h two
perspectives. One is that the detection and preliminary correspodence of the
high-entropy points are automated by a local ICP of kernelized versionThe other
is, since high-entropy points are much more than landmarks, the inteactions of
them with their nearby ones lead to robust solutions which are more toleant
to individual correspondence errors. The preliminary correspondeces of high-
entropy points also renew themselves for smaller local registrationreors (see
Fig 5) as the deformation towards the target proceeds. As shown in Fig 6,ti
provides a possible way to model both identity and mild expressin variations.

3.4 Contextual mesh re nement

We assume two corresponded faces should have similar local mesh stture to
ensure topological correspondence. The following steps constitutdé algorithm






























