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6 Supplementary Material

6.1 Normal and principal curvature estimation performance

Performance on real data. We qualitatively evaluate the performance of our
method on the NYU Depth V2 dataset [19]. This dataset was captured using a
Kinect v1 RGBD camera and contains indoor scene environment and includes
missing data and a noise pattern that is significantly different than the PCPNet
dataset. Specifically, the noise often has the same magnitude as some of the
features. Most importantly, this dataset, much like other real-world datasets,
does not have ground truth normals. Fig. 8 and Fig. 9 show the performance of
DeepFit’s normal and principal curvature estimation respectively compared to
Jet. DeepFit was trained with 256 points, however, since the network’s weights
are shared between the points it can be used with any neighborhood size. In
these results we show the performance for 128, 256, 512, 1024 neighboring points.
It shows that DeepFit is less sensitive to noise and is able to overcome the over-
smoothing affect commonly attributed to using a large neighborhood while also
preserving fine details.

We additionally qualittively evaluate the performance of our method on the
KITTI dataset [8]. This dataset was captured using a Velodyne laser scanner
mounted on a driving car.

Additional normal estimation results. We evaluate the normal estimation
performance on the PCPNet datast using the percentage of good points (PGP α)
metric. Fig 11 shows the results of different learning based methods for increasing
α values . It shows that for low and medium noise levels, DeepFit is comparable
to Lenssen et.al. [15] while in all other categories their performance is better.
This is most likely attributed to the dataset bias towards flat and low curvature
surfaces, in which case, our method does not pose an advantage. DeepFit main
advantage is in curvy surfaces where an n-jet yields a better fit than a plane.

We evaluate DeepFit’s normal estimation performance using RMSE for dif-
ferent n-jet orders and number of points in the neighborhood. The results are
shown in Fig. 12. It shows that the increase in the number of neighboring points
slightly decreases the performance in the no noise augmentation however it sig-
nificantly improves the performance in high noise. This is mainly attributed to
the weight estimation network that softly selects the most relevant points for the
fit. It also shows that 1-jet (planes) perform well, however higher order jets have
an advantage in the low and medium noise augmentation categories. In theory,
the higher order jets have the capacity to fit planes, however in practice it is not
always the case.

Fig. 13 depicts a visualization of DeepFit’s results on PCPNet point clouds.
Here the normal vectors are mapped to the RGB cube. Fig. 14 depicts a visu-
alization of the angular error in each point for the PCPNet dataset. Here, the
points’ color correspond to angular difference, mapped to a heatmap ranging
from 0-60 degrees. It shows that for complex shapes with high noise levels, the
general direction of the normal vector is predicted correctly, but, the fine details
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Fig. 8: Normal estimation results for DeepFit and Jet on NYU Depth V2 dataset
for different neighborhoods sizes (128, 256, 512, 1024). The colors of the points
are normal vectors mapped to RGB and projected to the image plane.

Fig. 9: Principal curvature estimation results for DeepFit and Jet on NYU Depth
V2 dataset for different neighborhoods sizes (128, 256, 512, 1024). The colors of
the points correspond to their principal curvature values using the colormap in
the bottom-left corner and projected to the image plane.
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(a) (b)

Fig. 10: (a) Normal estimation results for DeepFit on KITTI dataset. The colors
of the points are normal vectors mapped to RGB and projected to the image
plane. (b) Principal curvature estimation results for DeepFit on KITTI dataset.
The colors of the points correspond to their principal curvature values.
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Fig. 11: Comparison of the percentage of good points (PGP) metric for unori-
ented normal estimation of the proposed DeepFit to other deep learning methods
(PCPNet [10], Nesti-Net [3], Lenssen et. al. [15]). Here, α is the threshold for
measuring the percentage of good points.
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Fig. 12: Comparison of the angle RMSE metric for different DeepFit variants.
Ablations include different n-jet order (1, 2, 3, 4) and number of neighboring
points (64, 128, 256).

and exact normal vector are not obtained. For basic shapes the added noise does
not affect the results substantially. Most notably, DeepFit shows robustness to
point density corruptions.

Additional principal curvature estimation results. Fig. 15 qualitatively
depicts DeepFit’s results on the PCPNet dataset. For visualization, the principal
curvatures are mapped to RGB values according to the commonly used mapping
given in Fig. 5 i.e. both positive (dome) are red, both negative (bowl) are blue,
one positive and one negative (saddle) are green, both zero (plane) are white, and
one zero and one positive/negative (cylinder) are yellow/cyan. For consistency
in color saturation we map each model differently according to the mean and
standard deviation of the principal curvatures. Note that the curvature sign is
determined by the ground truth normal orientation. DeepFit’s normalized RMSE
metric is visualized in Fig. 16 as the magnitude of the error vector mapped to
a heatmap. It can be seen that more errors occur near edges, corners and small
regions with a lot of detail and high curvature. Moreover, these visualizations
show that for low noise levels, the principal curvature estimation is reliable, as
expected, the reliability declines with the insertion of high magnitude noise.

6.2 Efficiency

Table 3 shows a comparison between the number of parameters and run time
between different deep learning based normal estimation methods. It can be
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Fig. 13: DeepFit’s normal estimation results for different noise levels (columns
1-4), and density distortions (columns 5-6). The colors of the points are normal
vectors mapped to RGB.
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Fig. 14: Normal estimation error visualization for different noise levels (columns
1-4), and density distortions (columns 5-6). The colors of the points correspond
to angular difference, mapped to a heatmap ranging from 0-60 degrees. The
number above each point cloud is the RMSE.
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Fig. 15: Curvature estimation results visualization. The colors of the points cor-
responds to the mapping of k1, k2 to the color map given in Fig 5. Values in the
range [−(µ(|ki|) + σ(|ki|)), µ(|ki|) + σ(|ki|)]|i=1,2.
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Fig. 16: Curvature estimation error results. The numbers under each point cloud
are its RMSE and normalized RMSE. The color corresponds to the L2 norm of
the error vector mapped to a heatmap ranging from 0-5.
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seen that DeepFit has a significantly lower number of parameters compared to
Nesti-Net and PCPNet and more parameters than Lenssen et. al.. This gap in
the number of parameters can be explained by the lack of point structure in our
method while Lessen et. al. construct a graph. Constructing a graph introduces
a limitation with respects to the number of neighboring points, i.e. training and
testing has to be done on the same neighborhood size, using a PointNet archi-
tecture allows to train and test on different sizes of neighborhoods. DeepFit’s ,
number of parameters is mainly attributed to the PointNet transformation sub-
networks. The reported run time is the average run time for a batch of size 64
(i.e. computing normals for 64 points simultaneously). We chose a batch of 64
in order to fairly compare to the more resource intensive methods (Nesti-Net).
Most methods, including ours, can compute in larger batches for faster perfor-
mance, particularly Lenssen et. al. that are able to fit a full size point cloud
(100k points) in a single batch on the GPU.

Method Our DeepFit Nesti-Net [3] PCPNet [10]
Lenssen et.

al. [15]

Parameters 3.5M 179M 22M 7981
Exec time (per

point)
0.35ms 266ms 0.61ms 0.13ms

Table 3: Number of parameters and execution time performance for deep learning
normals estimation methods. Run time is averaged for batches of size 64.
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