Supplementary Material: Learn to Recover Visible Color for Video Surveillance in a Day

Guangming Wu¹, Yinqiang Zheng^{2*}, Zhiling Guo¹, Zekun Cai¹, Xiaodan Shi¹, Xin Ding^{3,4}, Yifei Huang¹, Yimin Guo¹, and Ryosuke Shibasaki¹

¹ The University of Tokyo, Tokyo 113-8654, Japan

 $\{ \texttt{huster-wgm,guozhilingcc,caizekun,shixiaodan,guo.ym,shiba} \} \texttt{@csis.u-tokyo.ac.jp}, \texttt{wgm,guozhilingcc,caizekun,shixiaodan,guo.ym,shiba} \} \texttt{@csis.u-tokyo.ac.jp}, \texttt{wgm,guozhilingcc,caizekun,shixiaodan,guozhilingcc,caizekun,guozhilingcc,caizekun,guozhilingcc,caizekun,guozhilingcc,caizekun,guozhilingcc,caizekun,guozhilingcc,caizekun,guozhilingcc,caizekun,guozhilingcc,caizekun,guozhilingcc,caizekun,guozhilingcc,caizekun,guozhilingcc,caizekun,guozhilingcc,caizekun,guozhilingcc,caize$

hyf@iis.u-tokyo.ac.jp

² National Institute of Informatics, Tokyo 101-8430, Japan

yqzheng@nii.ac.jp

³ Wuhan University, Hubei 430072, China

⁴ Peng Cheng Laboratory, Shenzhen 518055, China

ding-xin@whu.edu.cn

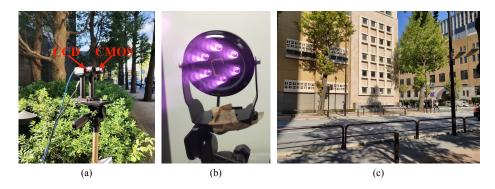
1 The VSIAD dataset.

To train the SSN model for video surveillance in a day, it is a big challenge to get sufficient data with ground truth image pairs, *i.e.*, paired VNIR&VC images of daytime, and NIR&VC images of nighttime.

As shown in the table below, current public datasets, such as KAIST-MS[6], FOI[5], and RANUS[1], are lack of several required aspects (*e.g.*, unaligned and static) that are indispensable for training SSN for all-day surveillance. Thus, this motivated us to build new optical devices to capture our VSIAD dataset. We will release it publicly to facilitate related researches.

Dataset	NIR&VC V	VNIR&VO	C Ourdoor	· Video I	High res. ³	* Aligned
KAIST-MS[6] √(TIR)		\checkmark			
FOI[5]	√(TIR)		\checkmark			\checkmark
[2]	\checkmark			\checkmark		
[7]		\checkmark				
RANUS[1]	\checkmark		\checkmark	\checkmark	\checkmark	
[3]	\checkmark				\checkmark	
[4]	\checkmark	\checkmark			\checkmark	\checkmark
Ours	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
* [0.10 100	1					

Table S.1. Comparison of datasets.


* > [640x480]

^{*} Yinqiang Zheng is the corresponding author. This work was supported in part by the JSPS KAKENHI under Grant No. 19K20307. A part of this work was finished during Y. Zheng's visit and X. Ding's internship at Peng Cheng Laboratory.

2 Guangming Wu, Yinqiang Zheng, et al.

2 Devices for the time-elapse experiment.

To evaluate the proposed method's robustness and generalization capability, we test our trained model on real-world time-elapse images captured from a static viewpoint. We also use a CMOS camera (FLIR BFS-U3-63S4C) and remove its IR-cut filter, which is different from the CCD camera (FLIR GS3-U3-15S4C) in training data capture. These two cameras can represent the two main-stream types of silicon sensors in the surveillance industry.

Fig. 1. Devices for time-elapse experiment. (a) The fixed CCD and CMOS cameras; (b) The 850 nm LED illuminant; and (c) The targeted viewpoint.

References

- Choe, G., Kim, S.H., Im, S., Lee, J.Y., Narasimhan, S.G., Kweon, I.S.: Ranus: Rgb and nir urban scene dataset for deep scene parsing. IEEE Robotics and Automation Letters 3(3), 1808–1815 (2018)
- Dou, H., Chen, C., Hu, X., Peng, S.: Asymmetric cyclegan for unpaired nir-to-rgb face image translation. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 1757–1761. IEEE (2019)
- Fredembach, C., Süsstrunk, S.: Colouring the near-infrared. In: Color and Imaging Conference. vol. 2008, pp. 176–182. Society for Imaging Science and Technology (2008)
- Lv, F., Zheng, Y., Li, Y., Lu, F.: An integrated enhancement solution for 24-hour colorful imaging. In: AAAI. pp. 11725–11732 (2020)
- Mehri, A., Sappa, A.D.: Colorizing near infrared images through a cyclic adversarial approach of unpaired samples. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). pp. 971–979. IEEE (2019)
- Nyberg, A., Eldesokey, A., Bergström, D., Gustafsson, D.: Unpaired thermal to visible spectrum transfer using adversarial training. In: European Conference on Computer Vision Workshops. pp. 657–669. Springer (2018)

 Özkan, K., Işık, Ş., Topsakal Yavuz, B.: Identification of wheat kernels by fusion of rgb, swir, vnir samples over feature and image domain. Journal of the Science of Food and Agriculture (2019)