
1

Appendix for: Transforming and Projecting Images into
Class-conditional Generative Networks

The experiments in the appendix were computed on a smaller subset of ImageNet
images and are consistent within each other.

A Training and run-time details

For computation, we use a single NVIDIA V100 GPU. The run-time below is
with respect to a single GPU. We use a total of 18 seeds in our main paper.

• ADAM: z ∼ N (0, I) and optimized with ADAM. We optimize the latent
vector for 500 iterations, roughly taking 5 minutes to invert a single image.
We observed sharing momentum across random seeds can hurt performance,
and we disentangle them in our runs. Furthermore, increasing the number of
iterations does not significantly improve performance. This is the optimizer
used in Image2StyleGAN [1].

• L-BFGS: z ∼ N (0, I), and optimized using L-BFGS with Wolfe line-search.
We use the PyTorch implementation [7] to optimize our latent vector for 500
iterations. We use the Wolfe line search with an initial learning rate set to 0.1.
L-BFGS has an average run time of 5 minutes. This is the optimizer used in
iGAN [14].

• Encoder: We follow the encoder-based initialization methods [14, 3] to train
our encoder network on 10 million generated images, which took roughly 5 days
to train. The encoder network was trained in a class-conditional manner, where
the class information was fed into the network through the normalization lay-
ers [10]. We tried using the ImageNet pre-trained model to initialize the weights
but found it to perform worse. It takes less than 1 second to run the encoder
but requires additional gradient descent optimization steps for a reasonable re-
sult. We observed using an encoder still suffers the same problem as gradient-
based methods and slightly improves the results. For our baseline (Encoder +
ADAM), we still run ADAM for 500 iterations.

• CMA: z is optimized using CMA. We use the python implementation of
CMA [4]. For CMA-only optimization, we use 300 iterations. For CMA+ADAM,
we use 100 CMA iterations and 500 ADAM updates. It takes roughly 0.2 sec-
onds per CMA update.

• BasinCMA: z is optimized by alternating CMA and ADAM updates. We
use the same CMA implementation discussed above with 30 updates. For each
update iteration, we evaluate after taking 30 gradient steps. The run-time is
roughly 10 minutes per image. Increasing the number of updates and gradient
descent steps does improve performance, see Figure 15.

• Transformation: Transformation parameter φ is optimized by alternating
CMA updates on φ and ADAM updates on z. We initialize the mean of the

2

Target BaselineMask Ours Blended Target BaselineMask Ours Blended

Fig. 11. Additional results: Comparison between ADAM and our final method. Our
method is optimized using BasinCMA, and spatial and color transformation. The re-
sults shown above are not fine-tuned.

CMA using the statistics of generative images, as discussed in Section 3.4. We
optimize for 30 iterations, where CMA is updated after 30 gradient updates
on z, c. Optimizing for transformation adds an additional 5 minutes.

• Encoder: z is initialized with the output of the encoder. To generate variations
in seeds, we add a Gaussian noise with a variance of 0.5. For BasinCMA, the
mean of the CMA distribution is initialized with the output of the encoder.

• Fine-tuning: We fine-tune the generative model using ADAM with a learning
rate of 10−4 until the reconstruction loss falls below 0.1. We use the regular-
ization weight of 103, and we fix the batch-norm statistics during fine-tuning.
The whole process takes roughly 1 minute.

3

0 100 200 300 400 500
Optimization steps

0.50

0.55

0.60

0.65

0.70

LP
IP

S
p

er
ce

p
tu

al
 lo

ss

QORandomSearch
SQPCMA
MultiScaleCMA
NoisyBandit
NoisyDE
DE
chainCMAPowell
Powell
TwoPointsDE
cGA
ASCMA2PDEthird
ES
TBPSA
PSO
CMA
TripleCMA

Fig. 12. Gradient-free optimizers: Ex-
periments with various gradient-free opti-
mizers. We use the implementations from
Rapin and Teytaud [9]. The legend and the
color are sorted by performance.

0 200 400 600 800 1000 1200
Optimization steps

0.50

0.55

0.60

0.65

0.70

LP
IP

S
p

er
ce

p
tu

al
 lo

ss

DiagonalCMA
CMA
TripleCMA
MultiCMA

Fig. 13. Basin-CMA variants: Hybrid
optimization with different CMA variants.
We extended upon the implementations
from Rapin and Teytaud [9]. All the CMA
variants lead to similar results.

B Weighted Perceptual Loss

We formulate the weighted LPIPS loss discussed in Section 3.2. Given an input
image y, a generated image ŷ, we extract the image features from a pre-trained
model to compute the loss. The features are extracted from pre-specified L con-
volutional layers [13]. We denote the intermediate feature extractor for layer
l ∈ L as F l(·). The features extracted from a real image y can be written as
F l(y) ∈ RHl×Wl×Cl and similarly for ŷ. A feature vector at a particular position
is written as F l

hw(·) ∈ RCl . LPIPS also provides a per-layer linear weighting

wl ∈ RCl
+ to accentuate channels that are more “perceptual”. To weight the fea-

tures spatially, we bilinearly resize the mask to match the spatial dimensions of
each layer ml ∈ [0, 1]Hl×Wl . Then the spatially weighted loss for LPIPS can be
written as:

LmLPIPS(y, ŷ,m) =
∑
l∈L

1

M l

∑
h,w

ml
hw‖wl � (F l

hw(y)− F̂ l
hw(ŷ))‖22 (1)

Here � indicates elementwise multiplication in the channel direction and M l

is the sum of all elements in the mask.

C Additional results

We provide additional results for our method without fine-tuning in Figure 11.
Our method is optimized using BasinCMA with spatial and color transformation.
We provide the ADAM baseline along with our blended result using Poisson
blending [8].

4

Fig. 14. Class vector t-SNE: The t-
SNE embedding of the optimized class
vector after optimization. The color rep-
resents the class and the circles with black
border are the original classes.

0 20 40 60 80 100
Number of CMA Update

0

20

40

60

80

100

N
um

b
er

 o
f

A
D

A
M

 u
p

d
at

es
 p

er
 C

M
A

 u
p

d
at

e

0.80

0.66

0.58

0.56

0.53

0.75

0.52

0.46

0.40

0.69

0.41

0.30

0.63

0.34

0.58

Fig. 15. BasinCMA update ablation:
We plot the VGG L-PIPS score when we
vary the number of CMA updates (x-axis)
and the number of ADAM updates (y-
axis). Lower is better.

D Additional Analysis

Perceptual study. We verify the quality of the projected results with a per-
ceptual study on edited projections. We fine-tune each projection to the same
reconstruction quality across methods and apply edits to the latent variable
z. We show each image to an Amazon Mechanical Turker for 1 second and ask
whether the edited image is real or fake, similar to [12]. Our method (BasinCMA
+ Transform) achieves 26% marked as real, while the baselines achieve 22% for
ADAM, 23% for ADAM + Transform, and 25% for BasinCMA. This indicates
that our design choices, adding transforms and choice of optimization algorithm,
produces inversions that better enable downstream editing.

Inner-outer optimization steps. Our optimization method maintains a CMA
distribution of z in the outer loop and is sampled to be optimized in the inner
loop with gradient descent. Here the outer loop is the number of CMA updates,
and the inner loop is the number of gradient descent updates to be applied before
applying the CMA update. In Figure 15 we ablate the number of optimization
steps and observed having the right balance of 1 : 1 ratio between CMA and gra-
dient updates leads to the best result. The performance in the figure is mapped
by color, with blue indicating the best and red indicating the worst. Although
using 50 CMA update with 50 ADAM update performs the best, it requires
more than 20-minutes to project a single image. We found 30 CMA updates and
30 gradient updates to be a sweet spot for run-time and image quality and is
used in all our experiments. We observed the same trend when optimizing for
the transformation.

Speeding up transformation search. Optimizing for transformation re-
quires the model to quickly search over z and c given the sampled transfor-
mation F . Here z and c are reinitialized at the beginning of the CMA iteration.

5

Decreasing regularization

Ed
its

O
rig

in
al

105 0

Fig. 16. How fine-tuning affects editing: We demonstrate how varying the regular-
ization weight effects the edit-ability of the projected image. Images on the top are the
original fine-tuned images with varying regularization weight, and the corresponding
images below are class edited results. Decreasing the regularization weight allows us to
fit the original image better, but introduces more editing artifacts.

We observed that initializing z by re-using the statistics from the previous it-
eration can speed up optimization by requiring fewer gradient updates. After
thorough testing, we found that sampling from a variance-scaled multivariate
Gaussian centered around the average of the previous iteration to work the best:
{zt+1

i }ni=1 ∼ N (1
n

∑n
i=1 zti, 0.5 · I), where z0 is zero-centered and t is indicates

the CMA iteration.

Encoder networks. Bau et al. [2] proposed an approach to efficiently train a
model-specific encoder E to predict z given a generated image y, E(y) = ẑ. The
encoder network is trained only on generated images, and therefore projecting
real images often lead to incorrect predictions and require further optimization.
Although initializing the optimization with the encoder does not lead to better
results, we found that the optimization can converge 20% faster for gradient
optimization and 40% faster for hybrid-optimization when z ∼ N (E(z), 0.5 · I).

Class-vector embedding. Optimizing for the class embedding allows the
model to better fit the image into the generative model. We provide visual-
ization of optimized class embedding using t-SNE in Figure 14. The classes are
mapped by color and the original classes have black border. We observed that
similar classes are embedded closer and class cross-overs are more common dur-
ing optimization.

Gradient-free methods. We experimented with various gradient-free opti-
mization methods using the Nevergrad library [9] in Figure 12. With the default
optimization hyper-parameters, we found that CMA and its variants to perform

6

Original Ours (best) Samples using BasinCMA Samples using ADAM

Original Ours (best) Samples using BasinCMA Samples using ADAM

Fig. 17. Inverting StyleGAN2 in z space. We show results of projecting real images
into StyleGAN2 using our BasinCMA method without transformation and fine-tuning.
The images are inverted into the original input latent code z ∈ R512. The top results
are from a model trained on 512× 512 LSUN cars, and the results on the bottom are
from a model trained on 1024 × 1024 FFHQ face dataset. We show results from the
top 9 seeds for both BasinCMA and ADAM.

the best. In Figure 13, we also experimented with hybrid optimization using
various CMA variants but did not see a clear winner.

How fine-tuning effects editing. In Figure 1, 2, 10, we demonstrated having
good projection allows us to fine-tune the weights to better fit the image without
losing the editing capabilities of the generative model. In Figure 16, we visualize
how such editing capability is affected by the fine-tuning process. We vary the
regularization weight of the fine-tuning objective function that limits the devia-
tion from the original weight. We observed that getting a better initial fit of the
image requires us to relax the regularization weight, which in turn introduces
additional editing artifacts. Therefore, we found it is crucial to approximate a
good initial fit for real image editing.

7

E Inverting unconditional generative model: StyleGAN2

StyleGAN [5] and StyleGAN2 [6] are other popular choices of generative mod-
els for their ability to produce high fidelity images. Although these models can
generate high-resolution images, they are restricted to generating images from
a single class. Additionally, Abdal et al. [1] have demonstrated that it is diffi-
cult to project images into the original latent space z ∈ R512 using gradient-
descent methods. Henceforth, Image2StyleGAN [1] and StyleGAN2 [6] has re-
lied on inverting images into its intermediate representation, also known as the
w+ space. The w+ space is R699536 for generative model that outputs images of
size 512 × 512. Due to the large dimensionality of the intermediate representa-
tion, it is much easier to fit any real image into the generative model. Embedding
the image into this intermediate representation drastically limits the ability to
use the generative model to edit the projected images. On the contrary, we
show in Figure 17 that CMA-based methods can invert the images all the way
back to the original latent code z ∈ R512. We observed that models trained on
well-aligned images such as FFHQ face dataset [5] can often be inverted using
gradient-descent methods; however, models trained on more challenging datasets
such as LSUN cars [11] can often only be solved using BasinCMA.

References

1. Abdal, R., Qin, Y., Wonka, P.: Image2stylegan: How to embed images into the
stylegan latent space? In: International Conference on Computer Vision (2019) 1,
7

2. Bau, D., Strobelt, H., Peebles, W., Wulff, J., Zhou, B., Zhu, J.Y., Torralba, A.:
Semantic photo manipulation with a generative image prior. ACM Transactions
on Graphics (TOG) (2019) 5

3. Bau, D., Zhu, J.Y., Wulff, J., Peebles, W., Strobelt, H., Zhou, B., Torralba, A.:
Seeing what a gan cannot generate. In: International Conference on Computer
Vision (2019) 1

4. Hansen, N., Akimoto, Y., Baudis, P.: CMA-ES/pycma on Github (2019).
https://doi.org/10.5281/zenodo.2559634 1

5. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for genera-
tive adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (2019) 7

6. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of StyleGAN. CoRR abs/1912.04958 (2019) 7

7. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In:
NIPS 2017 Workshop (2017) 1

8. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Transactions on
Graphics (TOG) 22(3), 313–318 (2003) 3

9. Rapin, J., Teytaud, O.: Nevergrad - A gradient-free optimization platform. https:
//GitHub.com/FacebookResearch/Nevergrad (2018) 3, 5

10. de Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., Courville, A.: Mod-
ulating early visual processing by language. In: Advances in Neural Information
Processing Systems (2017) 1

https://doi.org/10.5281/zenodo.2559634
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

8

11. Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: Lsun: Construction of a large-
scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365 (2015) 7

12. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: European Con-
ference on Computer Vision (2016) 4

13. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep networks as a perceptual metric. In: IEEE Conference on
Computer Vision and Pattern Recognition (2018) 3

14. Zhu, J.Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manip-
ulation on the natural image manifold. In: European Conference on Computer
Vision (2016) 1

