
House-GAN: Relational Generative Adversarial
Networks for Graph-constrained House Layout

Generation

Nelson Nauata1, Kai-Hung Chang2, Chin-Yi Cheng2, Greg Mori1, and
Yasutaka Furukawa1

1 Simon Fraser University
nnauata@sfu.ca, mori@cs.sfu.ca, furukawa@sfu.ca

2 Autodesk Research
{kai-hung.chang, chin-yi.cheng}@autodesk.com

...

Input bubble diagram Generated house layouts

Fig. 1. House-GAN is a novel graph-constrained house layout generator, built upon a
relational generative adversarial network. The bubble diagram (graph) is given as an
input for automatically generating multiple house layout options.

Abstract. This paper proposes a novel graph-constrained generative
adversarial network, whose generator and discriminator are built upon
relational architecture. The main idea is to encode the constraint into
the graph structure of its relational networks. We have demonstrated the
proposed architecture for a new house layout generation problem, whose
task is to take an architectural constraint as a graph (i.e., the number
and types of rooms with their spatial adjacency) and produce a set of
axis-aligned bounding boxes of rooms. We measure the quality of gener-
ated house layouts with the three metrics: the realism, the diversity, and
the compatibility with the input graph constraint. Our qualitative and
quantitative evaluations over 117,000 real floorplan images demonstrate
that the proposed approach outperforms existing methods and baselines.
We will publicly share all our code and data.

Keywords: GAN · Graph-constrained · Layout · Generation · Floorplan

1 Introduction

A house is the most important purchase one might make in life, and we all want
to live in a safe, comfortable, and beautiful environment. However, designing

2 N. Nauata et al.

(a) Input bubble diagram

Adversarial training Inference and User editing
(b) Generated room masks

(f) Real floorplan (g) Real room masks

(c) Generated house layouts

(e) Completed design

House layout
generator

House layout
discriminator Real/Fake Render

...

(d) User adjustment

Fig. 2. Floorplan designing workflow with House-GAN. The input to the system is
a bubble diagram encoding high-level architectural constraints. House-GAN learns to
generate a diverse set of realistic house layouts under the bubble diagram constraint.
Architects convert a layout into a real floorplan.

a house that fulfills all the functional requirements with a reasonable budget is
challenging. Only a small fraction of the residential building owners have enough
budget to employ architects for customized house design.

House design is a time-consuming iterative process. A standard workflow is to
1) sketch a “bubble diagram” illustrating the number of rooms, their types, and
connections; 2) produce corresponding floorplans and collect clients feedback; 3)
revert to the bubble diagram for refinement, and 4) iterate. Given limited budget,
architects and their clients often compromise on the design quality. Automated
floorplan generation techniques are in critical demand with immense potentials
in the architecture, construction, and real-estate industries (See Fig. 2).

This paper proposes a novel house layout generation problem, whose task is
to take a bubble diagram and generate a diverse set of realistic and compatible
house layouts (See Fig. 1). A bubble diagram is represented as a graph where 1)
nodes encode rooms with room types and 2) edges encode their spatial adjacency.
A house layout is represented as a set of axis-aligned bounding boxes of rooms.

Generative models have seen a breakthrough in Computer Vision with the
emergence of generative adversarial networks (GANs) [6], capable of producing
realistic human faces [14] and street-side images [15]. GAN has also proven effec-
tive for constrained image generation. Image-to-image translation takes an image
as a constraint (e.g., generating a zebra image with the same pose from a horse

House-GAN: Graph-constrained House Layout Generation 3

image) [27, 11, 5]. Realistic scene images are generated given object bounding
boxes and placements as the constraint [3].

The house layout generation poses a new challenge: The graph is enforced as a
constraint. We present a novel generative model called House-GAN that employs
relational generator and discriminator, where the constraint is encoded into the
graph structure of their relational neural networks. More specifically, we employ
convolutional message passing neural networks (Conv-MPN) [26], which differs
from graph convolutional networks (GCNs) [12, 3] in that 1) a node represents a
room as a feature volume in the design space (as opposed to a 1D latent vector),
and 2) convolutions update features in the design space (as opposed to multi-
layer perceptron). The architecture enables more effective higher-order reasoning
for composing layouts and validating adjacency constraints.

Our qualitative and quantitative evaluations over 117,000 real floorplan im-
ages demonstrate that House-GAN is capable of producing more diverse sets of
more realistic floorplans that are compatible with the bubble diagram than the
other competing methods. We will publicly share all our code and data.

2 Related work

Procedural layout generation: Layout composition has been an active area
of research in architectural layouts [8, 4, 20, 21], game-level design [9, 18] and
others. In particular, Peng et al. [21] takes a set of deformable room templates
and tiles arbitrarily shaped domains while maximizing the accessibility and aes-
thetics. Ma et al. [18] generates diverse game-level layouts, given a set of 2D
polygonal “building blocks” and their connectivity constraints as a graph. These
methods are more traditional with hand-crafted energy minimization. Our ap-
proach exploits powerful data-driven techniques for robustness.

Data-driven space planning: Data-driven sequential generative methods have
been proposed for indoor scene synthesis by Wuang et al. [24] and Ritchie et
al. [22], indoor plan generation by Wu et al. [25], and outdoor scene generation
by Jyothi et al. [13]. In particular, Wu et al. [25] proposes a data-driven method
for automatic floorplan generation for residential houses from a building foot-
print. The method starts from the living-room and sequentially adds rooms via
an encoder-decoder network, followed by a final post-processing for the vector-
ization. Jyothi et al. [13] proposes a variational autoenconder (VAE), which iter-
atively predicts a diverse yet plausible counts and sets of bounding boxes, given
a set of object labels as input. Li et al. [16] proposes a non-sequential adversar-
ial generative method called LayoutGAN, which has a self-attention mechanism
in the generator and a wireframe renderer in the discriminator. These methods
produce impressive results but cannot take a graph as an input constraint.

Graph-constrained layout generation: Graph-constrained layout generation
has also been a focus of research. Wang et al. [23] plans an indoor scene as a rela-
tion graph and inserts a 3D model at each node via convolutional neural network
(CNN) guided search. Merrel et al. [19] utilizes Bayesian Networks for retriev-
ing candidate bubble diagrams, given high-level conditions such as the number

4 N. Nauata et al.

Living room
Laundry room Corridor

Dining room Bathroom
Unkown

Kitchen
Closet Balcony

Bedroom

Fig. 3. Sample bubble diagrams and house layouts in our dataset.

of rooms, room types, and approximate square footage. These bubble diagrams
are later converted to floorplans using the Metropolis algorithm. Jonhson et
al. [12] and Ashual et al. [3] aim to generate image layouts and synthesize real-
istic images from input scene-graphs via GCNs. Our innovation is a relational
generative adversarial network, where the input constraint is encoded into the
graph structure of the relational generator and discriminator. The qualitative
and quantitative evaluations demonstrate the effectiveness of our approach.

3 Graph-constrained house layout generation problem

We seek to generate a diverse set of realistic house layouts, compatible with a
bubble diagram. The section explains our dataset, metrics, and limitations.

Dataset: LIFULL HOME’s database offers five million real floorplans, from
which we retrieved 117,587 [1] and rescaled uniformly to fit inside the 256× 256
resolution (See Table 1). The database does not contain bubble diagrams. We
used the floorplan vectorization algorithm [17] to generate the vector-graphics
format, which is converted into bubble diagrams. A bubble diagram is a graph,
where a node is a room with a room type as its property. 3 Two rooms are
connected if the Manhattan distance between the bounding boxes is less than 8
pixels. An output house layout is axis-aligned bounding boxes (See Fig. 3).

Metrics: We divide the samples into five groups based on the number of rooms:
(1-3, 4-6, 7-9, 10-12, and 13+). To test the generalization capability, we conduct

3 Room types are “living room”, “kitchen”, “bedroom”, “bathroom”, “closet”, “bal-
cony”, “corridor”, “dining room”, “laundry room”, or “unkown”.

House-GAN: Graph-constrained House Layout Generation 5

Table 1. We divide the samples into five groups based on the room counts (1-3, 4-6,
7-9, 10-12, and 13+). The second row shows the numbers of samples. The remaining
rows show the average number of rooms (left) and the average number of edge connec-
tions per room (right). The room counts are small for living-rooms, which are often
interchangeable with dining-rooms and kitchens in the Japanese real-estate market.

1-3 4-6 7-9 10-12 13+ All

(# of samples) 7,393 28,170 42,635 30,625 8,764 117,587

Living Room 0.0/1.2 0.0/3.1 0.1/4.8 0.3/5.6 0.3/5.9 0.1/5.1

Kitchen 0.6/1.3 1.0/3.3 1.2/4.5 1.1/5.4 1.3/5.3 1.1/4.4

Bedroom 0.4/1.3 0.8/2.8 1.3/3.5 2.0/3.9 2.8/4.1 1.4/3.6

Bathroom 0.7/1.2 1.6/2.4 2.6/2.9 3.0/3.3 3.4/3.5 2.4/3.0

Closet 0.3/1.2 1.0/2.2 1.6/2.6 2.4/3.1 3.6/3.2 1.7/2.8

Balcony 0.2/0.9 0.6/1.2 0.9/1.5 1.0/1.9 1.3/2.0 0.8/1.6

Corridor 0.1/1.1 0.1/2.6 0.4/3.7 1.0/4.6 1.4/5.0 0.5/4.3

Dining Room 0.0/1.5 0.0/3.0 0.0/3.6 0.0/3.2 0.0/1.9 0.0/2.9

Laundry Room 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

Unknown 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

k-fold validation (k=5): When generating layouts in a group, we train a model
while excluding samples in the same group so that a method cannot simply
memorize. At test time, we randomly pick a house layout and generate X samples.
X = 10 for measuring the realism and diversity, and X = 1 for measuring the
compatibility whose evaluation is computationally expensive.
• The realism is measured by an average user rating. We present a generated
house layout against a ground-truth or another method. A subject puts one of
the four ratings: better (+1), worse (-1), equally-good (+1), or equally-bad (-1).
• The diversity is measured by the FID score [10] with the rasterized layout
images. We rasterize a layout by 1) Setting the background to white; 2) Sorting
the rooms in the decreasing order of the areas; and 3) Painting each room with a
color based on its room type (e.g., orange for a bedroom) as shown in Figure 3.
• The compatibility with the bubble diagram is a graph editing distance [2]
between the input bubble diagram and the bubble diagram constructed from
the output layout in the same way as the GT preparation above.

Assumptions: In contrast to the real design process, we make a few restrictive
assumptions to simplify the problem setting: 1) A node property does not have a
room size; 2) A room shape is always a rectangle; and 3) An edge property (i.e.,
room adjacency) does not reflect the presence of doors. This is the first research
step in tackling the problem, where these extensions are our future work.

4 House-GAN

House-GAN is a relational generative adversarial network. The key specialization
is our relational generator and discriminator, where the input graph constraint

6 N. Nauata et al.

Convolution

Pooling
+

Linear

Loss

Conv-MPN

Conv-MPN

ConvolutionDownsampling

Downsampling

Convolution

Convolution

OutputConv-MPN/DownsamplingInput layout

Upsampling

Upsampling

N
oi

se

Conv-MPNInitialization

Initialization

Output layoutConv-MPN/UpsamplingInput graph

Convolution

Conv-MPN Convolution

Fig. 4. Relational house layout generator (top) and discriminator (bottom). Conv-
MPN is our backbone architecture [26]. The input graph constraint is encoded into the
graph structure of their relational networks.

is encoded into the graph structure of the relational networks. In particular, we
employ Conv-MPN [26], which differs from GCNs [3, 12] in that a node stores a
feature volume and convolutions update features in the design space (as opposed
to a 1D latent vector space).

4.1 House layout generator

The generator takes a noise vector per room and a bubble diagram, then gener-
ates a house layout as an axis-aligned rectangle per room. The bubble diagram
is represented as a graph, where a node represents a room with a room type, and
an edge represents the spatial adjacency. More specifically, a rectangle should be
generated for each room, and two rooms with an edge must be spatially adjacent
(i.e., their Manhattan distance should be less than 8 pixels). We now explain
the three phases of the generation process (See Fig. 4). The full architectural
specification is shown in Table 2.

Input graph: Given a bubble diagram, we form Conv-MPN whose relational
graph structure is the same as the bubble diagram. We generate a node for each
room and initialize with a 128-d noise vector sampled from a normal distribution,
concatenated with a 10-d room type vector

−→
tr (one-hot encoding). r is a room

index. This results in a 138-d vector −→gr :

−→gr ←
{
N(0, 1)128;

−→
tr

}
. (1)

House-GAN: Graph-constrained House Layout Generation 7

Conv-MPN stores features as a 3D tensor in the output design space. We apply
a shared linear layer for expanding −→gr into a (8 × 8 × 16) feature volume gl=1

r .
(l = 1) denotes that the feature is for the first Conv-MPN module, which will
be upsampled twice to become a (32× 32× 16) feature volume gl=3

r later.

Conv-MPN/Upsampling: Conv-MPN module updates a graph of room-wise
feature volumes via convolutional message passing [26]. More precisely, we up-
date gl

r by 1) concatenating a sum-pooled feature across rooms that are con-
nected in the graph; 2) concatenating a sum-pooled feature across non-connected
rooms; and 3) applying a CNN:

gl
r ← CNN

[
gl
r ; Pool

s∈N(r)
gl
s ; Pool

s∈N(r)
gl
s

]
. (2)

N(r) and N(r) denote sets of rooms that are connected and not-connected, re-
spectively. We upsample features by a factor of 2 using a transposed convolution
(kernel=4, stride=2, padding=1), while maintaining the number of channels.
The generator has two rounds of Conv-MPN and upsampling, making the final
feature volume gl=3

r of size (32× 32× 16).

Output layout: A shared three-layer CNN converts a feature volume into a
room segmentation mask of size (32×32×1). This graph of segmentation masks
will be passed to the discriminator during training. At test time, the room mask
(an output of tanh function with the range [-1, 1]) is thresholded at 0.0, and we
fit the tightest axis-aligned rectangle for each room to generate the house layout.

4.2 House layout discriminator

The discriminator performs a sequence of operations in the reverse order. The
input is a graph of room segmentation masks either from the generator (before
rectangle fitting) or a real floorplan (1.0 for foreground and -1.0 for background).
A segmentation mask is of size 32× 32× 1. To associate the room type informa-
tion, we take a 10-d room type vector, apply a linear layer to expand to 8192-d,
then reshape to a (32×32×8) tensor, which is concatenated to the segmentation
mask. A shared three-layer CNN converts the feature into a size (32× 32× 16),
followed by two rounds of Conv-MPN and downsampling. We downsample by a
factor of 2 each time by a convolution layer (kernel=3, stride=2, padding=1).
Lastly, we use a three layer CNN for converting a room feature into a 128-d

vector (
−→
dr). We sum-pool over all the room vectors and add a single linear layer

to output a scalar d, classifying ground-truth samples from generated ones.

d← Linear(Pool
r

−→
dr) (3)

We use the WGAN-GP [7] loss with gradient penalty set to 10 and compute
the gradient penalty as proposed by Gulrajani et al.[7]: Linearly and uniformly
interpolating room segmentation masks pixel-wise between real samples and gen-
erated ones, while fixing the relational graph structure.

8 N. Nauata et al.

Table 2. House-GAN architectural specification. “s” and “p” denote stride and
padding. “x”, “z” and “t” denote the room mask, noise vector, and room type vector.
“conv mpn” layers have the same architecture in all occurrences. Convolution kernels
and layer dimensions are specified as (Nin ×Nout ×W ×H) and (W ×H × C).

Architecture Layer Specification Output Size

concat(z, t) N/A 1× 138

linear reshape1 138× 1024 8× 8× 16

conv mpn1

 16× 16× 3× 3, (s = 1, p = 1)

16× 16× 3× 3, (s = 1, p = 1)

16× 16× 3× 3, (s = 1, p = 1)

 8× 8× 16

House layout
generator

upsample1 16× 16× 4× 4, (s = 2, p = 1) 16× 16× 16

conv mpn2 - 16× 16× 16

upsample2 16× 16× 4× 4, (s = 2, p = 1) 32× 32× 16

conv leaky relu1 16× 256× 3× 3, (s = 1, p = 1) 32× 32× 256

conv leaky relu2 256× 128× 3× 3, (s = 1, p = 1) 32× 32× 128

conv tanh1 128× 1× 3× 3, (s = 1, p = 1) 32× 32× 1

linear reshape1(t) 10× 8192 32× 32× 8

concat(t, x) N/A 32× 32× 9

conv leaky relu1 9× 16× 3× 3, (s = 1, p = 1) 32× 32× 16

conv leaky relu2 16× 16× 3× 3, (s = 1, p = 1) 32× 32× 16

conv leaky relu3 16× 16× 3× 3, (s = 1, p = 1) 32× 32× 16

conv mpn1 - 32× 32× 16

House layout
discriminator

downsample1 16× 16× 3× 3, (s = 2, p = 1) 16× 16× 16

conv mpn2 - 16× 16× 16

downsample2 16× 16× 3× 3, (s = 2, p = 1) 8× 8× 16

conv leaky relu1 16× 256× 3× 3, (s = 2, p = 1) 4× 4× 256

conv leaky relu2 256× 128× 3× 3, (s = 2, p = 1) 2× 2× 128

conv leaky relu3 128× 128× 3× 3, (s = 2, p = 1) 1× 1× 128

pool reshape linear1 128× 1 1

5 Implementation Details

The proposed architecture was implemented in PyTorch and utilized a work-
station with dual Xeon CPUs and dual NVIDIA Titan RTX GPUs. Our model
adopts WGAN-GP [7] with ADAM optimizer (b1 = 0.5, b2 = 0.999) and is

House-GAN: Graph-constrained House Layout Generation 9

Table 3. The main quantitative evaluations. Realism is measured by a user study
with graduate students and professional architects. Diversity is measured by the FID
scores. Compatibility is measured by the graph edit distance. (↑) and (↓) indicate the-
higher-the-better and the-lower-the-better metrics, respectively. We compare House-
GAN against two baselines and two competing methods. The cyan, orange, and ma-
genta colors indicate the first, the second, and third best results, respectively.

Realism (↑) Diversity (↓) Compatibility (↓)

Model All groups 1-3 4-6 7-9 10-12 13+ 1-3 4-6 7-9 10-12 13+

CNN-only -0.49 13.2 26.6 43.6 54.6 90.0 0.4 3.1 8.1 15.8 34.7

GCN 0.11 18.6 17.0 18.1 22.7 31.5 0.1 0.8 2.3 3.2 3.7

Ashual et al. [3] -0.61 64.0 92.2 87.6 122.8 149.9 0.2 2.7 6.2 19.2 36.0

Johnson et al. [12] -0.62 69.8 86.9 80.1 117.5 123.2 0.2 2.6 5.2 17.5 29.3

House-GAN [Ours] 0.15 13.6 9.4 14.4 11.6 20.1 0.1 1.1 2.9 3.9 10.8

trained for 200k iterations. The learning rates of the generator and the discrimi-
nator are 0.0001, respectively. The batch size is 32. We set the number of critics
to 1 and use leaky-ReLUs (α=0.1) for all non-linearities except for the last one in
the generator where we use hyperbolic tangent. We tried but do not use spectral
normalization in the convolution layers and a per-room discriminator (before
final sum-pooling), which did not lead to significant improvements.

6 Experimental Results

Realism, diversity, and compatibility metrics evaluate the performance of the
proposed system against the two baselines and the two competing methods. We
first introduce these methods, while referring to the supplementary document
for the full architectural specification.

• CNN-only: We encode the bubble diagram into a fixed dimensional vector by
assuming at most 40 rooms and sorting the rooms based on the room-center x-
coordinate in the corresponding floorplan. To be precise, we concatenate a 128-d
noise vector, a 10-d room type vector for 40 rooms, and 780=

(
40
2

)
dimensional

vector indicating the room connectivity, resulting in a 1308-d vector. We pad
zeros for missing rooms. We convert a vector into a feature volume and apply two
rounds of upsampling and CNN to produce room masks as a (32×32×40) feature
volume. The discriminator takes the room masks, concatenates the room type
and connectivity information (i.e. 1308-d vector) represented as a (32× 32× 8)
feature volume and performs an inverse operation of the generator.
• GCN: The generator takes a 128-d noise vector concatenated with a 10-d
room type vector per room. After 2 rounds of message passing as 1d vectors by
GCN, a shared CNN module decodes the vector into a mask. The discriminator
merges the room segmentation and type into a feature volume as in House-GAN.
A shared CNN encoder converts it into a feature vector, followed by 2 rounds of
message passing, sum-pooling, and a linear layer to produce a scalar.

10 N. Nauata et al.

-1.03 0.33 0.33 -0.87 -1.47

 1.03 1.10 1.00 -0.17 -0.70

-1.10-0.33 -0.17 -1.20 -1.83

-1.00-0.33 0.17 -1.23 -1.80

 0.17 0.87 1.20 1.23 -0.77

 0.70 1.47 1.83 1.80 0.77GT

Ours

CNN
-only

CNN
-only

[3]

GCN

GCN

(a) Students (b) Architects

[12] Ours[3] GT

[12]

-1.16 -0.04 0.28 -0.68 -1.64

 1.16 0.92 1.28 -0.24 -0.76

-0.92 0.04 0.28 -0.76 -1.56

-1.28-0.28 -0.28 -1.12 -1.44

 0.24 0.68 0.76 1.12 -0.64

 0.76 1.64 1.56 1.44 0.64GT

Ours

CNN
-only

CNN
-only

[3]

GCN

GCN [12] Ours[3] GT

[12]

Fig. 5. Realism evaluation. The user study score pairs of methods by graduate students
(left) and professional architects (right). The tables should be read row-by-row. For
example, the bottom row shows the results of GT against the other methods.

• Ashual et al. [3] and Johnson et al. [12]: After converting our bubble
diagram and floorplan data into their representation, we use their official code to
train the models with two minor adaptations: 1) we limit scene-graphs to contain
only two types of connections: “adjacent” and “not adjacent”; 2) we provide the
rendered bounding boxes filled with their corresponding color during training.

Table 3 shows our main results. As explained in Sect. 3, we divide 117,587
samples into 5 groups based on their room counts. For the generation of layouts
in each group, we exclude samples in the same group from the training so that
methods cannot simply memorize layouts. House-GAN outperforms the compet-
ing methods and the baselines in all the metrics, except for the compatibility
against GCN with a small margin. We now discuss each of the three metrics in
more detail with more qualitative and quantitative evaluations.

Realism: We conducted a user study with 12 graduate students and 10 pro-
fessional architectures. Each subject compared 75 pairs of layouts sampled from
the five targeted methods and the ground-truth. Table 3 shows that House-GAN
has the best overall user score. Figure 5 shows the direct pairwise comparisons.
For each pair of methods, we look at the user scores when the 2 methods were
compared, compute their average scores, and take the difference. If subjects al-
ways choose “better” for one method, the difference would be 2.0. Therefore,
the score difference of 1.0 (e.g., GCN against [12] by students) could mean that
the method was rated “better” half the time, and “equally X” half the time. We
refer to the supplementary document for additional details on the user study.

The figure shows that both students and architects rate House-GAN the most
realistic except of course the ground-truth. Figure 6 qualitatively supports the
same conclusion. Ashual et al. did not produce compelling results, because they

House-GAN: Graph-constrained House Layout Generation 11

Input graph CNN-only Ashual et al.GCN Johnson et al.House-GAN Ground-truth

Fig. 6. Realism evaluation. We show one layout sample generated by each method from
each input graph. Our approach (House-GAN) produces more realistic layouts whose
rooms are well aligned and spatially distributed. See the supplementary document for
the user study details.

rather focus on realistic image generation and need rough locations of objects
as input, which are not given in our problem. Johnson et al. also failed in our
experiments. They produce more realistic results if samples from the same group
are included in the training set, allowing the method to memorize answers. We
believe that their network is not capable of generalizing to unseen cases.

Diversity: Diversity is another strength of our approach. For each group, we
randomly sample 5,000 bubble diagrams and let each method generate 10 house
layout variations. We rasterize the bounding boxes (sorted in a decreasing order
of the areas) with the corresponding room colors, and compute the FID score.
Ashual et al. generates variations by changing the input graph into an equivalent
form (e.g., apple-right-orange to orange-left-apple). We implemented this strat-
egy by changing the relation from room1-adjacent-room2 to room2-adjacent-
room1. However, the method failed to create interesting variations. Johnson et
al.also fails in the variation metric. Our observation is that they employ GCN
but a noise vector is added after GCN near the end of the network. The sys-
tem is not capable of generating variations. House-GAN has the best diversity
scores except for the smallest group, where there is little diversity and the graph-
constraint has little effect. Figure 7 qualitatively demonstrates the diversity of
House-GAN, where the other methods tend to collapse into fewer modes.

Compatibility: All the methods perform fairly well on the compatibility metric,
where many methods collapse to generating a few examples with high compat-

12 N. Nauata et al.

Input graph Sample ground-truth

Generated house layouts

C
N
N
-o
nl
y

G
C
N

A
sh
ua
l e
t a
l.

Jo
hn
so
n
et
 a
l.

H
ou
se
-G
A
N

Fig. 7. Diversity evaluation: House layout examples generated from the same bubble
diagram. House-GAN (ours) shows the most diversity/variations.

ibility scores. The real challenge is to ensure compatibility while still keeping
variations in the output, which House-GAN is the only method to achieve (See
Fig. 8). To further validate the effectiveness of our approach, Table 4 shows the
improvements of the compatibility scores as we increase the input constraint
information (i.e., room count, room type, and room connectivity). The table
demonstrates that House-GAN is able to achieve higher compatibility as we add
more graph information. Figure 8 demonstrates another experiment, where we
fix the noise vectors and incrementally add room nodes one-by-one. It is interest-
ing to see that House-GAN sometimes changes the layout dramatically to satisfy
the connectivity constraint (e.g., from the 4th column to the 5th).

More results and discussion: Figure 9 shows interesting failure and suc-
cess examples that were compared against the ground-truth in our user study.
Professional architects rate the three success examples as “equally good” and
the three failure cases as “worse” against the ground-truth. For instance, the

House-GAN: Graph-constrained House Layout Generation 13

In
pu
t g
ra
ph

C
N
N
-o
nl
y

G
C
N

A
sh
ua
l e
t a
l.

Jo
hn
so
n
et
 a
l.

H
ou
se
-G
A
N

Fig. 8. Compatibility evaluation. We fix the noise vectors and sequentially add room
nodes one by one with their incident edges.

Table 4. Compatibility evaluation: Starting from the proposed approach that takes
the graph as the constraint, we drop its information one by one (i.e., room connectivity,
room type, and room count). For the top row, where even the room count is not given,
it is impossible to form relational networks in House-GAN. Therefore, this baseline is
implemented as CNN-only without the room type and connectivity information. The
second row is implemented as House-GAN while removing the room type informa-
tion and making the graph fully-connected. Similarly, the third row is implemented as
House-GAN while making the graph fully-connected. The last row is House-GAN.

Count Type Conn. 1-3 4-6 7-9 10-12 13+

28.5 28.8 19.0 26.4 32.2

X 0.6 2.1 4.6 7.3 37.3

X X 0.4 2.2 4.4 7.5 21.4

X X X 0.1 1.1 2.9 3.9 10.8

first failure example looks strange because a balcony is reachabale only through
bathrooms, and a closet is inside a kitchen. The second failure example looks
strange, because a kitchen is separated into two disconnected spaces. Our major
failure modes are 1) improper room size or shapes for a given room type (e.g.,
a bathroom is too big); 2) misalignment of rooms; and 3) inaccessible rooms
(e.g., room entry is blocked by closets). Our future work is to incorporate room

14 N. Nauata et al.

Success casesFailure cases

Fig. 9. Failure and success examples by House-GAN from the user study. Architects
rate the success examples (right) as “equally good” and the failure examples (left) as
“worse” against the ground-truth.

Input graph Room masks

Fig. 10. Raw room segmentation outputs before the rectangle fitting.

size information or door annotations to address these issues. Lastly, Figure 10
illustrates the raw output of the room segmentation masks before the rectangle
fitting. The rooms are often estimated as rectangular shapes, because rooms are
represented as axis-aligned rectangles in our dataset, while the original floor-
plan contains non-rectangular rooms. Another future work is the generation of
non-rectangular rooms. We refer to supplementary document for more results.

7 Conclusion

This paper proposes a house layout generation problem and a graph-constrained
relational generative adversarial network as an effective solution. We define three
metrics (realism, diversity, and compatibility) and demonstrate the effectiveness
of the proposed system over competing methods and baselines. We believe this
paper makes an important step towards computer aided design of house layouts.

Acknowledgement: This research is partially supported by NSERC Discovery
Grants, NSERC Discovery Grants Accelerator Supplements, and DND/NSERC
Discovery Grant Supplement. We would like to thank architects and students
for participating in our user study.

House-GAN: Graph-constrained House Layout Generation 15

References

1. Lifull home’s dataset. https://www.nii.ac.jp/dsc/idr/lifull
2. Abu-Aisheh, Z., Raveaux, R., Ramel, J.Y., Martineau, P.: An exact graph edit

distance algorithm for solving pattern recognition problems (2015)
3. Ashual, O., Wolf, L.: Specifying object attributes and relations in interactive scene

generation. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 4561–4569 (2019)

4. Bao, F., Yan, D.M., Mitra, N.J., Wonka, P.: Generating and exploring good build-
ing layouts. ACM Transactions on Graphics (TOG) 32(4), 1–10 (2013)

5. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: Unified gener-
ative adversarial networks for multi-domain image-to-image translation. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
8789–8797 (2018)

6. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

7. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: Advances in neural information processing systems.
pp. 5767–5777 (2017)

8. Harada, M., Witkin, A., Baraff, D.: Interactive physically-based manipulation of
discrete/continuous models. In: Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques. pp. 199–208 (1995)

9. Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content gen-
eration for games: A survey. ACM Transactions on Multimedia Computing, Com-
munications, and Applications (TOMM) 9(1), 1–22 (2013)

10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Advances
in Neural Information Processing Systems. pp. 6626–6637 (2017)

11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1125–1134 (2017)

12. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1219–1228 (2018)

13. Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: Layoutvae: Stochastic scene
layout generation from a label set. In: Proceedings of the IEEE International Con-
ference on Computer Vision. pp. 9895–9904 (2019)

14. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and
improving the image quality of stylegan. arXiv preprint arXiv:1912.04958 (2019)

15. Kwon, Y.H., Park, M.G.: Predicting future frames using retrospective cycle gan. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1811–1820 (2019)

16. Li, J., Yang, J., Hertzmann, A., Zhang, J., Xu, T.: Layoutgan: Generating graphic
layouts with wireframe discriminators. arXiv preprint arXiv:1901.06767 (2019)

17. Liu, C., Wu, J., Kohli, P., Furukawa, Y.: Raster-to-vector: Revisiting floorplan
transformation. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 2195–2203 (2017)

18. Ma, C., Vining, N., Lefebvre, S., Sheffer, A.: Game level layout from design speci-
fication. In: Computer Graphics Forum. vol. 33, pp. 95–104. Wiley Online Library
(2014)

16 N. Nauata et al.

19. Merrell, P., Schkufza, E., Koltun, V.: Computer-generated residential building lay-
outs. In: ACM Transactions on Graphics (TOG). vol. 29, p. 181. ACM (2010)

20. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling
of buildings. In: ACM SIGGRAPH 2006 Papers, pp. 614–623 (2006)

21. Peng, C.H., Yang, Y.L., Wonka, P.: Computing layouts with deformable templates.
ACM Transactions on Graphics (TOG) 33(4), 1–11 (2014)

22. Ritchie, D., Wang, K., Lin, Y.a.: Fast and flexible indoor scene synthesis via deep
convolutional generative models. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 6182–6190 (2019)

23. Wang, K., Lin, Y.A., Weissmann, B., Savva, M., Chang, A.X., Ritchie, D.: Planit:
Planning and instantiating indoor scenes with relation graph and spatial prior
networks. ACM Transactions on Graphics (TOG) 38(4), 132 (2019)

24. Wang, K., Savva, M., Chang, A.X., Ritchie, D.: Deep convolutional priors for
indoor scene synthesis. ACM Transactions on Graphics (TOG) 37(4), 1–14 (2018)

25. Wu, W., Fu, X.M., Tang, R., Wang, Y., Qi, Y.H., Liu, L.: Data-driven interior
plan generation for residential buildings. ACM Transactions on Graphics (TOG)
38(6), 1–12 (2019)

26. Zhang, F., Nauata, N., Furukawa, Y.: Conv-mpn: Convolutional message passing
neural network for structured outdoor architecture reconstruction. arXiv preprint
arXiv:1912.01756 (2019)

27. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 2223–2232 (2017)

