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(a) Dual-camera (DC) input (b) Dual-pixel (DP) input (c) Stereonet (DC input) [26] (d) DPNet (DP input) [14] (e) Du2Net (Ours)

Fig. 1: Du2Net combines dual-camera (DC) and dual-pixel (DP) images to pro-
duce edge-aware disparities with high precision even near occlusion boundaries.
The large vertical DC baseline complements the small horizontal DP baseline to
mitigate the aperture problem (top) and occlusions (bottom).

Abstract. Computational stereo has reached a high level of accuracy,
but degrades in the presence of occlusions, repeated textures, and cor-
respondence errors along edges. We present a novel approach based on
neural networks for depth estimation that combines stereo from dual
cameras with stereo from a dual-pixel sensor, which is increasingly com-
mon on consumer cameras. Our network uses a novel architecture to fuse
these two sources of information and can overcome the above-mentioned
limitations of pure binocular stereo matching. Our method provides a
dense depth map with sharp edges, which is crucial for computational
photography applications like synthetic shallow-depth-of-field or 3D Pho-
tos. Additionally, we avoid the inherent ambiguity due to the aperture
problem in stereo cameras by designing the stereo baseline to be orthog-
onal to the dual-pixel baseline. We present experiments and comparisons
with state-of-the-art approaches to show that our method offers a sub-
stantial improvement over previous works.

Keywords: Dual-Pixels, Stereo Matching, Depth Estimation, Compu-
tational Photography
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1 Introduction

Despite their maturity, modern stereo depth estimation techniques still suffer
from artifacts in occluded areas, around object boundaries and in regions con-
taining edges parallel to the baseline (the so-called aperture problem). These
errors are especially problematic for applications requiring a depth map that is
accurate near object boundaries, such as synthetic shallow depth-of-field or 3D
photos.

While these problems can be mitigated by using more than two cameras, a re-
cent improvement to consumer camera sensors allows us to alleviate them with-
out any extra hardware. Specifically, camera manufacturers have added dual-
pixel (DP) sensors to DSLR and smartphone cameras to assist with focusing.
These sensors work by capturing two views of a scene through the camera’s sin-
gle lens, thereby creating a tiny baseline binocular stereo pair (Fig. 2). Recent
work has shown that it is possible to estimate depth from these dense dual-pixel
sensors [14,47]. Due to the tiny baseline, there are fewer occluded areas between
the views, and as a result the depth from dual-pixels is more accurate near ob-
ject boundaries than the depth from binocular stereo. However, the tiny baseline
also means that the depth quality is worse than stereo at farther distances due
to the quadratic increase in depth error in triangulation-based systems [45].

In this work, we consider a dual-camera (DC) system where one camera has
a dual-pixel sensor, a common setup on recently-released flagship smartphones.
We propose a deep learning solution to estimate depth from both dual-pixels
and dual-cameras. Because depth from dual-cameras and depth from dual-pixels
have complementary errors, such a setup promises to have accurate depth at
both near and far distances and around object boundaries. In addition, in our
setup, the dual-pixel baseline is orthogonal to the dual-camera baseline. This
allows us to estimate depth even in regions where image texture is parallel to
one of the two baselines (Fig. 1). This is usually difficult due to the well known
aperture problem [35].

One key problem that prevents the trivial solution of multi-view stereo match-
ing from working is a fundamental affine ambiguity in the depth estimated from
dual-pixels [14]. This is because disparity is related to inverse depth via an affine
transformation that depends on the camera’s focus distance, focal length and
aperture size, which are often unknown or inaccurately recorded.

To address this issue, we propose an end-to-end solution that uses two sep-
arate low resolution learned confidence volumes, i.e. the softmax of a negative
cost volume, to compute disparity maps from dual-cameras and dual-pixels inde-
pendently. We then fit an affine transformation between the two disparity maps
and use it to resample the dual-pixels’ confidence volume, so that it is in the
same space as the dual-cameras’ confidence volume. The two are then fused to
estimate a low resolution disparity map. A final edge-aware refinement [26] that
leverages features computed from dual-pixels is then used to obtain the final
high resolution disparity map.

To train and evaluate our approach, we capture a new dataset using a capture
rig containing five synchronized Google Pixel 4 smartphones. Each phone has
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two cameras and each capture consists of ten RGB images (two per phone) and
the corresponding dual-pixel data from one camera on each phone. We use multi-
view stereo techniques to estimate ground truth disparity using all ten views.
We plan to release this dataset.

Via extensive experiments and comparisons with state-of-the-art approaches,
we show that our solution effectively leverages both dual-cameras and dual-
pixels. We additionally show applications in computational photography where
precise edges and dense disparity maps are the key for compelling results.

2 Related Work

Stereo matching is a fundamental problem in computer vision and is often used
in triangulation systems to estimate depth for various applications such as com-
putational photography [47], autonomous driving [34], robotics [11], augmented
and virtual reality [38] and volumetric capture [16]. Traditionally, stereo match-
ing pipelines [42] follow these main steps: matching cost computation, cost ag-
gregation, and disparity optimization, often followed by a disparity refinement
(post-processing) step. This problem has been studied for over four decades [31]
and we refer the reader to [17,42,43] for a survey of traditional techniques.

Recent classical approaches aim at improving the disparity correspondence
search by using either global [3,12,28,29] or local [4,9,46] optimization schemes.
These methods usually rely on hand-crafted descriptors [4,46] or learned shallow
binary features [9, 10] followed by sequential propagation steps [4, 10] or fast
parallel approximated CRF inference [9, 46]. However, these methods cannot
compete with recent deep learning-based methods that use end-to-end training
[5, 6, 8, 25, 26, 30, 44, 48]. Such approaches were introduced by [23, 32], who used
encoder-decoder networks for the problems of disparity and flow estimation.

Kendall et al. [25], inspired by classical methods, employed a model architec-
ture that constructs a full cost-volume with 3D convolutions as an intermediate
stage and infers the final disparity through a soft-arg min function. Khamis et
al. [26] extended this concept by using a learned edge aware refinement step
as the final stage of the model to reduce computational cost. More recently,
PSMNet [6] used a multi-scale pooling approach to improve the accuracy of the
predicted disparities. Finally [49], inspired by [21], used a semi-global matching
approach to replace the expensive 3D convolutions.

Other end-to-end approaches use multiple iterative refinements to converge
to a final disparity solution. Gidaris et al. [15] propose a generic architecture
for labeling problems, such as depth estimation, that is trained end-to-end to
predict and refine the output. Pang et al. [39] propose a cascaded approach to
learn the depth residual from an initial estimate. Despite this progress, stereo
depth estimation systems still suffer from limited precision in occlusion bound-
aries, imprecise edges, errors in areas with repeated textures, and the aperture
problem. The aperture problem can be addressed with two orthogonal dual cam-
era pairs [33]. Occlusions can be reduced by using trinocular stereo [36]. Both
of these approaches require additional hardware and more complex calibration.
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(c) DP Optics for Scene 1 (d) DP Optics for Scene 2
Focal Plane Lens Sensor DP data Image

View 1
View 2

Focal Plane Lens Sensor
(a) Regular Sensor (b) DP Sensor

DP data Image

Fig. 2: In a regular Bayer sensor, each pixel has a microlens on top to collect more
light (a). Dual-pixel sensors split some of the pixels underneath the microlens into
two halves; the green pixels in (b). The two dual-pixel views get their light from
different halves of the aperture, resulting in a slight depth-dependent disparity
between the views (c). Different scenes can produce the same dual-pixel images
if the focus distance changes ((c) vs. (d)). This is a fundamental ambiguity of
dual-pixel sensors. (Reproduced with permission from Garg et al. [14].)

In this work, we combine bincocular stereo with a dual-pixel sensor, a hardware
available in most modern smartphone and DSLR cameras where they are used
for autofocus.

Recently, a handful of techniques have been proposed to recover depth from
a single camera using dual-pixels [14,24,40,47]. Dual-pixels are essentially a two-
view light field [37], providing two slightly different views of the scene. These two
views can be approximated as a stereo pair except for a fundamental ambiguity
identified by [14] discussed in the introduction. In addition to depth estimation,
dual-pixels have been used for dereflection [41].

3 Dual-Pixel Sensors

Dual-pixel sensors work by splitting each pixel in half, such that the left half
integrates light over the right half of the aperture and the right half integrates
light over the left half of the aperture. Because the two half pixels see light from
different halves of the aperture, they form a kind of “stereo pair”, whose centers
of projection are in the centers of each half aperture. Since the two half pixel
images account for all the light going through the aperture, when they are added
together, the full normal image is recovered.

These sensors are becoming increasingly common in smartphone and DSLR
cameras because they assist in auto-focus. The reason for this is that the zero-
disparity distance corresponds exactly to the image being in-focus (e.g. the blue
point in Fig. 2(c)) and disparity is exactly proportional to how much the lens
needs to be moved to make the image in-focus. This property also implies that
unlike rectified stereo image pairs, the range of disparities can be both negative
and positive for DP data.

In addition to this dependence on focus distance, dual-pixels have a number
of other key differences from stereo cameras. On the positive side, the dual-pixel
views are perfectly synchronized and have the same white balance, exposure
and focus, making matching easier. In addition, they are perfectly rectified. This
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means that the baseline is perfectly horizontal for a sensor whose dual-pixels are
split horizontally as in Fig. 2(b). Another advantage of this perfect rectification
is that, dual-pixel sensors are not affected by rolling shutter or optical image
stabilization [7], which shifts the principal point and center of projection of a
camera. While we need to calibrate for this with stereo cameras, it does not
cause problems for dual-pixel images.

Like in a stereo pair, the small baseline of dual-pixel images means that depth
estimation at large distances is difficult. Please see the supplementary material
for a visualization of the tiny parallax between the DP images. However, it also
means there are fewer occlusions and it is possible to get accurate depth near
occlusion boundaries in the image. This suggests that a system that combines
dual-cameras and dual-pixels could recover depth at short distances and in oc-
cluded areas from dual-pixels and depth at larger distances from dual-cameras.

Another difference between dual-pixels and traditional stereo cameras is the
interaction between defocus and disparity [40]. Specifically, the amount of defo-
cus is exactly proportional to the disparity between the views. This means that
a learned model that makes use of dual-pixels could make use of defocus as well
to resolve ambiguities that typically fool matching-based approaches, such as
repeated textures.

Finally, we elaborate on the affine ambiguity of depth predictions discussed
in the introduction (Fig. 2(c-d)). This happens because the mapping between
disparity and depth depends on focus distance which is often inaccurate or un-
known in cheap smartphone camera modules. Garg et al. [14] used the paraxial
and thin-lens approximation to show thatDDP (x, y) = α+β/Z(x,y), where Z(x, y)
is the depth for pixel x, y; DDP (x, y) is the dual-pixel disparity at (x, y), and α
and β are constants that depend on the aperture, point spread function, and the
focus distance of the lens. Because these can be difficult to determine, inverse
depth can be estimated only up to an unknown affine transform.

If there is a second camera in addition to the camera with dual-pixels, such
as in our setup, the stereo disparity DDC of the dual-cameras is bf/Z [45] where
b is the baseline and f is the focal length. From this, it follows that DDC and
DDP are also related via an affine transform

DDC(x, y) = α′ + β′DDP (x, y) (1)

We use this observation in our network architecture to effectively integrate
stereo and dual-pixel cues. Note that no further rectification is required between
dual-pixel and stereo input since the dual-pixels naturally align with one of the
camera in stereo.

4 Fusing Dual-Pixels and Dual-Cameras

We describe our deep learning model to predict disparity from both dual-camera
and dual-pixel data (Fig. 3). The input to our system is a pair of rectified dual-
camera (DC) images, Il and Ir corresponding to the left and the right cameras,
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Fig. 3: Overview of Du2Net. Top: two disparity maps are separately inferred
from the dual-camera and the dual-pixel branches. An affine transformation is
fit between them and used to resample the dual-pixel confidence volume. It is
then fused with the dual-camera volume and they are together used to infer the
unrefined disparity. An edge-aware refinement step uses the dual-pixel features
to predict the final disparity. Bottom: details of the volume fusion and refinement
step. See text for more details.

and a pair of dual-pixel (DP) images from the right camera sensor, IDPt and
IDPb corresponding to the top and bottom half-pixels on the sensor.

At capture time, the DP images are perfectly aligned with the right DC im-
age. However, after stereo rectification, the left and right dual-camera images
are respectively warped by spatial homography transformations Wl(x, y) and
Wr(x, y), which remaps every pixel to new coordinates in both images. As a
result, the right image is no longer aligned with the dual-pixel images. In addi-
tion, as explained in Section 3, the two disparity maps coming from DC and DP
respectively, are related via an affine transformation. Our method takes both of
these issues into account when fusing information from the two sources.

Our model uses two building blocks from other state-of-the-art stereo match-
ing architectures. Specifically, a cost volume [6, 25, 26] and refinement stages
[26, 39]. Our main contributions are a method to fuse the confidence volumes
(the softmax of the negative cost volume) computed from dual-cameras and
dual-pixels, and to show the effectiveness of dual-pixels for refinement. Note
that the proposed scheme can be used to give any stereo matching method that
uses a cost-volume or that has a refinement stage, the benefits of the additional
information in dual-pixels.

Our model consists of three stages, (a) extracting features and building cost
volumes from DP and DC inputs independently, (b) building a fused confidence
volume by fusing the DP and DC confidence volumes while accounting for the
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aforementioned spatial warp and affine ambiguity, and (c) a refinement stage
that refines the coarse disparity from the fused confidence volume using features
computed from the DP and DC images. We will now explain these in detail.

4.1 Feature Extraction and Cost Volumes

Dual-Camera Cost Volume. Inspired by [26], we create features that are 1/8
of the spatial resolution in each axis of the original DC images. We do this by
running three 2D convolutions with stride 2 followed by six residual blocks [19].
Each convolutional layer uses a kernel of size 3×3 with 32 channels, followed by
leaky ReLU activations. The resulting feature map from the left image is warped
to the right feature map using multiple disparity hypotheses d ∈ [0, 16]. For each
hypothesis, we calculate the distance between the two feature maps. Unlike [26],
we use the `1 distance instead of subtracting the features since this increases the
stability of training.

Dual-Pixel Cost Volume. While we can align the dual-camera features from the
two cameras by warping them according to disparity, we cannot do the same
for dual-pixel images due to the interaction between dual-pixel disparity and
defocus [40]. The two DP images will not align even after warping due to the
different defocus blurs. Hence, instead of warping and subtracting the dual-
pixel features, we concatenate the two DP images and implicitly produce a cost
volume. This also allows the model to use the depth cues from defocus blur since
the amount of defocus is proportional to depth. To do so, we feed the DP images
into a 2D network with six residual blocks. Each layer consists of convolutions of
size 3×3 with 32 channels followed by leaky ReLU activations. A 2D convolution
is attached to the end to produce a feature map with Nd channels, where Nd = 17
is the number of desired disparity hypotheses. We then reshape the feature map
and convert it to a 3D volume by expanding the final dimension.

4.2 Fused Confidence Volume

It is not straightforward to merge the DP and DC cost volumes due to the
rectification warp Wr between the DP and DC images and the affine ambiguity
in DP disparity (Sec 3). In addition, the costs in the two volumes may be scaled
differently since they are predicted from different network layers.

We first normalize the two cost volumes to the range [0, 1] by applying soft-
max to the negative cost volume along the disparity dimension. We call the
resulting tensors confidence volumes. To handle the affine ambiguity, we first
predict disparity maps DDP and DDC from the two confidence volumes using a
soft–arg max operator [25], and fit an affine transformation between the two by
solving a Tikhonov-regularized least squares problem that biases the solution to
be close to α = 0, β = 1:

α̂, β̂ = argmin
α,β

‖(α+ β ·DDP )−DDC‖2 + γ ‖β − 1‖2 + γ ‖α‖2 , (2)
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where γ = 0.1 is a regularization constant. Then, we use the known rectification
warp Wr(x, y) = [W x

r (x, y),W y
r (x, y)] and the estimated affine transformation

to warp the DP confidence volume into the DC space:

CDPwarp(x, y, z) = CDP
(
W x
r (x, y),W y

r (x, y), (z − α̂)/β̂
)
, (3)

where CDP is the confidence volume built from DP images. The 3D warping
uses differentiable bilinear interpolation and zero padding.

The warped DP confidence volume CDPwarp is now aligned with the DC con-
fidence volume. We stack these together to form a 4D tensor that is fused into
a 3D confidence volume by a shallow network consisting of three layers of 3D
convolutions with leaky ReLU activations and a softmax at the end. Finally, the
fused volume is converted into a disparity map Dunref using a soft–arg max.

4.3 Disparity Refinement

The next step is to refine the low resolution disparity Dunref . Khamis et al. [26]
use the RGB image as the guide image to upsample the disparity while applying a
learned residual to improve edges and minimize the final error. A straightforward
extension of [26] is to warp the DP images using the rectification warp Wr and
use them along with the RGB image as the guide image. However, we find that
this yields inferior results compared to our method, presumably because warping
and resampling makes it harder to extract disparity cues from DP images.

Instead, we extract features from the input DP images and then warp them
using Wr. This way, the model can easily extract disparity cues from the per-
fectly rectified DP image pair. The warped features are concatenated with the
features extracted from the right RGB image and the unrefined disparity Dunref .
These are fed into six residual blocks, with 3 × 3 convolutions followed by
a leaky ReLU activation, to predict a residual R. The final output is set to
Dref = Dunref +R.

4.4 Loss Function

To train our network we use a weighted Huber loss [22]:

L(D) =

∑
pH (D(p)−Dgt(p), δ) · Cgt(p)∑

p C
gt(p)

, (4)

where Dgt is the ground truth disparity, Cgt is the per-pixel confidence of the
ground truth, and δ is the switching point between the quadratic and the linear
function, which is set to 1 for disparity in range [0, 128]. The overall loss is a
weighted sum of four terms:

Ltotal = λDPL(α̂+β̂ ·DDP )+λDCL(DDC)+λunrefL(Dunref )+λrefL(Dref ), (5)

where λDC is set to 10 and the other weights are set to 1.
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5 Evaluation

In this section, we perform extensive experiments to evaluate our model. We
conduct an ablation study to show the effectiveness of our design choices. We
also compare to other stereo and dual-pixel methods. We focus our experiments
on thin structures, edges and occlusion boundaries, to show the effectiveness of
the complementary information coming from DP and DC data. For quantitative
evaluations we report MAE, RMSE and the bad δ metric, i.e. the percentage of
pixels with disparity error greater than δ. These are weighted by the ground-
truth confidence. See the supplementary material for details.

5.1 Data Collection

We collect a new data set using the Google Pixel 4 smartphone, which has a
dual camera system consisting of a main camera with a dual-pixel sensor and
a regular telephoto camera. We refer to the main camera as the right camera
and the telephoto camera as the left camera. We use a data acquisition set up
similar to [14], i.e., a capture rig consisting of 5 phones (Fig. 4a) synchronized
with [2]. Structure from motion [18] and multi-view stereo techniques are used
to generate depth maps (Supplementary Material Sec. 1.2). Similar to [14], we
also compute a per-pixel confidence for the depth by checking for depth coher-
ence with neighboring views. The center phone in the rig is used for training
and evaluation since its depth quality is higher than other views especially for
occluded regions.

(a) Capture Rig (b) DP Views (c) Right View (d) Left View (e) GT (f) GT (Occ.)

Fig. 4: Our capture rig (a) similar to [14] but with phones that can capture both
dual-pixel (b) and dual-camera (c, d) data. The left and right views are rectified,
and the ground truth disparity (e) corresponding to the right view is computed
using multi-view stereo techniques on all 10 views captured by the rig. Low
confidence depth samples are rendered in black. The multitude of views ensures
that we have good quality depth in regions that are occluded in the left view.
(f) shows the GT depth masked to regions that are occluded in the left view.

We rectify the stereo images from the center phone using estimated camera
poses [13]. The estimated depth is converted to disparity and then rectified along
with confidences to yield Dgt

l , C
gt
l and Dgt

r , C
gt
r for the left and right images

respectively. As described in Section 4, dual-pixel images from the main (right)
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DP in Confidence Volume

Conf. Volume MAE RMSE δ>2 δ>3

DC 1.023 2.502 10.65 6.32
DP+DC (2D) 0.969 2.423 9.72 5.79
DP+DC (C) 0.964 2.372 9.79 5.80

DP+DC (Ours) 0.889 2.263 8.78 5.18

DP in Refinement

Refinement MAE RMSE δ>2 δ>3

RGB 0.838 2.197 7.74 4.55
DP (I) 0.835 2.173 7.75 4.54

DP 0.829 2.184 7.51 4.45
RGB+DP (Ours) 0.802 2.147 7.17 4.25

Table 1: Ablation Study. Left: We compare different ways of fusing DP with
the DC confidence volume. ‘(2D)’ indicates fusion of the 2D disparity maps
extracted from the two confidence volumes. ‘(C)’ indicates fusing cost volumes
instead of confidence volumes. Right: We compare the different ways of using DP
to refine the best unrefined disparity from the left and show evaluation on the
final disparity. ‘(I)’ indicates that input DP images are warped before computing
features for refinement.

camera are not rectified or warped. Instead, we store the warp map Wr that is
needed to warp and align the DP images with the rectified right camera image
(see Section 4). In addition, to evaluate the quality of the estimated disparity
in regions that are visible in only one of the cameras in the stereo pair, we also
compute Cocc

i for i ∈ l, r, i.e., a per-pixel confidence indicating that the ground-
truth disparity is correct but the pixel is occluded in the other camera. In total,
we collect 3308 training examples and 1077 testing examples. Please refer to
supplementary materials for details of the calculation of Cocc

i , data collection
and ground truth calculation.

5.2 Training Scheme

We use Tensorflow [1] to implement the network and train using Adam [27] for
2 million iterations with a batch size of 1. The learning rate is set to 3 × 10−5

and then reduced to 3× 10−6 after 1.5 million iterations. Training takes roughly
16 hours using 8 Tesla V100 GPUs. Inputs to the network Il, Ir, and Wr are
resized to match the resolution of the predicted and the ground truth disparity,
i.e., 448× 560. DP images IDPt and IDPb are of size 1000× 1250.

5.3 Ablation Study

We evaluate the effect of each component of the model. In particular we focus
on the impact of dual-pixels on the fused volume and the refinement stage. We
provide quantitative comparisons (Tab. 1) and qualitative comparisons (Fig. 5).

Dual-pixels in the confidence volume. Tab. 1 (left) shows the error of the unre-
fined disparity Dunref using different fusing strategies for the cost volume. Our
method of merging the DP and DC volumes (DP+DC) significantly outperforms
using only the DC cost volume. We also compare to fusing the 2D disparity maps
instead of the the 3D confidence volumes. Specifically, we concatenate DDP and
DDC after the affine transformation and use a 2D neural network with six resid-
ual blocks to predict Dunref . This is worse than our method according to all
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(a) Image (b)GT (c)Dunref (d)Dunref (e)Dref (f)Dref

DC, RGB+DP Du2Net DP+DC,RGB Du2Net

Fig. 5: Ablations of our method. The right camera image (a), ground truth dis-
parity (b) with low confidence disparity in black, Dunref (c) from an ablation
where only the DC input is used for the confidence volume, Dunref (d) from
Du2Net, Dref (e) from an ablation where only the RGB image is used for re-
finement, and Dref (f) from Du2Net. DP input is useful for both the confidence
volume and refinement stages to recover accurate depth for fine structures and
occluded regions.

metrics (DP+DC (2D) vs DP+DC). Finally, we evaluate fusing cost volumes
instead of confidence volumes. This, DP+DC (C), is also inferior to DP+DC.

Qualitative comparisons are shown in Fig. 5 (c) and (d). Compared to a DC
only cost volume (c), fusing DP into the cost volume (d) adds more details to
the unrefined disparity and prevents errors at object boundaries. This is critical
for getting high quality disparities since the refinement is only able to make local
adjustments to the disparity and cannot fix large errors.

Dual-pixels in refinement. We show that our method of using dual-pixels in the
refinement stage is better than several baselines (Tab. 1 (right)). We use the fused
DP + DC confidence volume for all cases and extract RGB and DP features for
refinement using networks with the same capacity for a fair comparison. Using
DP for refinement is better than just using the right RGB image. However,
results are best when both are used (RGB+DP). Notably, if the DP is warped
before feature extraction (instead of after), performance (DP (I) in Tab. 1) is
not better than using only the RGB image. This suggests that DP cues are not
effective after warping, and it is important to extract features before warping.

Qualitative comparisons are shown in Fig. 5 (e) and (f). While both methods
use DP and DC to compute the unrefined disparity, (e) uses only the right RGB
image for refinement, and (f) uses RGB and DP for refinement. Even though
DP increases the quality of the unrefined disparity, using it during refinement
further improves depth quality at thin structures and near object boundaries.
This indicates that it is important to use DP for both the cost volume and the
refinement to achieve the best performance.
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Method Input
All Pixels Occluded Pixels

MAE RMSE δ>2 δ>3 MAE RMSE δ>2 δ>3

GA-Net [49] DC 1.001 2.425 9.31 6.09 6.068 8.386 69.81 60.07
PSM-Net [6] DC 0.815 2.289 7.98 4.97 2.799 5.188 34.73 26.78

StereoNet [26] DC 0.935 2.432 9.07 5.41 3.123 5.632 38.13 28.49
Du2Net(ours) DC + DP 0.802 2.147 7.17 4.25 2.396 4.543 30.62 21.91

DPNet* [14] DP 1.090 1.989 12.60 5.80 2.594 4.307 38.14 26.18
Du2Net* (ours) DC + DP 0.746 1.825 6.63 3.63 2.352 4.373 32.65 21.77

Table 2: Quantitative comparisons to the state-of-the-art. Note how the proposed
approach substantially outperforms all the competitors in all and occluded re-
gions. ‘*’ indicates a final affine transformation applied to the output disparity
and the best results are highlighted separately (see text for details).

5.4 Comparison to State-of-the-art Methods

We compare to other stereo and dual-pixel depth estimation methods (Tab. 2).
All methods are trained on our data using code provided by the authors. We mod-
ified the original loss functions to use the confidence maps Cgtr from our dataset
in the same way that these are used in our method (as a per pixel weight).
Additionally, for the stereo methods we compare to, we set the maximum dis-
parity range to 128. The baseline methods were trained until convergence on the
test set error. We used the hyper-parameters and training strategies (including
annealing schedules for learning rates) provided in the implementations.

For stereo baselines, we compare to StereoNet [26] which is similar to our
model with only the DC input, PSMNet [6] and GANet [49]. PSMNet [6] uses
multi-scale feature extraction and cost volumes, and GANet [49] uses a sophisti-
cated semi-global aggregation [49]. In Tab. 2, we report quantitative results. Our
model uses a low-resolution cost volume and a refinement stage, with a run-time
comparable with StereoNet, while achieving accuracy higher than more compu-
tationally expensive models, such as PSMNet (which uses 25 3D convolutional
layers as opposed to our 8) consistently over all the evaluation metrics.

For DP input baselines, DPNet [14] predicts disparity up to an unknown
affine transformation. To handle this, like [14], we find the best fit (according
to MSE) affine transformation between the prediction and the ground truth
and transform the prediction to compute the metrics. For a fair comparison, we
apply the same post processing to our method (Du2Net* in Tab. 2), showing it
consistently outperforms DPNet.

As mentioned in Sec. 5.1, we also compute an occlusion mask Cocc
r and eval-

uate the methods only on these pixels. The results are reported in Tab. 2 under
“Occluded pixels”. Our method outperforms the other competitors by a sub-
stantial margin in those areas showing the advantage of small baseline DP data.

Qualitative comparisons are provided in Fig. 6. Note how we better capture
fine details and small structures, while correctly inferring disparity near occlu-
sion boundaries. The orthogonal baselines of the dual-pixels and dual-cameras
also helps mitigate the aperture problem and issues due to repeated textures.
Additional results are available in the supplementary material.



Du2Net: Learning Depth Estimation from Dual-Cameras and Dual-Pixels 13

(a) Image (b)GT (c)Ours (d) StereoNet (e) PSMNet (f)DPNet

Fig. 6: Qualitative comparison to the state-of-the-art. Right camera image (a)
from our test set, ground truth disparity with low confidence disparity in black
(b), and results from our method (c), stereo only methods StereoNet [26] (d)
and PSMNet [6] (e), and DP only method DPNet [14] (f). Stereo only methods
fail for vertical structures due to the aperture problem, e.g., in the second image.
They also fail in regions with fine structures and occlusions, e.g., in the first three
images. StereoNet fails on the last image potentially due to repeated texture.
DPNet’s accuracy falls quickly with distance due to the small dual-pixel baseline.
Our method overcomes these problems by fusing the two cues.

5.5 Applications in Computational Photography

Predicting accurate disparities, hence depth, is crucial for many applications in
computational photography. These applications usually require accurate depth
for fine structures and near occlusion boundaries. Fig. 7 and 8 show how our
more accurate depth leads to fewer artifacts when used to produce synthetic
shallow depth-of-field images and 3D photos [20] respectively.

6 Discussion

We presented the first method to combine dual-camera and dual-pixel data. The
inherent affine ambiguity of disparity computed from dual-pixel images prevents
a straightforward integration of the two modalities. Therefore, we proposed a
novel solution that resamples the confidence volume computed from dual-pixels
and concatenates it with the dual-camera volume. A refinement stage leverages
dual-pixels to infer the final disparity map. We show the effectiveness of the
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(a) Image (c)Ours (d) StereoNet [26] (e) PSMNet [6] (f)DPNet [14]

Fig. 7: Synthetic shallow depth-of-field results for different methods. Top: Accu-
rate depth near occlusion boundaries is critical for avoiding artifacts near the
subject boundary. Bottom: DPNet [14] is unable to resolve the small depth dif-
ference between the flower and the twigs in the background. As a result, parts
of the background are incorrectly sharp.

(a) Image (c)Ours (d) StereoNet [26] (e) PSMNet [6] (f)DPNet [14]

Fig. 8: 3D photos results [20]. Novel views of the scene are rendered by warping
the image according to the estimated depth to new camera positions. Depth
errors lead to unnatural distortion of rigid scene structures in the novel views.

proposed solution with experiments, comparisons to the state-of-the-art and ap-
plications. Our dataset will be released publicly and we hope it can advance the
field. While the orthogonality of the baselines allows us to avoid the aperture
problem, our method doesn’t work on textureless regions. Perhaps this could be
handled by combining information from additional modalities like active depth
sensors. Another interesting direction for future work would be to consider dual-
camera pairs where both cameras have dual-pixels.
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