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Abstract. High-fidelity clothing reconstruction is the key to achieving
photorealism in a wide range of applications including human digitiza-
tion, virtual try-on, etc. Recent advances in learning-based approaches
have accomplished unprecedented accuracy in recovering unclothed hu-
man shape and pose from single images, thanks to the availability of
powerful statistical models, e.g. SMPL, learned from a large number of
body scans. In contrast, modeling and recovering clothed human and 3D
garments remains notoriously difficult, mostly due to the lack of large-
scale clothing models available for the research community. We propose
to fill this gap by introducing Deep Fashion3D, the largest collection
to date of 3D garment models, with the goal of establishing a novel
benchmark and dataset for the evaluation of image-based garment recon-
struction systems. Deep Fashion3D contains 2078 models reconstructed
from real garments, which covers 10 different categories and 563 gar-
ment instances. It provides rich annotations including 3D feature lines,
3D body pose and the corresponded multi-view real images. In addition,
each garment is randomly posed to enhance the variety of real clothing
deformations. To demonstrate the advantage of Deep Fashion3D, we pro-
pose a novel baseline approach for single-view garment reconstruction,
which leverages the merits of both mesh and implicit representations. A
novel adaptable template is proposed to enable the learning of all types of
clothing in a single network. Extensive experiments have been conducted
on the proposed dataset to verify its significance and usefulness.

1 Introduction

Human digitization is essential to a variety of applications ranging from visual
effects, video gaming, to telepresence in VR/AR. The advent of deep learn-
ing techniques has achieved impressive progress in recovering unclothed human
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shape and pose simply from multiple [30, 63] or even single [45, 57, 5] images.
However, these leaps in performance come only when a large amount of labeled
training data is available. Such limitation has led to inferior performance of re-
constructing clothing – the key element of casting a photorealistic digital human,
compared to that of naked human body reconstruction. One primary reason is
the scarcity of 3D garment datasets in contrast with large collections of naked
body scans, e.g. SMPL [39], SCAPE [6], etc. In addition, the complex surface
deformation and large diversity of clothing topologies have introduced additional
challenges in modeling realistic 3D garments.

Fig. 1: We present Deep Fashion3D, a large-scale repository of 3D clothing mod-
els reconstructed from real garments. It contains over 2000 3D garment models,
spanning 10 different cloth categories. Each model is richly labeld with ground-
truth point cloud, multi-view real images, 3D body pose and a novel annotation
named feature lines. With Deep Fashion3D, inferring the garment geometry from
a single image becomes possible.

To address the above issues, there is an increasing need of constructing a high-
quality 3D garment database that satisfies the following properties. First of all,
it should contain a large-scale repository of 3D garment models that cover a wide
range of clothing styles and topologies. Second, it is preferable to have models
reconstructed from the real images with physically-correct clothing wrinkles to
accommodate the requirement of modeling complicated dynamics and deforma-
tions caused by the body motions. Lastly, the dataset should be labeled with
sufficient annotations to provide strong supervision for deep generative models.

Multi-Garment Net (MGN) [7] introduces the first dataset specialized for dig-
ital clothing obtained from real scans. The proposed digital wardrobe contains
356 digital scans of clothed people which are fitted to pre-defined parametric
cloth templates. However, the digital wardrobe only captures 5 garment cate-
gories, which is quite limited compared to the large variety of garment styles.
Apart from 3D scans, some recent works [61, 26] propose to leverage synthetic
data obtained from physical simulation. However, the synthetic models lack real-
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ism compared to the 3D scans and cannot provide the corresponding real images,
which are critical to generalizing the trained model to images in the wild.

In this paper, we address the lack of data by introducing Deep Fashion3D,
the largest 3D garment dataset by far, that contains thousands of 3D clothing
models with comprehensive annotations. Compared to MGN, the collection of
Deep Fashion3D is one order of magnitude larger – including 2078 3D models
reconstructed from real garments. It is built from 563 diverse garment instances,
covering 10 different clothing categories. Annotation-wise, we introduce a new
type of annotation tailored for 3D garment – 3D feature lines. The feature lines
denote the most prominent geometrical features on garment surfaces (see Fig. 3),
including necklines, cuff contours, hemlines, etc, which provide strong priors for
3D garment reconstruction. Apart from feature lines, our annotations also in-
clude calibrated multi-view real images and the corresponded 3D body pose.
Furthermore, each garment item is randomly posed to enhance the dataset ca-
pacity of modeling dynamic wrinkles.

To fully exploit the power of Deep Fashion3D, we propose a novel baseline
approach that is capable of inferring realistic 3D garments from a single image.
Despite the large diversity of clothing styles, most of the existing works are lim-
ited to one fixed topology [19, 33]. MGN [7] introduces class-specific garment
network – each deals with a particular topology and is trained by one-category
subset of the database. However, given the very limited data, each branch is
prone to having overfitting problems. We propose a novel representation, named
adaptable template, that can scale to varying topologies during training. It en-
ables our network to be trained using the entire dataset, leading to stronger
expressiveness. Another challenge of reconstructing 3D garments is that cloth-
ing model is typically a shell structure with open boundaries. Such topology
can hardly be handled by the implicit or voxel representation. Yet, the methods
based on deep implicit functions [43, 48] have shown their ability of modeling
fine-scale deformations that the mesh representation is not capable of. We pro-
pose to connect the good ends of both worlds by transferring the high-fidelity
local details learnt from implicit reconstruction to the template mesh with cor-
rect topology and robust global deformations. In addition, since our adaptable
template is built upon the SMPL topology, it is convenient to repose or ani-
mate the reconstructed results. The proposed framework is implemented in a
multi-stage manner with a novel feature line loss to regularize mesh generation.

We have conducted extensive benchmarking and ablation analysis on the
proposed dataset. Experimental results demonstrate that the proposed baseline
model trained on Deep Fashion3D sets new state of the art on the task of single-
view garment reconstruction. Our contributions can be summarized as follows:

– We build Deep Fashion3D, a large-scale, richly annotated 3D clothing dataset
reconstructed from real garments. To the best of our knowledge, this is the
largest dataset of its kind.

– We introduce a novel baseline approach that combines the merits of mesh
and implicit representation and is able to faithfully reconstruct 3D garment
from a single image.
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– We propose a novel representation, called adaptable template, that enables
encoding clothing of various topologies in a single mesh template.

– We first present the feature line annotation specialized for 3D garments,
which can provide strong priors for garment reasoning related tasks, e.g., 3D
garment reconstruction, classification, retrieval, etc.

– We build a benchmark for single-image garment reconstruction by conduct-
ing extensive experiments on evaluating a number of state-of-the-art single-
view reconstruction approaches on Deep Fashion3D.

2 Related Work

3D Garment Datasets. While most of existing repositories focus on naked [6, 8,
39, 9] or clothed [68] human body, datasets specially tailored for 3D garment is
very limited. BUFF dataset [67] consists of high-resolution 4D scans of clothed
human with very limited ammount. In addition, it fails to provide separated
models for body and clothing. Segmenting garment models from the 3D scans
remains extremely laborious and often leads to corrupted surfaces due to occlu-
sions. To address this issue, Pons-Moll et al. [49] propose an automatic solution
to extract the garments and their motion from 4D scans. Recently, a few datasets
specialized for 3D garment are proposed. Most of the works [25, 61] propose to
synthetically generate garment dataset using physical simulation. However, the
quality of the synthetic data is not on par with that of real data. In addition, it
remains difficult to generalize the trained model to real images as only synthetic
images are available. MGN [7] introduces the first garment dataset obtained
from 3D scans. However, the dataset only covers 5 cloth categories and is lim-
ited to a few hundreds of samples. In contrast, Deep Fashion3D collects more
than two thousand clothing models reconstructed from real garments, which cov-
ers a much larger diversity of garment styles and topologies. Further, the novel
annotation of feature lines provides stronger and more accurate supervision for
reconstruction algorithms, which is demonstrated in Section 5.

Performance capture. Over the past decades, progress [59, 44, 42] has been made
to capture cloth surface deformation in motion. Vision-based approaches strive
to leverage the easily accessible RGB data and develop frameworks either based
on texture pattern tracking [62, 53], shading cues [69] or calibrated silhouettes
obtained from multi-view videos [12, 55, 37, 11]. However, without dense corre-
spondences or priors, the silhouette-based approaches cannot fully recover the
fine details. To improve the reconstruction quality, stronger prior knowledge, in-
cluding the clothing type [20], pre-scanned template model [27], stereo [10] and
photometric [29, 58] constraints, has been considered in recent works. With the
advances of fusion-based solutions [32, 46], template model can be eliminated as
the surface geometry can be progressively fused on the fly [18, 21] with even a
single depth camera [66, 65, 64]. Yet, most of the existing works estimate body
and clothing jointly and thus cannot obtain a separated cloth surface from the
output. Chen et al. [15] propose to model 3D garment from a single depth camera
by fitting deformable templates to the initial mesh generated by KinectFusion.
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Single-view garment reconstruction. Inferring 3D cloth from a single image is
highly challenging due to the scarcity of the input and the enormous search-
ing space. Statistical model has been introduced for such ill-posed problem to
provide strong priors. However, most models [6, 39, 28, 50, 34] are restricted to
capturing human body only. Attempts have been made to jointly reconstruct
body and clothing from videos [3, 4] and multi-view images [30, 63]. Recent
advances in deep learning based approaches [45, 57, 52, 5, 36, 2, 51, 14, 56] have
achieved single-view clothed body reconstruction. However, for all these meth-
ods, tedious manual post-processing is required to extract the clothing surface.
And yet, the reconstructed clothing lacks realism. DeepWrinkles [35] synthesizes
faithful clothing wrinkles onto a coarse garment mesh following a given pose.
Jin et al. [33] leverage similar idea with [31], which encodes detailed geometry
deformations in the uv space. However, the method is limited to a fixed topol-
ogy and cannot scale well to large deformations. Daněřek et al. [19] propose to
use physics based simulations as supervision for training a garment shape esti-
mation network. However, the quality of their results is limited to that of the
synthetic data and thus cannot achieve high photo-realism. Closer to our work,
Multi-Garment Net [7] learns per-category garment reconstruction using scanned
data. Nonetheless, their method typically requires 8 frames as input while our
approach only consumes a single image. Further, since MGN relies on pre-trained
parametric models, it cannot deal with out-of-scope deformations, especially the
clothing wrinkles that are dependent on body poses. In contrast, our approach is
blendshape-free and is able to faithfully capture multi-scale shape deformations.

3 Dataset Construction

Despite the rapid evolution of 2D garment image datasets from DeepFashion [38]
to DeepFashion2 [23] and FashionAI [70], large-scale collection of 3D clothing
is very rare. The digital wardrobe released by MGN [7] only contains 356 scans
and is limited to only 5 garment categories, which is not sufficient for training an
expressive reconstruction model. To fill this gap, we build a more comprehensive
dataset named Deep Fashion3D, which is one order larger than MGN, richly
annotated and covers a much larger variations of garment styles. We provide
more details on data collection and statistics in the following context.

Type Number Type Number

Long-sleeve coat 157 Long-sleeve dress 18
Short-sleeve coat 98 Short-sleeve dress 34
None-sleeve coat 35 None-sleeve dress 32
Long trousers 29 Long skirt 104
Short trousers 44 Short skirt 48

Table 1: Statistics of the each clothing categories of Deep Fashion3D.
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Fig. 2: Example garment models of Deep Fashion3D.

Cloth Capture. To model the large variety of real-world clothing, we collect a
large number of garments, consisting of 563 diverse items that covers 10 cloth-
ing categories. The detailed numbers for each category are shown in Table 1. We
adopt the image-based reconstruction software [1] to reconstruct high-resolution
garment models from multi-view images in the form of dense point cloud. In
particular, the input images are captured in a multi-view studio with of 50 RGB
cameras and controlled lighting. To enhance the expressiveness of the dataset,
each garment item is randomly posed on a dummy model or real human to gen-
erate a large variety of real deformations caused by body motion. The body parts
are manually removed from reconstructed point clouds. With the augmentation
of poses, 2078 3D garment models in total are reconstructed from our pipeline.

Annotations. To facilitate future research on 3D garment reasoning, apart from
the calibrated multi-view images, we provide additional annotations for Deep
Fashion3D. In particular, we introduce feature line annotation which is specially
tailored for 3D garments. Akin to facial landmarks, the feature lines denote the
most prominent features, e.g. the open boundaries, the neckline, cuff, waist, etc,
that could provide strong priors for faithful garment reconstruction. The details
of feature line annotations are provided in Table 2 and visualized in Figure 3. We
will show in method section that feature line labels can supervise the learning of
3D key lines prediction, which provide explicit constraints for mesh generation.

Furthermore, each reconstructed model is labeled with 3D pose represented
by SMPL [39] coefficients. The pose is obtained by fitting the SMPL model to
the reconstructed dense point cloud. Due to the highly coupled nature between
human body and clothing, we believe the labeled 3D pose could be beneficial to
infer the global shape and pose-dependent deformations of the garment model.

Data Statistics. To the best of our knowledge, among existing works, there are
only three publicly available datasets specialized for 3D garments: Wang et.
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Fig. 3: Visualization of feature line an-
notations. Different feature lines are
highlighted using different colors.

Cloth Category Feature line Positions

long-sleeve coat ne, wa, sh, el, wr
short-sleeve coat ne, wa, sh, el
none-sleeve coat ne, wa, sh
long-sleeve dress ne, wa, sh, el, wr, he
short-sleeve dress ne, wa, sh, el, he
none-sleeve dress ne, wa, sh, he

long/short trousers wa, kn, an/ wa, kn
long/short skirt wa, he/ wa, he

Table 2: Feature line positions for each
cloth category. The meanings for the ab-
breviations are: ’ne’-neck, ’wa’-waist, ’sh’-
shoulder, ’el’-elbow, ’wr’-wrist, ’kn’-knee,
’an’-ankle, ’he’-’hemline’.

Wang et al. [61] GarNet [26] MGN [7] Deep Fashion3D

# Models 2000 600 712 2078
# Categories 3 3 5 10
Real/Synthetic synthetic synthetic real real
Method simulation simulation scanning multi-view stereo

Annotations input 2D sketch 3D body pose
vertex color

3D body pose

multi-view real images
3D feature lines
3D body pose

Table 3: Comparisons with other 3D garment datasets.

al [61], GarNet [26] and MGN [7]. In Table 3, we provide detailed comparisons
with these datasets in terms of the number of models, categories, data modality,
production method and data annotations. Scale-wise, Deep Fashion3D and Wang
et al. [61] are one order larger than the other counterparts. However, our dataset
covers much more garment categories compared to Wang et al. [61]. Apart from
our dataset, only MGN collects models reconstructed from real garments while
the other two are fully synthetic. Regarding data annotations, Deep Fashion3D
provides the richest data labels. In particular, multi-view real images are only
available in our dataset. In addition, we present a new form of garment anno-
tation, the 3D feature lines, which could offer important landmark information
for a variety of 3D garment reasoning tasks including garment reconstruction,
segmentation, retrieval, etc.

4 A Baseline Approach for Single-view Reconstruction

To demonstrate the usefulness of Deep Fashion3D, we propose a novel baseline
approach for single-view garment reconstruction. Specifically, taking a single im-
age I of a garment as input, we aim to reconstruct its 3D shape represented as a
triangular mesh. Although recent advances in 3D deep learning techniques have
achieved promising progress in single-view reconstruction on general objects, we
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Fig. 4: The pipeline of our proposed approach.

found all existing approaches have difficulty scaling to cloth reconstruction. The
main reasons are threefolds: (1) Non-closed surfaces. Unlike the general objects
in ShapeNet [13], the garment shape typically appears as a thin layer with open
boundary. While implicit representation [43, 48] can only model closed surface,
voxel based approach [16] is not suited for recovering shell-like structure like
the garment surface. (2) Complex shape topologies. As all existing mesh-based
approaches [24, 60, 47] rely on deforming a fixed template, they fail to handle the
highly diversified topologies introduced by different clothing categories. (3) Com-
plicated geometric details. While general man-made objects typically consist of
smooth surfaces, the clothing dynamics often introduces intricate high-frequency
surface deformations that are challenging to capture.

Overview. To address the above issues, we propose to employ a hybrid repre-
sentation that leverages the merits of each embedding. In particular, we harness
both the capability of implicit surface of modeling fine geometric details and the
flexibility of mesh representation of handling open surfaces. Our method starts
with generating a template mesh Mt which can automatically adapt its topology
to fit the target clothing category in the input image. It is then deformed to Mp

according to estimated 3D pose. By treating the feature lines as a graph, we
then apply image-guided graph convolutional network (GCN) to capture the 3D
feature lines, which later trigger handle-based deformation and generates mesh
Ml. To exploit the power of implicit representation, we first employ OccNet
[43] to generate a mesh model MI and then adaptively register Ml to MI by
incorporating the learned fine surface details from MI while discarding its out-
liers and noises caused by enforcement of close surface. The proposed pipeline is
illustrated in Figure 4.

4.1 Template Mesh Generation

Adaptable template. We propose adaptable template, a new representation that
is scalable to different cloth topologies, enabling the generation of all types of
cloth available in the dataset using a single network. The adaptable template is
built on the SMPL [39] model by removing the head, hands and feet regions. As
seen in Figure 4, it is then segmented into 6 semantic regions: torso, waist, and
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upper/lower limbs/legs. During training, the entire adaptable template is fed into
the pipeline. However, different semantic regions are activated according to the
estimated cloth topology. We denote the template mesh asMt = (V,E,B), where
V = {vi} and E are the set of vertices and edges respectively, and B = {bi} is a
per-vertex binary activation mask. vi will only be activated if bi = 1; otherwise vi
will be detached during the training and removed in the output. The activation
mask is determined by the estimated cloth category, where regions of vertices are
labeled as a whole. For instance, to model a short-sleeve dress, vertices belonging
to the regions of lower limbs and legs are deactivated. Note that in order to adapt
the waist region to large deformations for modeling long dresses, we densify its
triangulation accordingly using mesh subdivisions.

Cloth classification. We build a cloth classification network based on a pre-
trained VGGNet. The classification network is trained using both real and syn-
thetic images. The synthetic images are used in order to provide augmented
lighting conditions to the training images. In particular, we render each gar-
ment model under different global illuminations in 5 random views. We generate
around 10,000 synthetic images, 90% of which is used for training while the rest
is reserved for testing. Our classification network can achieve an accuracy of
99.3%, leading to an appropriate template at both train and test time.

4.2 Learning Surface Reconstruction

To achieve a balanced trade-off between mesh smoothness and accuracy of re-
construction, we propose a multi-stage pipeline to progressively deforming Mt

to fit the target shape.

Feature line-guided Mesh Generation. It is well understood that, the fea-
ture lines, such as necklines, hemlines, etc, play a key role in casting the shape
contours of the 3D clothing. Therefore, we propose to first infer the 3D feature
lines and then deform Mt by treating the feature lines as deformation handles.

Pose Estimation. Due to the large degrees of freedom of 3D lines, directly re-
gressing their positions is highly challenging. To reduce the searching space, we
first estimate the body pose and deform Mt to Mp which provides an initializa-
tion {lpi } of 3D feature lines. Here, the pose of 3D garment is represented with
SMPL pose parameters θ [39], which are regressed by a pose estimation network.

GCN-based Feature line regression. We represent the feature lines {lpi } as poly-
gons during pose estimation. This enables us to treat it as a graph and fur-
ther employ an image-guided GCN to regress the vertex-wise displacements. We
employ another VGG module to extract image features and leverage a similar
learning strategy with Pixel2Mesh [60] to infer deformation of feature lines. Note
that all of the feature lines predefined on the template are fed into the network,
but only the activated subset of the feature lines are adopted to update network
parameters.



10 H. Zhu et al.

Handle-based deformation. We denote the output feature lines of the above steps
as {loi }. Ml is obtained by deforming Mp so that its feature lines {lpi } fit our
prediction {loi }. We use the handle-based Laplcacian deformation [54] by setting
the alignment between {lpi } and {loi } as hard constrains while optimizing the
displacements of the remaining vertices to achieve smooth and visually pleasing
deformations. Note that the explicit handle-based deformation can quickly lead
to a result that is close to the target surface, which alleviates the difficulty of
regressing of a large number of vertices.

Surface Refinement by Fitting Implicit Reconstruction. After obtaining
Ml, a straightforward way to obtain surface details is to apply Pixel2Mesh [60]
by taking Ml as input. However, as illustrated in Fig. 5, this method fails prob-
ably due to the inherent difficulty of learning the high-frequency details while
preserving surface smoothness. In contrast, our empirical results indicate that
the implicit surface based methods, such as OccNet [43], can faithfully recover
the details but only generate closed surface. We therefore perform an adaptive
non-rigid registration from Ml to OccNet output for transferring surface details.

Learning implicit surface. We directly employ OccNet [43] for learning the im-
plicit surface. Specifically, the input image is first encoded into a latent vector
using ResNet-18. For each 3D point in the space, a MLP layer consumes its
coordinate and the latent code to predict if the point is inside or outside the
surface. Note that we convert all the data into closed meshes using Poisson re-
construction in MeshLab [17]. With the trained network, we first generate an
implicit field and then extract the reconstructed surface MI using marching cube
algorithm [40].

Detail transfer with adaptive registration. Though OccNet can synthesize high-
quality geometric details, it may also introduce outliers due to its enforcement
of generating closed surface. To improve robustness and convergence in con-
ventional non-rigid ICP, we impose normal and distance constraints to filter
out wrong correspondences so that only the correct high-frequency details are
transferred: (1) the two points of a valid correspondence should have consistent
normal direction (i.e., the angle of the two normal directions should be smaller
than a threshold which is set as 60◦). (2) the bi-directional Chamfer distance be-
tween the corresponded points should be less than a preset threshold σ (σ is set
as 0.01). The adaptive registrations helps to remove erroneous correspondences
and produces our final output Mr.

4.3 Training

There are four sub-networks need to be trained: cloth classification, pose esti-
mation, GCN-based feature line fitting and the implicit reconstruction. Each of
the sub-networks is trained independently. In the following subsections, we will
provide the details on training data preparation and loss functions.
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Training Data Generation

Pose estimation. We obtain the 3D pose of the garment model by fitting the
SMPL model to the reconstructed dense point cloud. The data processing pro-
cedures are as follows: 1) for each annotated feature line, we calculate its center
point as the its corresponding skeleton joint; 2) we use the joints in the torso
region to align all the point clouds to ensure a consistent orientation and scale.
3) lastly, we compute the SMPL pose parameters for each model by fitting the
joints and point cloud. The obtained pose parameters will be used for supervising
the pose estimation module in Section 4.2.

Image rendering. We augment the input with synthetic images. In particular, for
each model, we generate rendered images by randomly sampling 3 viewpoints
and 3 different lighting environments, obtaining 9 images in total. Note that
we only sample viewpoints from the front viewing angles as we only focus on
front-view reconstruction in this work. However, our approach can scale to side
or back view prediction by providing corresponding training images.

Loss functions The training of cloth classification, pose estimation and implicit
reconstruction exactly follows the mainstream protocols. Hence, due to the page
limit, we only focus on the part of feature line regression here while leaving other
details in the appendix.

Feature line regression. Our training goal is to minimize the average distance
between the vertices on the obtained feature lines and the ground-truth annota-
tions. Therefore, our loss function is a weighted sum of a distance metric (we use
Chamfer distance here) and an edge length regularization loss [60], which helps to
smooth the deformed feature lines (more details can be found in supplementals).

5 Experimental Results

Implementation details. The whole pipeline proposed is implemented using Py-
Torch. The initialized learning rate is set to 5e-5 and with the batch size of 8. It
takes about 30 hours to train the whole network using Adam optimization for
50 epochs using a NVIDIA TITAN XP graphics card.

5.1 Benchmarking on Single-view Reconstruction

Methods. We compare our method against six state-of-the-art single-view re-
construction approaches that use different 3D representations: 3D-R2N2 [16],
PSG(Point Set Generation) [22], MVD (generating multi-view depth maps) [41],
Pixel2Mesh [60], AtlasNet [24], MGN [7] and OccNet [43]. For AtlasNet, we have
experimented it using both sphere template and patch template, which are de-
noted as “Atlas-Sphere” and “Atlas-Patch”. To ensure fairness, we train all the
algorithms, except MGN, on our dataset. In particular, training MGN requires
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Fig. 5: Experiment results against other methods. Given an image, results are
followed with (a) PSG (Point Set Generation) [22]; (b) 3D-R2N2 [16]; (c) At-
lasNet [24] with 25 square patches; (d) AtlasNet [24] whith a sphere template;
(e) Pixel2Mesh [60]; (f) MVD [41] (multi-view depth generation); (g) TMN [47]
(topology modification network); (h) MGN (Multi-Garment Network) [7]; (i)
OccNet [43]; (j) Ours; (k) The groundtruth point clouds. The input images on
the top. The null means the method fails to generate a result.

ground-truth parameters for their category-specific cloth template, which is not
applicable in our dataset. It is worth mentioning that, the most recent algorithm
MGN can only handle 5 cloth categories and fails to produce reasonable results
for out-of-scope classes, e.g., dress, as demonstrated in Fig. 5. To obtain the
results of MGN, we manually prepared input data to fulfill the requirements of
its released model, that is trained on digital wardrobe [7].

Quantitative results. Since the approaches leverage different 3D representations,
we convert the outputs into point cloud for fair comparison. We then compute
the Chamfer distance (CD) and Earth Mover’s distance (EMD) between the
outputs and the ground-truth for quantitative measurements. Table 4 shows the
performance of different methods on our testing dataset. Our approach achieves
the highest reconstruction accuracy compared to the other approaches.
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Method CD(×10−3) EMD (×102)

3D-R2N2 (1283) [16] 1.264 3.609
MVD [41] 1.047 4.058
PSG [22] 1.065 4.675
Pixel2Mesh [60] 0.782 9.078
AtlasNet(sphere) [24] 0.855 6.193
AtlasNet(patch) [24] 0.908 9.428
TMN [47] 0.865 8.580
OccNet (2563) [43] 0.960 3.431
Ours 0.679 2.942

Table 4: The prediction errors of different methods evaluated on our testing data.

Qualitative results. In Figure 5, we also provide qualitative comparisons by ran-
domly selecting some samples from different garment categories in arbitrary
poses. Compared to the other methods, our approach provides more accurate
reconstructions that are closer to ground truths. The reasons are: 1) 3D repre-
sentations like point set [22], voxel [16] or multi-view depth maps [41] are not
suitable for generating a clean mesh. 2) Although template-based methods [24,
60, 47] are designed for mesh generation, it is hard to use a fixed template for
fitting diverse shape complexity of clothing. 3) As shown in the results, method
based on implicit function [43] is able to synthesis rich details. However, it can
only generate closed shapes, making it difficult to handle garment reconstruction,
which typically consists of multiple open boundaries. By explicitly combining the
merits of template-based methods and implicit ones, the proposed approach can
not only capture the global shape but also generate faithful geometric details.

Fig. 6: Results of ablation studies. (a) input images; (b) results of Mt+GCN; (c)
results of Mp+GCN; (d) results of Ml+GCN. (e) results of our approach without
surface refinement, i.e., Ml. (f) Mt+Regis. (g) results of our full approach. (h)
groundtruth point clouds.
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5.2 Ablation Analysis

We further validate the effectiveness of each algorithmic component by selectively
applying them in different settings: 1) Directly applying GCN on the generated
template mesh Mt to fit the target shape, termed as Mt+GCN; 2) Applying
GCN on Mp (obtained by deforming Mt with estimated SMPL pose) to fit the
target shape, termed as Mp+GCN; 3) Applying GCN on the resulted mesh after
feature line-guided deformation, i.e. Ml. This is termed as Ml+GCN; 4) Directly
performing registration from Mt to MI for details transferring, which is termed
as Mt+Regis. Figure 6 shows the qualitative comparisons between these settings
and the proposed one. As seen, the baseline approach produce the best results.

As observed from the experiments, it is difficult for GCN to learn geometric
details. There are two possible reasons: 1) It is inherently difficult to synthesize
high-frequency signals while preserving surface smoothness; 2) GCN structure
might be not suitable for a fine-grained geometric learning task as graph is a
sparse and crude approximation of a surface. We also found that the feature
lines are much easier to learn and explicit handle-based deformation works sur-
prisingly well. The deeper study in this regard is left as one of our further works.

6 Conclusions and Discussions

We have proposed a new dataset called Deep Fashion3D for image-based garment
reconstruction, which is by far the largest 3D garment collection reconstructed
from real clothing images. In particular, it consists of over 2000 highly diver-
sified garment models covering 10 clothing categories and 563 distinct garment
items. In addition, each model of Deep Fashion3D is richly labeled with 3D body
pose, 3D feature lines and multi-view real images. We also presented a baseline
approach for single-view reconstruction to validate the usefulness of the pro-
posed dataset. It uses a novel representation, called adaptable template, to learn
a variety of clothing types in a single network. We have performed extensive
benchmarking on our dataset using a variety of recent methods. We found that
single-view garment reconstruction is an extremely challenging problem with
ample opportunity for improved methods. We hope Deep Fashion3D and our
baseline approach will bring some insight to inspire future research in this field.

Currently, our pipeline does not support end-to-end training and requires
some offline processing steps. We believe it would be an interesting future avenue
to investigate an end-to-end pipeline to enable more accurate reconstruction.
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tusik, W.: Dynamic shape capture using multi-view photometric stereo. In: ACM
Transactions on Graphics (TOG). vol. 28, p. 174. ACM (2009)

59. Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth:
modeling and measurement. In: ACM Transactions on Graphics (TOG). vol. 30,
p. 71. ACM (2011)

60. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: Generating
3d mesh models from single rgb images. In: ECCV (2018)

61. Wang, T.Y., Ceylan, D., Popovic, J., Mitra, N.J.: Learning a shared shape space
for multimodal garment design. ACM Trans. Graph. 37(6), 1:1–1:14 (2018).
https://doi.org/10.1145/3272127.3275074

62. White, R., Crane, K., Forsyth, D.A.: Capturing and animating occluded cloth. In:
ACM Transactions on Graphics (TOG). vol. 26, p. 34. ACM (2007)

63. Xu, Y., Yang, S., Sun, W., Tan, L., Li, K., Zhou, H.: 3d virtual garment modeling
from rgb images. arXiv preprint arXiv:1908.00114 (2019)

64. Yu, T., Guo, K., Xu, F., Dong, Y., Su, Z., Zhao, J., Li, J., Dai, Q., Liu, Y.:
Bodyfusion: Real-time capture of human motion and surface geometry using a
single depth camera. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 910–919 (2017)

65. Yu, T., Zheng, Z., Guo, K., Zhao, J., Dai, Q., Li, H., Pons-Moll, G., Liu, Y.:
Doublefusion: Real-time capture of human performances with inner body shapes
from a single depth sensor. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 7287–7296 (2018)

66. Yu, T., Zheng, Z., Zhong, Y., Zhao, J., Dai, Q., Pons-Moll, G., Liu, Y.: Simul-
cap: Single-view human performance capture with cloth simulation. arXiv preprint
arXiv:1903.06323 (2019)

67. Zhang, C., Pujades, S., Black, M.J., Pons-Moll, G.: Detailed, accurate, human
shape estimation from clothed 3d scan sequences. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 4191–4200 (2017)



Deep Fashion3D 19

68. Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: Deephuman: 3d human reconstruction
from a single image. In: The IEEE International Conference on Computer Vision
(ICCV) (October 2019)

69. Zhou, B., Chen, X., Fu, Q., Guo, K., Tan, P.: Garment modeling from a single
image. In: Computer graphics forum. vol. 32, pp. 85–91. Wiley Online Library
(2013)

70. Zou, X., Kong, X., Wong, W., Wang, C., Liu, Y., Cao, Y.: Fashionai: A hierarchical
dataset for fashion understanding. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops. pp. 0–0 (2019)


