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Abstract. Textures in natural images can be characterized by color,
shape, periodicity of elements within them, and other attributes that can
be described using natural language. In this paper, we study the problem
of describing visual attributes of texture on a novel dataset containing
rich descriptions of textures, and conduct a systematic study of current
generative and discriminative models for grounding language to images
on this dataset. We find that while these models capture some properties
of texture, they fail to capture several compositional properties, such
as the colors of dots. We provide critical analysis of existing models by
generating synthetic but realistic textures with different descriptions.
Our dataset also allows us to train interpretable models and generate
language-based explanations of what discriminative features are learned
by deep networks for fine-grained categorization where texture plays a
key role. We present visualizations of several fine-grained domains and
show that texture attributes learned on our dataset offer improvements
over expert-designed attributes on the Caltech-UCSD Birds dataset.

1 Introduction

Texture is ubiquitous and provides useful cues for a wide range of visual recog-
nition tasks. We rely on texture for estimating material properties of surfaces,
for discriminating objects with a similar shape, for generating realistic imagery
in computer graphics applications, and so on. Texture is localized and can be
more easily modeled than shape that is affected by pose, viewpoint, or occlusion.
The effectiveness of texture for perceptual tasks is also mimicked by deep net-
works trained on current computer vision datasets that have been shown to rely
significantly on texture for discrimination (e.g ., [14, 16,22,26]).

While there has been significant work in the last few decades on visual
representations of texture, limited work has been done on describing detailed
properties of textures using natural language. The ability to describe texture
in rich detail can enable applications on domains such as fashion and graphics,
as well as to interpret discriminative attributes of visual categories within a
fine-grained taxonomy (e.g ., species of birds and flowers) where texture cues play
a key role. However, existing datasets of texture (e.g ., [11,15]) are limited to a
few binary attributes that describe patterns or materials, and do not describe
detailed properties using the compositional nature of language (e.g ., descriptions
of the color and shape of texture elements). At the same time, existing datasets
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[1] circular overlapping red yellow green twisted
[2] spiral, round, patches, rings, multi-colored
[3] multi colour design with circle in shape
[4] swirled, green, red, blue, round, circular

[1] white color, background lavender, bubbly,
circular shape, water surface
[2] light crystal clear round and circular elements
[3] bubble, round, water, blue, white
[4] bubbly, fizzy, light, airy, clear

[1] animal print, zebra, white and black stripes with blue body
[2] black stripes on blue, yellow, and green background
[3] spiral, blue and yellow with black stripes, zebralike, 
spherical, smooth
[4] striped, blue, yellow, lined, black

[1] spiralled, rounded, thick, light colour, rope type
[2] white coloured spiral design, semi soft texture
[3] white, spiralled, rough, grooved, hard
[4] soft, malleable, brown, heavy, circular

Fig. 1. We introduce the Describable Textures in Detail Dataset (DTD2) consisting of
texture images from DTD [15] with natural language descriptions, which provide rich
and fine-grained supervision for various aspects of texture such as color compositions,
shapes, and materials. More examples are in the Supplementary material.

of language and vision [7,27,32,38,44,48,58] primarily focus on objects and their
relations with a limited treatment of textures (Section 2). Addressing this gap in
the literature, we introduce a new dataset containing natural language descriptions
of textures called the Describable Textures in Detail Dataset (DTD2). It contains
several manually annotated descriptions of each image from the Describable
Texture Dataset (DTD) [15]. As seen in Figure 1, these contain descriptions of
colors of the structural elements within the texture (e.g . “circles” and “stripes”),
their shape, and other high-level perceptual properties of the texture (e.g . “soft”
and “protruding”). The resulting vocabulary vastly extends the 47 attributes
present in the original DTD dataset (Section 3).

We argue that the domain of texture is rich and poses many challenges for
compositional language modeling that are present in existing language and vision
datasets describing objects and scenes. For example, to estimate the color of
dots in a dotted texture the model must learn to associate the color to the dots
and not to the background. Yet the domain of texture is simple enough that
it allows us to analyze the robustness and generalization of existing vision and
language models by synthetically generating variations of a texture. We conduct a
systematic study of existing visual representations of texture, models of language,
and methods for matching the two domains on this dataset (Sections 4, 5 and
5.3). We find that adopting pre-trained language models significantly improve
generalization. However, an analysis on synthetically generated variations of each
texture by varying one attribute at a time (e.g ., foreground color and shape)
shows that the representations fail to capture detailed properties.

We also present two novel applications of our dataset (Section 6). First, we
visualize what discriminative texture properties are learned by existing deep
networks for fine-grained classification on natural domains such as birds, flowers,
and butterflies. To this end we generate “maximal images” for each category
by “inverting” a texture-based classifier [35] and describe these images using
captioning models trained on DTD2. We find that the resulting explanations tend
to be well aligned with the discriminative attributes of each category (e.g ., “Tiger
Lily” flower is “black, red, white, and dotted” as seen in Figure 6-middle). We
also show that models trained on DTD2 offer improvements over expert-designed
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binary attributes on the Caltech-UCSD Birds dataset [53]. This complements the
capabilities of existing datasets for explainable AI on these domains that focus
on shapes, parts, and their attributes such as color. Texture provides a domain-
independent, albeit incomplete way of describing interpretable discriminative
properties for several domains.
In summary, our contributions are:

– A novel dataset of texture descriptions (Section 3).
– An evaluation of existing models of grounding natural language to texture

(Section 4 and 5).
– A critical analysis of these models using synthetic, but realistic variations of

textures with their descriptions (Section 5.3).
– Application of our models for describing discriminative texture attributes

and building interpretable models on fine-grained domains (Section 6).

Our dataset and code are at: https://people.cs.umass.edu/~chenyun/texture.

2 Related Work

Language and texture. Describing textures using language has a long history.
Early works [5,9,49] showed that textures can be categorized along a few semantic
axes such as “coarseness”, “contrast”, “complexity” and “stochasticity”. Bhusan et
al . [12] systematically identified words in English that correspond to visual
textures and analyzed their relationship to perceptual attributes of textures. This
was the basis of the Describable Texture Dataset (DTD) [15] which consolidated a
list of 47 texture attributes along with images downloaded from the Internet. The
dataset captures attributes such as “dotted”, “chequered”, and “honeycombed”.
However, it does not capture properties such as the color of the structural elements
(“red and green dots”), or the attributes that describe the background color. Our
goal is to model the rich space of texture attributes in a compositional manner
beyond these attributes.
Datasets of images and text. The vision and language community has put
significant efforts into building large-scale datasets. Image captioning datasets
such as MS-COCO [32], Flickr30K [56] and Conceptual Captions [48] contain
sentences describing the general content of images. The Visual Question Answering
dataset [7] provides language question and answer pairs for each image, which
requires more detailed understanding of the image content. In visual grounding
datasets such as RefClef [27], RefCOCO [38, 58] and Flickr30K Entities [44],
detailed descriptions of the target object instances are annotated to distinguish
them from other objects. However, these tasks focus on recognizing object
categories and descriptions of pose, viewpoint, and their relationships to other
objects, and have a limited treatment of attributes related to texture.
Texture representations. Representations based on orderless aggregations of
local features originally developed for texture has had an significant influence on
early computer vision (e.g ., “Textons” [30],“Bag-of-Visual-Words” [17], higher-
order statistics [45], and Fisher vector [41,46]). Recent works (e.g ., [8,16,34]) have
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shown that combining texture representations with deep networks lead to better
generalization on scene understanding and fine-grained categorization tasks. Even
without explicit modeling, deep networks are capable of modeling texture through
convolution, pooling, and non-linear encoding layers [21]. Indeed, several works
have shown that deep networks trained on existing datasets tend to rely more
on texture than shape for classification [14,22,26,33]. This motivates the need
to develop techniques to describe texture properties using natural language as a
way to explain the behavior of deep networks in an interpretable manner.
Methods for vision and language. There is a significant literature on tech-
niques for various language and vision tasks. The Show-and-Tell [52] model was
an early deep neural net based approach for captioning images that combined
the convolutional image encoder followed by an LSTM [24] language decoder.
Techniques for VQA are based on a joint encoding of the image and the question
to retrieve or generate an answer [28, 50, 59]. For visual grounding, where the
goal is to identify a region in the image given a “referring expression”, a common
approach is to learn a metric over expressions and regions [36, 43, 57]. The basic
architectures for these tasks have been improved in a number of ways such as by
incorporating attention mechanisms [6, 20,28,37,54,59] and improved language
models [19, 47]. To model the relation between texture images and their descrip-
tions we investigate a discriminative approach, a metric-learning based approach,
and a generative modeling based approach [55] on our dataset.

3 Dataset and Tasks

We begin by describing how we collected DTD2 in Section 3.1, followed by the
tasks and evaluation metrics in Section 3.2. DTD2 contains multiple crowdsourced
descriptions for each image in DTD. Each image I contains k descriptions
S = {S1, S2, . . . , Sk} from k different annotators who are asked to describe the
texture presented in the image. Instead of providing a grammatically coherent
sentence, we found that it more effective for them to list a set of properties
separated by commas. Thus each description S can be interpreted as a set of
phrases {P1, P2, . . . , Pn}. Figure 1 shows some examples of the collected data. We
found that the ordering of phrases in a description is somewhat arbitrary, which
motivates this annotation structure. Figure 2 shows the overall dataset statistics.
DTD2 contains 5,369 images and 24,697 descriptions. We split the images into
60% training, 15% validation, and 25% test. Below we describe details of the
dataset collection pipeline and tasks.

3.1 Dataset Collection

Annotation. We present each DTD image and its corresponding texture category
to 5 different annotators on Amazon Mechanical Turk, asking them to describe
the texture using natural language with at least 5 words. Describable aspects
of each image include texture, color, shape, pattern, style, and material (we
provided description examples of several texture categories in the guidelines).
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Statistics overall frequent

#images 5369 -

#phrases 22,435 655

#words 7681 1673

#descriptions per image 4.60 -

#phrases per image 16.64 11.61

#words per description 7.13 6.69

#words per phrase 3.93 1.19
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Fig. 2. Statistics of DTD2. The “overall” column in the table shows the statistics of
all data, while the “frequent” column only considers the phrases (or words) that occur
at least 10 (or 5) times in the training split which forms our evaluation benchmark.
The cloud of phrases has the font sizes proportional to square-root of frequencies in the
dataset. The vocabulary significantly expands the 47 attributes of DTD.

Verification. After collecting the raw annotations, we manually verified all of
them and removed annotations that were irrelevant. For example, a breakfast
waffle may have descriptions about the related food items such as strawberries
instead of the texture which is our main goal. We also removed all images from
“freckled” and “potholed” categories because they are primarily of human faces
or scenes of roads with few texture-related terms in their descriptions. We also
excluded images with fewer than 3 valid descriptions.
Post-processing. We found that the annotations (as seen in Figure 1) describing
aspects of texture are often expressed as a set of phrases separated by commas,
instead of a fully grammatical sentence. We did find some users who provided long
unbroken sentences, but these were few and far between. Therefore, we represent
each description as a set of phrases indicated by commas (“,”) or semicolons (“;”).
For example, the first description of the top-right image in Figure 1 is: “spiralled,
rounded, thick, light colour, rope type”, and it’s split into 5 phrases: “spiralled”,
“rounded”, “thick”, “light colour”, “rope type”. For the purpose of evaluation,
we consider words that appear at least 5 times and phrases that appear at least
10 times in the training split of the dataset, which results in 655 unique phrases.
Although some long descriptions are lost in the process and most of the phrases
are short (mostly within three words as seen in the lower histogram in Figure 2),
the collection of phrases captures a rich set of describable attributes for each
image. Modeling the space of phrases poses significant challenges to existing
techniques for language and vision (Section 5.3).

3.2 Tasks and Evaluation Metrics

The annotation for each image is in the form of a set of descriptions, with each
description in the form of a set of phrases. A phrase is an ordered list of words.
We consider several tasks and evaluation metrics on this dataset described next.
Phrase retrieval. Given an image, the goal is to rank phrases p ∈ P that are
relevant to the image. Here P is the set of all possible phrases, restricted to 655
frequent ones. For each image, the set of “true” relevant phrases are obtained by
taking the union of phrases from all descriptions of the image. We can evaluate
the ranked list using various metrics described as follows:
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– Mean Average Precision (MAP): area under the precision-recall curve;
– Mean Reciprocal Rank (MRR): One over the ranking of first correct phrase;
– Precision at K (P@K): precision of the top K ranked phrases (K ∈ {5, 20});
– Recall at K (R@K): recall of the top K ranked phrases (K ∈ {5, 20}).

Image retrieval from a phrase. The task is to retrieve images given a query
phrase. When taking phrases as the query, we consider all phrases p ∈ P as
before and ask the retrieval model to rank all images in the test or validation set.
The “true” list is all images that contain the phrase (in any of its descriptions).
We consider the same metrics as the phrase retrieval task.
Image retrieval from a description. When using descriptions the query, we
consider all description s ∈ S as the input. Here S is the set of all descriptions in
the test or validation set. We ask the retrieval model to rank all images in the
corresponding set. We evaluate the rank of the image from which the description
was collected (MRR metric). This metric allows us to evaluate the compositional
properties of texture over phrases (e.g ., “red dots” + “white background”).
While we only quantitatively evaluate phrases and descriptions in the dataset,
the ranking models can potentially generalize to novel descriptions or phrases
over the seen words. We present qualitative results and a detailed study of the
models in Section 5 and 5.3.
Description generation. The task is to generate a description for an input
image. Given each image I, we compare the generated description against the set
of its collected descriptions {S1, S2, . . . , Sk} using standard metrics for image cap-
tioning including BLEU-1,2,3,4 [40], METEOR [10], Rouge-L [31] and CIDEr [51].
However, we note that the task is open-ended and qualitative visualizations are
just as important as these metrics.

4 Methods

We investigate three techniques to learn the mapping between visual texture and
natural languages on our dataset — a discriminative approach, a metric learning
approach, and a language generation approach. They are explained in detail in
the next three sections.

4.1 A Discriminative Approach

A simple baseline is to treat each phrase p ∈ P as a binary attribute and train
a multi-label classifier to map the images to phrase labels. Given a texture
image I, let ψ(I) be an embedding computed using a deep network. We use
activations from layer 2 and layer 4 of ResNet101 [23] with mean-pooling over
spatial locations as the image embedding. A comparison of features from different
ResNet layers is included in the supplemental material. For the classification task,
we attach a classifier head h to map the embeddings to a 655-dimensional space
corresponding to each phrase in our frequent set P. The function h is modeled
as a two-layer network – the first is fully-connected layer with 512 units with
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BatchNorm and ReLU activation; the second is a linear layer with 655 units
followed by sigmoid activation. Given a training set of {(Ii, Yi)}Ni=1 where Yi
is the ground-truth binary labels across 655 classes for image Ii, the model is
trained to minimize the binary cross-entropy loss: LBCE =

∑
i `bce(h ◦ ψ(Ii), Yi),

where `bce(y, z) =
∑

i (zi log(yi)− (1− zi) log(1− yi)).
Training details. The ResNet101 is initialized with weights pre-trained on
ImageNet [18] and fine-tuned on our training data for 75 epochs using the Adam
optimizer [29] with an initial learning rate at 0.0001. We use image size 224×224
for all our experiments. The hyper-parameters are selected on the validation set.
Evaluation setup. The classification scores over each phrase for each image are
directly used to rank images or phrases for phrase retrieval or image retrieval
with phrase input. Retrieving images given a description is more challenging
since we need to aggregate the scores corresponding to different phrases, and the
phrases in input descriptions may not be in P. We found the following strategy
works well: Given a description S = {P1, P2, . . . , Pn} and an image I, obtain the
scores for each phrase s(Pi) = σ(h ◦ ψ(I))k where k is the index of the phrase
Pi ∈ P. If the phrase is not in the set, we consider all its sub-sequences that are
present in P and average the scores of them instead. For example, if the phrase
“red maroon dot” is not present in P , we consider all sub-sequences {red maroon,
maroon dot, red, maroon, dot}, score each that is present in P separately and
then average the scores. By concatenating the top 5 phrases for an image we can
also use the classifier to generate a description for an image. The key disadvantage
of the classification baseline is that it treats each phrase independently, and does
not have a natural way to score novel phrases (our baseline using sub-sequences
is an attempt to handle this).

4.2 A Metric Learning Approach

The metric learning approach aims to learn a common embedding over the images
and phrases such that nearby image and phrase pairs in the embedding space are
related. We adopt the standard metric learning approach based on triplet-loss [25].
Consider an embedding of an image ψ(I) and of a phrase φ(P ) in Rd. Denote
||ψ(I)− φ(P )||22 as the squared Euclidean distance between the two embeddings.
Given an annotation (I, P ) consisting of a positive (image, phrase) pair, we
sample from the training set a negative image I ′ for P , and a negative phrase P ′

for I. We consider two losses; one from the negative phrase:

Lp(I, P, P ′) = max(0, 1 + ||ψ(I)− φ(P )||22 − ||ψ(I)− φ(P ′)||22)

and another from the negative image:

Li(P, I, I
′) = max(0, 1 + ||ψ(I)− φ(P )||22 − ||ψ(I ′)− φ(P )||22)

The metric learning objective is to learn embeddings ψ and φ that minimize the
loss L = E(I,P ),(I′,P ′) (Lp + Li) over the training set.

For embedding images, we use the same encoder as the classification approach
with features from layer 2 and 4 from ResNet101. We add an additional linear
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layer with 256 units resulting in the embedding dimension ψ(I) ∈ R256. One
advantage of the metric learning approach is that it allows us to consider richer
embedding models for phrases. Specially we consider the following encoders:

– Mean-pooling: φmean(P ) = 1
Nw

∑
w∈tokenize(P ) embed(w), where tokenize(·)

splits the phrase into a list of words, embed(·) encodes each token into R300.
– LSTM [47]: φlstm(P ) = biLSTM[embed(w) for w in tokenize(P )], with the

same tokenize(·) and embed(·) as above. biLSTM(·) is a bi-directional LSTM
with a single layer and hidden dimension 256 that returns the concatenation
of the outputs on the last token from both directions.

– ELMo [42]: φelmo(P ) = ELMo(P ), where ELMo(·) uses pre-trained ELMo
model [4] with its own tokenizer, and outputs the average embedding of all
tokens in the phrase P .

– BERT [19]: φbert(P ) = BERT(P ), where BERT(·) uses pre-trained BERT
model [3] with its own tokenizer, and outputs the average of last hidden
states of all tokens in the phrase P .

To compute the final embedding of the phrase φ(P ), we add a linear layer to
map the embeddings to 256 dimensions compatible with the image embeddings.
Training details. We trained this model on our training split using the Adam
optimizer [29] with an initial learning rate at 0.0001. We found this model to be
more prone to over-fitting than the classifier. Stopping the training when the
image retrieval and phrase retrieval MAP on the validation set stops improving
was effective. Same as the classifier, ResNet101 is initialized with ImageNet [18]
weights and fine-tuned on our data. embed(·) in φmean and φlstm was initialized
with FastText embeddings [1, 13] and tuned end-to-end. Pre-trained encoders
φelmo and φbert were fixed in our training.
Evaluation setup. Given the joint embedding space, one can retrieve phrases
for each image and images for each phrase based on the Euclidean distance.
Similar to the classifier we concatenate the top 5 retrieved phrases as a baseline
description generation model. We also investigate a metric learning approach
over descriptions rather than phrases where the positive and negative triplets are
computed over (image, description) pairs. The language embedding models are
the same since they can handle descriptions of arbitrary length.

4.3 A Generative Language Approach

We adopt the Show-Attend-Tell model [55], a widely used model for image
captioning. It combines a convolutional network to encode input images with an
attention-based LSTM decoder to generate descriptions. Following the default
setup, we encode images into the spatial features from the 4-th layer of ResNet101
(initialized with ImageNet [18] weights). The word embeddings are initialized
from FastText [1,13]. The entire model is then trained end-to-end on the training
set, using the Adam optimizer [29] with initial learning rate 0.0001 for the image
encoder and 0.0004 for the language decoder. We apply early stopping based on
the BLEU-4 score of generated descriptions on the validation images.
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Table 1. Phrase retrieval and image retrieval on DTD2. Metric learning models are
trained with phrase input. Among the language encoders BERT works the best.

Task: Phrase Retrieval Image Retrieval

Data Split Model MAP MRR P@5 P@20 R@5 R@20 MAP MRR P@5 P@20 R@5 R@20

Validation

MetricLearning: MeanPool 18.80 48.66 23.13 16.20 11.52 31.54 7.19 16.18 7.60 6.56 3.36 11.44
MetricLearning: biLSTM 23.53 58.78 31.85 18.73 15.83 36.31 8.31 17.46 8.15 7.06 4.21 13.40
MetricLearning: ELMo 28.13 68.46 37.02 21.11 18.44 41.12 11.25 24.05 12.79 10.27 5.85 18.57
MetricLearning: BERT 31.68 72.59 40.67 22.96 20.23 44.50 15.22 31.39 16.27 12.56 9.07 25.69

Test
Classifier: Feat 2,4 27.12 61.28 33.50 21.71 16.07 41.48 14.75 33.94 18.75 16.02 6.47 19.32
MetricLearning: BERT 31.77 74.12 41.70 23.60 20.17 45.04 13.50 31.12 16.52 14.57 5.24 17.32

Table 2. Retrieving tex-
ture images with descrip-
tions as input.

Model MRR

Classifier 12.40

MetricLearning(phrase) 12.92

MetricLearning(description) 13.95

Table 3. Description generation on textures. Synthesizing
descriptions from phrases retrieved by the metric-learning
based approach outperforms other baselines.

Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR Rouge-L CIDEr

Classifier: top 5 68.07 46.17 28.39 14.44 19.89 48.13 44.73

MetricLearning: top 5 72.99 53.69 34.97 19.39 21.81 49.70 47.34

Show-Attend-Tell 59.90 40.41 26.52 16.35 19.92 46.64 37.47

This model is primarily for the description generation task. For evaluation,
we apply beam search with a beam-size of 5 to compute the best description.

5 Experiments and Analysis

5.1 Phrase and Image Retrieval

Table 1 and 2 compare the classifier and the metric learning model on phrase and
image retrieval tasks as described in Section 3.2. Figure 3 and 4 show examples
of the top 5 retrieved images and phrases.

In Table 1 we first compare language encoders on the metric learning model.
The performance of both phrase and image retrieval depends largely on the
language encoder, and BERT performs the best. The metric learning model is
better at phrase retrieval while the classifier is slightly better at image retrieval.

Table 2 shows results of image retrieval from descriptions and here too the
metric learning model outperforms the other two models. As shown in Figure 3-
right, although the models trained on phrases work reasonably well, the metric
learning model trained on descriptions handles long queries better.

5.2 Description Generation

We compare the Show-Attend-Tell model [55] with a retrieval based approach.
From the classifier and the metric learning model we retrieve the top 5 phrases
and concatenate them in the order of their score to form a description. As
shown in Table 3, the metric learning model reaches higher scores on the metrics.
However, notice that in Figure 4 the generative model’s descriptions are more
fluent and covers both the color and pattern of the images, while the retrieval
baselines (especially the classifier) repeat phrases with similar meanings.
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blue background patterned, swirled, pink, purple, floral

multi-colored pill shaped sprinkles randomly placed

INPUT:

Classifier

MetricLearning
(Phrase)

uneven lines orange and black

yellow bubbles

MetricLearning
(Description)

INPUT:

Classifier

MetricLearning
(Phrase)

MetricLearning
(Description)

Fig. 3. Retrieve DTD2 test images with language input. We show top 5 retrieved
images from the classifier and the metric learning model (trained with phrase or
description input). From left to right we show examples of (1) phrases the classifier has
been trained on, (2) phrases beyond the frequent classes, and (3) full descriptions.

Table 4. Image retrieval performance of R-Precision on synthetic tasks.

Model Foreground Background Color+Pattern Two-colors

Classifier 45.45±20.34 59.82±9.63 35.95±21.48 26.82±14.17
MetricLearning - phrase 46.55±20.65 52.00±6.32 41.73±22.77 27.45±15.13
MetricLearning - description 47.64±18.97 53.64±4.66 35.77±21.12 21.59±13.77

Random guess 50.00 50.00 7.40 5.26

5.3 A Critical Analysis of Language Modeling

In this section, we evaluate the proposed models on tasks where we systematically
vary the distribution of underlying texture attributes. This is relatively easy
to do for textures than for natural images (e.g ., changing the color of dots)
and allows us to understand the degree to which the models learn disentangled
representations. We describe four tasks with varying degrees of difficulty to
highlight the strengths and weaknesses of these models.
Automatically generating textures and their descriptions. To systemat-
ically generate textures with descriptions, we follow this procedure:

– Take the 11 most frequent colors in DTD2 (white, black, brown, green, blue,
red, yellow, pink, orange, gray, purple) and set their RGB values manually.

– Take 10 typical two-color images from ten different categories. We choose:

• Type A: 5 images with “foreground on background”: [‘dots’, ‘polka-dots’,
‘swirls’,‘web’, ‘lines’ (thin lines on piece of paper)], and
• Type B: 5 images with no clear distinction between the foreground

and background: [‘squares’ (checkered), ‘hexagon’, ‘stripes’ (zebra-like),
‘zigzagged’, ‘banded’ (bands with similar width)].

– For each of these 10 images, we manually extract masks for the foreground
and background(Type A), or two foreground colors(Type B).
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Classifier top 5:
colored, brown background, circular 
shape, multi color, multi numbers
MetricLearning top 5: soft, green, red, white, smooth
Show-attend-tell:
brown background with pink, green, yellow, and blue 
polkadotted material

[1] brown background, dotted, spotted, closely arranged, design on cloth
[2] circles on black, smooth, uncreased, shiny
[3] polka dot, multicolored dots, bubbly, studded, stippled, spotted
[4] dotted, spotted, polka dot, brown, pink, green, white

Classifier top 5:
smeared, painted, splattered, blurred, painting
MetricLearning top 5:
smeared, abstract, stained, painted, painting
Show-attend-tell:
smeared, abstract, green, blue, white

[1] blue, gold, brown, textured, smooth, paint
[2] smeared, dragged, blue, white, orange
[3] blue, beige, white multi colored smeared paint
[4] multi color, decor item, paint, paper, smooth

Classifier top 5:
wrinkled, crinkled, crumpled, creased, paper
MetricLearning top 5:
wrinkled, crinkled, creased, folded, white
Show-attend-tell:
white wrinkled surface, rough texture

[1] white surface wrinkled all over, semi soft texture
[2] wrinkled, crinkled, white, crumpled, furled
[3] soft, crinkled, white, irregular, lightweight
[4] rugged, white surface, hard, rigid, clean, modern style

Classifier top 5:
stratified, rock, rocky, brown, layered
MetricLearning top 5:
brown, hard, rough, dry, stratified
Show-attend-tell:
rocky, uneven, hard, rocky, opaque, dull, brown surface

[1] the stratified high brownish surface are filled with green surface somewhere 
contain enormous quantities of coal
[2] layered brown and rust colored hard non porous surface
[3] hard substance, rocky, stratified, having plants on the rock, brownish in colour
[4] brown, stratified, hard, rough, red [5] red and brown rocky hard scratchy

Fig. 4. Phrase retrieval and description generation on DTD2 test images. For
each input image, we list ground-truth descriptions beneath, and generated descriptions
on the right. For the classifier and the metric learning model, we concatenate the top 5
retrieved phrases. Bold words are the ones included in ground-truth descriptions.

pink dots blue and greenred backgroundINPUT:

Classifier

MetricLearning
(Phrase)

MetricLearning
(Description)

Fig. 5. Retrieval on synthetic images. Positive images are in dashed blue borders,
hard negative ones are in dotted red borders.

– For each of the 10 images, generate a new image by picking 2 different colors
from the 11 and modify pixel values of the two regions using the corresponding
RGB value. This results in 10×11×10=1,100 images.

– For each synthetic image, we construct the ground-truth description with
the template as “[color1] [pattern], [color2] background”(such as “pink dots,
white background”) for Type A, and “[color1] and [color2] [pattern]”(such as
“yellow and gray squares”) for Type B.

Experiment 1: Foreground. On Type A set we construct:

– Query: A query of the form “[color=c] [pattern=p]” (e.g . “pink dots”).
– Positive set: [color=c] [pattern=p] on randomly colored background (e.g .

“pink dots, white background”).
– Negative set: Randomly colored ( 6= c) [pattern=p] on [color=c] background

(e.g . “blue dots, pink background”).
– Result: Input the query description, we use the models to rank images from

both the positive and negative set, and report R-Precision: the precision of
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top R predictions, where R is the number of positive images. The results are
listed in Table 4 first column. Since half the images have the right attribute
the chance performance is 50% and the various models are nearly at the
chance level. Figure 5 shows that the model is unable to distinguish between
“pink dots” and “dots on a pink background”. This illustrates that the models
are unable to associate color correctly with the foreground shapes.

Experiment 2: Background. This is similar to Experiment 1 but we focus on
the background instead. On Type A set we construct: we know the name of its
pattern (such as “dots”, “squares”, selected from the more frequent phrases that
matches the category) and names of two colors (color1 and color2).

– Query: A query “[color=c] background” (e.g . “pink background”).
– Positive set: Randomly colored pattern on [color=c] background (e.g . “red

dots on pink background”).
– Negative set: Random pattern of [color=c] on any [color 6=c] background

(e.g . “pink dots on white background”).
– Result: R-precision is shown in Table 4 second column. Once again the

chance performance is 50% and the various models are nearly at the chance
level. Figure 5-middle shows that the model is unable to distinguish between
“red background” and “red dots on random background”.

Experiment 3: Color+Pattern. On both Type A and B images we construct:

– Query: A query “[color=c] [pattern=p]” (e.g . “pink dots”).
– Positive set: [color=c] [pattern=p] on random colored background, or with

another color (e.g . “pink dots, white background”, “pink and blue squares”).
– Negative set: [color=c] [pattern 6=p] or [color6=c] [pattern=p]. The negative

set contains images with the correct pattern but wrong color or the wrong
pattern with the right color (e.g ., “red dots” or “pink stripes”). Similar
patterns (e.g ., “lines” vs. “banded”) are not considered negative.

– Result: The positive and negative set is unbalanced which results in a chance
performance of 7.4%. The models presented in the earlier section are able to
rank the correct color and pattern combinations ahead of the negative set
and achieve a considerably higher performance.

Experiment 4: Two colors. On both Type A and B images we construct:

– Query: A query “[color=c1] and [color=c2]” (e.g . “pink and green”).
– Positive set: [color=c1] of random pattern on [color=c2] background (e.g .

“pink dots on green background”), or [color=c1] and [color=c2] of random
pattern (e.g . “pink and green squares”).

– Negative set: pattern with one color from {c1, c2} and another color
6={c1,c2} (e.g ., “pink dots on yellow background”, “green and blue stripes”).

– Result: The positive and negative set are unbalanced which results in a
chance performance of 5.26%. The models once again are able to rank the
two color combinations ahead of the negative set and achieve a considerably
higher performance. Figure 5-right shows an example.
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Caltech UCSD Birds Oxford Flowers FGVC Butterflies & Moths

Figure 1: some caption

1

Fig. 6. Fine-grained categories visualized as their training images (top row), maximal
texture images (middle row), and texture attributes (bottom row). The size of each
phrase in the cloud is inversely decided by its Euclidean distance to the input maximal
texture image calculated by the triplet model.

Summary. These experiments reveal that these models do indeed exhibit some
high-level discriminative abilities (Exp. 3, 4), but they fail to disentangle proper-
ties such as the color of the foreground elements from background (Exp. 1, 2).
This leaves much room for improvement, motivating future work, such as those
that enforces spatial agreement between different attributes.

6 Applications

Describing textures of fine-grained categories. We analyze how the cate-
gories in fine-grained domains can be described by their texture. We consider
categories from Caltech-UCSD Birds (CUB) [53], Oxford Flowers [39], and FGVC
Butterflies and Moths [2] datasets. For each category, we follow the visualizing
deep texture representations [33] to generate “maximal textures” – inputs that
maximize the class probability using multi-layer bilinear CNN classifier [35].
These are provided as input to our metric learning model (with BERT encoder
and phrase input) trained on DTD2 to retrieve the top phrases. Figure 6 shows
several categories with their maximal textures and a “phrase cloud” of the top
retrieved phrases. These provide a qualitative description of each category.
Fine-grained classification with texture attributes. Here we apply models
trained on our DTD2 on the CUB dataset to show that embedding images into
the space of texture attributes allows interpretable models for discriminative
classification. Specifically, we input each image from the dataset to our phrase
classifier (trained on DTD2 and fixed) and obtain the log-likelihood over the 655
texture phrases as an embedding. We train a logistic regression model for the
200-way classification task. The dataset also comes with 312 binary attributes
that describe the shape, pattern and color of specific parts of a bird, such as “has
tail shape squared tail”, “has breast pattern spotted”, “has wing color yellow”
(42 attributes for “shape”, 31 for “pattern” and 239 for “color”). We also train a
logistic regression classifier on top of these attributes.
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Spotted Catbird Pine Grosbeak Red-bellied Woodpecker
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Fig. 7. Classification on CUB dataset with DTD2 texture attributes. Left:
classification accuracy vs. number of input features. Orange and green markers with the
same shape are comparable with the same set of CUB attributes with or without the
DTD2 attributes. Right: The phrase clouds display important phrases for a few bird
categories. Red phrases correspond to positive weights and blue are negative for a linear
classifier for the category. Font sizes represent the absolute value of the coefficient.

Figure 7 shows the performance by varying the number of texture phrases
ranked by their frequency on DTD2 as the blue curve. It also shows a comparison
of bird-specific attributes from CUB with generic texture attributes learned
from DTD2. Results using CUB attributes are shown in green, while those
using combinations of CUB and texture attributes are shown in orange. Texture
attributes are able to distinguish bird species with an accuracy of 28.5%, outper-
forming CUB shape and pattern attributes. However, they do not outperform
the part-based color attributes that are highly effective. Yet, combining CUB
attributes with texture attributes lead to consistent improvements. On the right
is the visualization of discriminative texture attributes for some categories: we
display phrases with the most positive weights in red, and those with the most
negative weights in blue. They provide a basis for interpretable explanations of
discriminative features without requiring a category-specific vocabulary.

7 Conclusion

We presented a novel dataset of textures with natural language descriptions and
analyzed the performance of several language and vision models. The domain of
texture is poses challenges to existing models which fail to learn a sufficiently
disentangled representation leading to poor generalization on synthetic tasks. Yet,
the models show some generalization to novel domains and enabling us to provide
interpretable models for describing some fine-grained domains. In particular they
are complementary to existing domain-specific attributes on the CUB dataset.
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