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In this supplementary material, we provide more information for data col-
lection, implementation details, and quantitative and qualitative results. Some
images are also shown on our project webpage1 for better visualization. For con-
venience, a copy of the webpage and the video is included in this supplementary
material.

1 Data Collection

In this section, we provide information about our data capture rig and how we
obtain the ground truth disparity, confidence, and the occlusion mask.

1.1 Data Capture

View 1 View 2 View 3 View 4 View 5

Fig. 1: Example capture from our data collection rig. Top: Views from the main
cameras of the five phones on the rig. Bottom: Views from the telephoto cameras.
All ten views are used to compute ground truth depth using multi-view stereo
techniques.

As shown in Fig. 4(a) in the main paper, our capture rig consists of five
Google Pixel 4 phones. Each phone captures a stereo pair (and dual-pixel data),

1 https://augmentedperception.github.io/du2net/
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giving us ten views of the same scene (Fig. 1). The five phones are synchronized
using [1] allowing us to capture dynamic scenes, e.g., plants moving in the wind.
Our dataset is captured both indoors and outdoors, and contains both man made
and natural scenes.

More examples of the captured dual-camera and dual-pixel images can be
found in the project webpage. On each row, we provide a pair of rectified dual-
camera (DC) images, Il and Ir corresponding to the left and the right cameras,
and a pair of dual-pixel (DP) images from the right camera sensor, IDPt and
IDPb corresponding to the top and bottom half-pixels on the sensor. You may
toggle between the views by clicking on the images to get a sense of the amount
of parallax from the two sources of inputs.

1.2 Computing Ground Truth Disparity Dgt and Confidence Cgt

We now describe how we compute Dgt and Cgt given a capture from the rig.
Since the rig may not be perfectly rigid, we first compute camera poses, i.e.,
intrinsics and extrinsics, using structure from motion [7]. For computing ground
truth depth using multi-view stereo, we use a method similar to [6] that is
designed to give accurate depth for fine structures while avoiding edge fattening
artifacts. We describe it in more detail below.

All ten RGB images are resized to 756× 1008. For each view, we use a plane
sweep algorithm, with 256 planes sampled using inverse perspective sampling
between 0.2m and 100m, and take the minimum of a filtered cost volume as
each pixel’s depth. To compute the cost volume, for each pixel, we compute the
sum of absolute differences for each of the warped neighbors and then bilaterally
filter the cost volume using the grayscale reference image as the guide image
thus avoiding edge fattening artifacts [11]. We use a spatial sigma of 3 pixels
and a range sigma of 12.5 for the bilateral filter.

Following [6], we also estimate per-pixel confidence for depth, i.e., a scalar
in the range [0, 1]. Specifically, we check for depth coherence across views by
checking for left / right consistency [3]. We first compute consistency with each
of the 9 neighboring images using the consistency measure in [6]. Then, under
the assumption that a pixel must be visible in at least two other cameras for its
depth to be reliable, we take the product of the largest two consistency values
for each pixel to compute our final confidence.

Even though we capture data from all five phones, we only use the data
from the center camera for training and testing since it’s likely to have the
most accurate depth. We use the estimated camera poses for the center phone
to rectify the stereo pair [5]. Specifically, we compute Wl and Wr, i.e., warp
maps corresponding to the left and and the right cameras that are applied to the
RGB images, depth maps and confidences for the left and the right images. The
camera poses are also used to convert depth into disparity between the recitifed
pair. See Fig. 2 for examples of rectified RGB images and the corresponding
ground truth disparity.
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(a) Right Image (b) Left Image (c)GT (d)GT(Occ.)

Fig. 2: Examples of collected data. The right view and left view (a,b) of the
binocular stereo pair, the ground truth disparity (c), and the ground truth dis-
parity for occluded pixels (d). Low confidence disparity is rendered in black in
(c) and (d).
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Further, since the telephoto camera has a smaller field of view than the main
camera, we apply a center crop of size 448×560 to all rectified images to restrict
ourselves to the area of overlap.

1.3 Computing Occlusion Confidence Cocc

As mentioned in the main paper, we also compute Cocc , i.e., a per-pixel con-
fidence where the ground truth disparity is accurate but the pixel is occluded
in the other camera. This allows us to evaluate and compare the methods in
regions that are occluded in one of the stereo views.

To compute it, we first estimate the set of pixels in the right image that are
in field of view of the left image but are occluded by an occluder. This can be
estimated as:

Occr =

(x, y) s.t.

0 ≤ x′ < W,

|Dgt
r (x, y) +Dgt

l (x′, y)| > ∆

|Dgt
l (x′, y) +Dgt

r (x′ +Dgt
l (x′, y), y)| ≤ ∆

|Dgt
l (x′, y)| > |Dgt

r (x, y)|

 (1)

where x′ = x + Dgt
r (x, y), W is the width of the rectified image, and ∆ is

set to 1-pixel disparity. The first condition enforces that the pixel is in field of
view of the other (left) camera; the second condition ensures that the pixel is not
visible in the other camera by checking for failed left-right consistency check; the
final two conditions check that the pixel is occluded by an object that is visible
in both the views (consistency check succeeds) and is in front of the occluded
pixel. Finally, for pixels that are in the set Occr we set Cocc

r (x, y) to be the
product of the confidences of the pixel and the occluder, i.e.,

Cocc
r (x, y) =

{
Cgtr (x, y) · Cgtl (x′, y), if (x, y) ∈ Occr

0, otherwise
(2)

A few examples are shown in Fig. 2. Our conservative criterion for occlusion
confidence ensures that we have few false positives.

2 Implementation Details

In this section, we provide more details about confidence volume fusion, network
architecture, and evaluation with affine fitting.

2.1 Cost Volume and Confidence Volume

In Sec. 4.2 of the main paper, we fuse confidence volume instead of the cost
volume. Here we give more explanation and motivation.
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The commonly used cost volume [9] is a 3D volume with two dimensions
for the image space (H,W ) and one dimension for the disparity space R =
[0, 1, · · · , dmax]. Each voxel (x, y, d) is a floating number indicating the feature
distance if the pixel (x, y) in one view is matched under the given disparity d with
the other view. The distance can be computed using various distance metrics,
such as `1 or `2.

A soft–arg min, which is introduced in Eq. 1 in [9], is used to convert the
cost volume into a disparity map. Specifically, a confidence volume is calculated
as the softmax on the negative cost volume along the disparity dimension, and
output disparity is the sum of disparity hypotheses weighted by the confidence.
The operator to convert cost volume to confidence volume can also be written
as:

Confidence(x, y, d) =
e−Cost(x,y,d)/t∑
d∈R e

−Cost(x,y,d)/t
, (3)

where t controls the sharpness of the softmax and is set to 0.5 in our implementa-
tion. The voxels along the disparity dimension for each (x, y) forms a probability
distribution, i.e.,

∑
d∈R Confidence(x, y, d) = 1, indicating the likelihood of each

disparity proposal in R being correct (i.e. confidence). Therefore, the output
disparity is

D(x, y) =
∑
d∈R

Confidence(x, y, d) · d. (4)
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Fig. 3: Explanation of Volume Sampling. See text for details.

We now explain why it is better to sample confidence volume (Eq. 3) instead
of the cost volume. Besides normalizing the scales of the two cost volumes, they
may produce dramatically different results in some cases.

Fig. 3 illustrates one such case. For simplicity, we drop the image dimension
(H,W ) and only visualize the disparity dimension R for one pixel. On the left, we
show an example of cost volume learned from DP inputs and the corresponding
confidence volume. Note that the confidence is inversely related with the cost.
Since the DC inputs covers larger range of disparity compared to DP, the warping
process in Eq. 3 of the main paper usually samples many points out of the DP
disparity range. In Fig. 3, we demonstrate the case where only one sample falls
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in the valid range of the DP disparity – sampling point with disparity 1. If we
sample cost volume and pad 0 for samples out of range, we obtain a cost volume
shown in (a) on the right. The corresponding confidence volume (according to
Eq. 3) indicates that 1 is a bad disparity hypothesis and all the others are equally
good, which is very inconsistent with the information provided in the original
DP cost volume. In the second case (b), we sample cost volume but pad with a
large value. Now, the disparity hypothesis 1 becomes the best hypothesis (unlike
(a)) but the confidence in 1 is much higher than the original confidence in DP
confidence volume. In contrast, if we sample the confidence volume and pad 0
as shown in (c), the produced confidence volume maintains exactly the same
confidence from DP volume for disparity 1, while the others are set to zero.

2.2 Network Architecture

We provide detailed network architecture in Fig. 4.

2.3 Evaluation with Affine Fitting

In the Sec. 5.4 of the main paper, we compared to dual-pixel based depth es-
timation solution DPNet [6]. Since depth from DP can only be predicted up
to an unknown affine transformation, Garg et al. [6] first estimate the affine
transformation by solving a weighted least squares problem using the ground
truth:

α̂, β̂ = argmin
α,β

∥∥Cgt · ((α+ β ·Draw)−Dgt)
∥∥2 , (5)

where Draw is the network output. Dfit = α̂+β̂ ·Draw is then used for computing
the metrics. Even though Du2Net produces disparity in absolute scale and is free
from this ambiguity, we apply the same post-processing when comparing to the
DPNet for fairness (Du2Net∗ in Tab. 2 of the main paper).

3 More Experiment Results

In this section, we provide more quantitative and qualitative evaluations.
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Fig. 4: Network Architecture. The numbers on convolution layers represent num-
ber of channels, size of filter, stride, and dilation respectively. The number on
the leaky ReLU layer represents the slope for the negative input.
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Conf. Volume
All Pixels Occluded Pixels

MAE RMSE δ>1.25 δ>2 δ>3 MAE RMSE δ>1.25 δ>2 δ>3

DC 1.023 2.502 18.74 10.65 6.32 3.956 6.230 66.33 52.82 40.16
DP+DC (2D) 0.969 2.423 17.37 9.72 5.79 3.718 5.834 65.74 51.55 38.51
DP+DC (C) 0.964 2.372 17.51 9.79 5.80 3.671 5.768 65.49 51.63 38.62

DP+DC (Ours) 0.902 2.252 16.16 8.96 5.26 3.526 5.523 64.98 50.82 37.41

Table 1: Ablation study on volume fusion. We compare different ways of fusing
DP with the DC confidence volume. ‘(2D)’ indicates fusion of the 2D disparity
maps extracted from the two confidence volumes. ‘(C)’ indicates fusing cost
volumes instead of confidence volumes.

3.1 Weighted Metrics

Our ground truth comes with a confidence mask (Sec. 1.2), and we use it to
calculate weighted evaluation metrics.

MAE =

∑
p |D(p)−Dgt(p)| · Cgt(p)∑

p C
gt(p)

, (6)

RMSE =

√∑
p(D(p)−Dgt(p))2 · Cgt(p)∑

p C
gt(p)

, (7)

δ > ε =

∑
p 1(|D(p)−Dgt(p)| > ε) · Cgt(p)∑

p C
gt(p)

, (8)

where D is the predicted disparity, Dgt is the ground truth disparity, Cgt is the
confidence map, 1 is an indicator function which equals 1 if the condition is true
and 0 otherwise, and p is a pixel in the image.

3.2 More Quantitative Ablation Study

In the Sec. 5.3 of the main paper, we showed the quantitative evaluation of
our method under different ablations on all pixels Cgt. We perform the same
comparison on the occluded pixels using Cocc (Sec. 1.3) to show the performance
in occluded regions.

Tab. 1 shows the evaluation of the unrefined disparity (i.e. the output of the
fused volume) under different fusion strategies. Consistent with the conclusion
drawn from all pixels, our method outperforms all the others on the occluded
regions.

Tab. 2 shows the evaluation of the refined disparity (i.e. the output of the
refinement) under different settings. Refinement with DP consistently outper-
form the case without DP on all the metrics. Using only DP is better than using
both under some metrics, which is reasonable since RGB may not be very help-
ful to recover details in the occluded region and may even hurt the valuable
information encoded in DP.
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Refinement
All Pixels Occluded Pixels

MAE RMSE δ>1.25 δ>2 δ>3 MAE RMSE δ>1.25 δ>2 δ>3

RGB 0.838 2.197 14.17 7.74 4.55 2.627 4.866 46.17 33.70 24.18
DP (I) 0.835 2.173 14.25 7.75 4.54 2.518 4.600 46.07 33.25 23.47

DP 0.829 2.184 13.84 7.51 4.45 2.481 4.619 44.87 31.99 22.54
RGB+DP (Ours) 0.817 2.141 13.64 7.33 4.35 2.469 4.564 44.94 32.09 22.47

Table 2: Ablation study on refinement. We compare the different ways of using
DP to refine the best unrefined disparity from the left and show evaluation on the
final disparity. ‘(I)’ indicates that input DP images are warped before computing
features for refinement.

3.3 More Qualitative Ablation Study

We show more qualitative comparison in Fig. 5. Our method fusing DP into
the cost volume (d) significantly improves the quality of the unrefined disparity
compared to the case using only DC (c). Based on this improved unrefined
disparity with less error (d), refinement using both DP and DC (f) can further
improve the object boundary and thin structures compared to the case using
only DC (e).

3.4 Loss Functions

Our loss function is defined on three intermediate disparities in low resolution
and the final disparity in high resolution (Eq. 5 in the main paper). The three
intermediate disparities are the DDP from dual-pixel confidence volume, DDC

from dual-camera confidence volume, and Dunref from the fused confidence vol-
ume, as explained in Fig. 3 and Sec. 4.2 of the main paper. These low resolution
disparities are bilinearly upsampled to the full resolution to compute the loss
with the ground truth. The final disparity is the output of the refinement block
directly in full resolution. The losses on each disparity are weighted by λs. We
tried different combination and found it is important to set λDC larger. The ma-
jor reason is that the correctness of DDC is important to ensure correct affine
transformations such that the DP channels can learn to produce disparity. The
training procedure does not converge if λDC is too small.

We also train our model with a weighted Charbonnier loss [2]:

L(D) =

∑
p(
√

((D(p)−Dgt(p))/c)2 + 1− 1) · Cgt(p)∑
p C

gt(p)
, (9)

where Dgt is the ground truth disparity, Cgt is the per-pixel confidence of the
ground truth and c is a hyper-parameter (scale factor) we set to 2 for disparity
in range [0, 128]. The performance is shown in Tab. 3. Our model achieves better
metrics with Huber loss except the RMSE than using Charbonnier loss [2].

3.5 More Qualitative Comparison to SOTA

We show more qualitative comparison to state-of-the-art stereo and DP based
approaches in Fig. 6, 7, and 8. Compared to other stereo based approaches
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(a) Image (b)GT (c)Dunref (d)Dunref (e)Dref (f)Dref

DC, RGB+DP Du2Net DP+DC,RGB Du2Net

Fig. 5: Ablations of our method. The right camera image (a), ground truth dis-
parity (b) with low confidence disparity in black, Dunref (c) from an ablation
where only the DC input is used for the confidence volume, Dunref (d) from
Du2Net, Dref (e) from an ablation where only the RGB image is used for re-
finement, and Dref (f) from Du2Net. DP input is useful for both the confidence
volume and refinement stages to recover accurate depth for fine structures and
occluded regions.
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Method Loss
All Pixels Occluded Pixels

MAE RMSE δ>1.25 δ>2 δ>3 MAE RMSE δ>1.25 δ>2 δ>3

PSM-Net [4] Huber 0.815 2.289 13.48 7.98 4.97 2.799 5.188 44.59 34.73 26.78
Du2Net Charbonnier 0.817 2.141 13.64 7.33 4.35 2.469 4.564 44.94 32.09 22.47
Du2Net Huber 0.802 2.147 13.21 7.17 4.25 2.396 4.543 42.37 30.62 21.91

Table 3: Performance of our model with different loss functions. Our model
achieves better metrics with Huber loss.

[4, 10] that only take DC as the input, our method performs better at object
boundary and thin structures. Compared to dual-pixel only approach [6], our
method produces significantly better depth for distant areas in the background
while maintaining the foreground details (Fig. 8).

3.6 Analysis of Best and Worst Cases

In Fig. 9 we show representative images from the best (top 3 rows) and the
worst (bottom 3 rows) results for our method as ranked by the MAE metric. As
expected, the method performs very accurately on images with high frequency
details and textured scenes whereas it does worse (along with other methods) in
textureless areas.

3.7 More Results for Applications

We show more examples of computational photography applications. Fig. 10
shows results of synthetic shallow depth-of-field effect using disparity from dif-
ferent models. Our method produces better details for object boundary and thin
structure, which prevents artifacts near the subject boundary.

We also provide more comparisons on the 3D photo [8] in supplementary
video in the project webpage. Again, our more accurate depth minimizes visual
artifacts like unnatural distortion of rigid scene structures and bleeding between
foreground and background.
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(a) Image (b)GT (c)Ours (d) StereoNet (e) PSMNet (f)DPNet

Fig. 6: Qualitative comparison to state-of-the-art stereo and DP based methods.
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(a) Image (b)GT (c)Ours (d) StereoNet (e) PSMNet (f)DPNet

Fig. 7: Qualitative comparison to state-of-the-art stereo and DP based methods.
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(a) Image (b)GT (c)Ours (d) StereoNet (e) PSMNet (f)DPNet

Fig. 8: DPNet (f) performs worse in distant areas compared to methods that take
DC as input ((c), (d), (e)) due to the small baseline between the two dual-pixel
images.
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(a) Image (b)GT (c)Ours (d) StereoNet (e) PSMNet (f)DPNet

Fig. 9: Representative images from our best (top 3 rows) and worst (bottom 3
rows) results, as rated by MAE metric.
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(a) Image (b)Ours (c) StereoNet (d)PSMNet (e)DPNet

Fig. 10: Synthetic shallow depth-of-field results for different methods. Accurate
depth near occlusion boundaries is critical for avoiding artifacts near the subject
boundary.
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