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Abstract. In this paper, we explore the problem of interesting scene
prediction for mobile robots. This area is currently underexplored but is
crucial for many practical applications such as autonomous exploration
and decision making. Inspired by industrial demands, we first propose
a novel translation-invariant visual memory for recalling and identify-
ing interesting scenes, then design a three-stage architecture of long-
term, short-term, and online learning. This enables our system to learn
human-like experience, environmental knowledge, and online adaption,
respectively. Our approach achieves much higher accuracy than the state-
of-the-art algorithms on challenging robotic interestingness datasets.
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1 Introduction

Interesting scene prediction is crucial for autonomous exploration [28], which
is one of the most fundamental capabilities of mobile robots. It has a significant
impact on decision making and robot cooperation. For example, the finding of
a door shown in Fig. 1 (f) may affect the future planing, the hole on the wall in
Fig. 1 (h) may attract more attentions. However, prior algorithms often have dif-
ficulty when they are deployed to unknown environments, as the robots not only
have to find interesting scenes, but also have to lose the interests on repetitive
scenes, i.e., interesting scenes may become uninteresting during robot explo-
ration after repeatedly observing similar scenes or following moving objects. For
example in Fig. 6, we expect to have high interests on the truck when it appears
but loss the interests when it exists for a long time. Nevertheless, the recent
approaches of interestingness detection [17,21], as well as saliency detection [41],
anomaly detection [42,27], novelty detection [2], and meaningfulness detection
[18] algorithms cannot achieve this online updates scheme.

To this end, we propose to establish an online learning scheme to search
for interesting scenes for robot exploration tasks. On the other hand, existing
algorithms are heavily dependent on back-propagation algorithm [32] for learn-
ing, which is very computational expensive. To solve this problem, we introduce
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Fig. 1: In this paper, we aim to predict robotic interesting scenes, which are
crucial for decision making and autonomous cooperation. To enable the behavior
of online losing interests on repetitive scenes for exploration of mobile robots,
we propose to establish an online update scheme for interesting scene prediction.
This figure shows several examples of both uninteresting and interesting scenes
in SubT data [1] taken by autonomous robots. The height of green strip located
at the right of each image indicates the interestingness level predicted by our
unsupervised online learning algorithm when it sees the scene for the first time.

a novel translation-invariant 4-D visual memory to identify and recall visually
interesting scenes. Human beings have a great capacity to direct visual atten-
tion and judge the interestingness of a scene [6]. For mobile robots, we find the
following properties are necessary to establish a sense of visual interestingness.

Unsupervised: As shown in Fig. 1, the interesting scenes in robot operating
environments are often unique and unknown, thus the labels are normally dif-
ficult to obtain, but prior research mainly focuses on supervised methods [3,6]
and suffers in prior unseen environments. We hypothesize that a sense of inter-
estingness can be established in an unsupervised manner.

Task-dependent: In many practical applications, we might only know unin-
teresting scenes before a mission is started. In the example of tunnel exploration
task in Fig. 1, the deployment will be more efficient and easier if the robots can
be taught what is uninteresting within several minutes. In this sense, we argue
that the visual interestingness prediction system should be able to learn from
negative samples quickly without accessing to data from unsupervised learning,
thus an incremental learning method is necessary. Note that we expect the model
is capable of learning from negative samples, but it is not necessary for all tasks.

To achieve the above properties, we propose a three-stage architecture:

Long-term learning: In this stage, we expect a model to be trained off-line
on a large amount of data in an unsupervised manner as human beings acquire
common knowledge from experience. We also expect the training time on single
machine to be no more than the order of days.
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Short-term learning: For task-dependent knowledge, the model then should
be able to learn from hundreds of uninteresting images in minutes. This can be
done before a mission started and beneficial to quick robot deployment.

Online learning: During mission execution the system should express the top
interests in real-time and the detected interests should be lost online when similar
scenes appear frequently, regardless if they exist in the uninteresting images or
not. Another important aspect for online learning is no data leakage, i.e., each
frame is proceed without using information from its subsequent frames. This is
in contrast to prior works [21,17] and datasets [8], where interesting frames are
selected after an entire sequence is processed [15]. Since robots need to respond
in real-time, we require that our algorithms are able to adapt quickly. To measure
such capability of online response, we propose a new evaluation metric.

In summary, our contributions are:

– We introduce an extremely simplified three-stage architecture for robotic
interesting scene prediction, which is crucial for practical applications. Con-
cretely, we leverage long-term learning to acquire human-link experience,
short-term learning for quick robot deployment and task-related knowledge,
and online learning for environment adaption and real-time response.

– To accelerate the short-term and online learning, we propose a novel 4-D
visual memory to replace back-propagation. Concretely, we introduce cross-
correlation similarity for translational invariance, which is crucial for per-
ceiving video stream, we also introduce tangent operator for safe writing,
which is crucial for incremental learning from negative samples.

– To measure the online performance, we propose a strict evaluation metric,
i.e., the area under the curve of online precision (AUC-OP) to jointly con-
sider precision, recall rate, and online performance.

– It is demonstrated that our approach achieves much higher overall perfor-
mance than the state-of-the-art algorithms.

2 Related Work

A learning system that encodes the three-stage architecture for interesting
scene prediction has not been achieved, thus the formulation as well as perfor-
mance evaluation will be quite different from prior approaches. Some works on
interestingness prediction have different objectives [3], e.g., Shen et al. aimed to
predict human interestingness on social media [34]. In this section we will mainly
review the related techniques, as some methods used in saliency, anomaly, and
novelty detection are also useful for our work.

The definition of interestingness is subjective, thus the annotation has to be
averaged over different participants. To mimic the human judgment, prior works
have paid great attentions to investigate the relationship between human visual
interestingness and image features [3]. They are typically inspired by psycholog-
ical cues and heavily leverage human annotation for training, which results in a
large family of supervised learning methods. For instance, Dhar et al. designed
three hand-crafted rules, including attributes of composition, content, and sky-
illumination to approximate both aesthetics and interestingness of images [10].
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Jiang et al. extended image interestingness to video and evaluated hand-crafted
visual features for predicting interestingness on the YouTube and Flickr datasets
[21]. Fu et al. formulated interestingness as a problem of unified learning to rank,
which is able to jointly identify human annotation outliers [11,12].

Deep neural networks played more and more significant roles in recent works
on interestingness prediction. For example, Gygli et al. introduced VGG features
[35] and leveraged a support vector regression model to predict the interesting-
ness of animated GIFs [17]. Chaabouni et al. constructed a customized CNN
model to identify salient and non-salient windows for video interestingness pre-
diction [5]. Inspired by a human annotation procedure of pairwise comparison,
Wang et al. combined two deep ranking networks [39] to obtain better per-
formance, and this method ranked first in the 2017 interestingness prediction
competition [9]. Shen et al. combined both CNN and LSTM [19] for feature
learning to predict video interestingness [34] for media contents.

However, the aforementioned methods are highly dependent on human anno-
tation for training, which is labor expensive and not suitable for interestingness
search [6]. Some efforts for unsupervised learning of interestigness have been
made in [20], where interesting events of videos are detected using the density
ratio estimation algorithm with the HOG feature [7]. However, in practice the
approach cannot adapt well to changing distributions.

In the long-term stage, we introduce an autoencoder [23] for unsupervised
learning, which has been widely used for feature extraction in many applica-
tions. For example, Hasan et al. showed that an autoencoder is able to learn
regular dynamics and identify irregularity in long-duration videos [18]. Zhang et
al. introduced dropout into the autoencoder for pixel-wise saliency detection in
images [41]. Zhao et al. proposed a spatio-temporal autoencoder to extract both
spatial and temporal features for anomaly detection [43].

In order to learn online, we introduce a novel visual memory module into
the convolutional neural networks. Visual memory has been widely investigated
in neuroscience [30]. While in computer vision, memory aided neural networks
received limited attentions and used for several different tasks. For example,
Graves et al. proposed a differentiable neural Turning machines (NTM) [16],
which coupled external memory with recurrent neural networks (RNN). Santoro
et al. extended NTM and designed a module to efficiently access the memory
[33]. Gong et al. introduced memory module into an auto-encoder to remember
normal events for anomaly detection [13]. Kim et al. introduced the memory
network into GANs to remember previously generated samples to alleviate the
forgetting problem [22]. However, the memories in the above works are defined
as flattened vectors, thus the spatial structural information cannot be retained.
In this paper, we propose a translation-invariant memory module and introduce
online learning to solve the problem of robotic interestingness prediction.

3 Visual Memory

To retain the structural information of visual inputs, the visual memory
M is defined as a 4-D tensor, i.e., M ∈ Rn×c×h×w, where n is the number
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of memory cubes and c, h, and w are the channel, height, and width of each
cube, respectively. Intuitively, memory writing is to encode visual inputs into
the memory, while reading is to recall one’s memory regarding the visual inputs.

3.1 Memory Writing

We desire that the visual memory is able to balance new visual inputs and
old knowledge. To this end, we denote visual inputs at time t as x(t) ∈ Rc×h×w

and define the writing protocol for the ith memory cube Mi at time t as

Mi(t) = (1−wi) · Mi(t− 1) + wi · x(t), (1)

where wi is the ith element of a weight vector w ∈ Rn,

w = σ(γw · tan(
π

2
·D(x(t),M(t− 1)))), (2)

where σ( · ) is the softmax function and D(x,M) is a cosine similarity vector, in
which the ith element Di(x,M) is

Di(x,M) =

∑
(x�Mi)

‖x‖F · ‖Mi‖F
, (3)

where �,
∑

, and ‖ · ‖F are element-wise product, elements summation, and
Frobenius norm, respectively. The writing protocol in (1) is a moving average,
whose learning speed can be controlled via the writing rate γw (γw > 0), so that
the training samples can be learned with an expected speed.

It is worth noting that, to promote the sparsity of memory writing, we intro-
duce a tangent operator in (2) to map the range of cosine similarity [−1, 1] in (3)
to [− inf, inf], thus memory writing can be focused on fewer but more relevant
cubes via the softmax function. This leads to easier incremental learning and
efficient space usage, which will be further explained in Sec. 4.2 and Sec. 6.1.

3.2 Memory Reading

Recall that convolutional features (visual inputs) are invariant to small input
translations due to the concatenation of pooling layers to convolutional layers
[14]. To obtain invariance to large translations, we need other techniques such as
data augmentation, which is very computationally heavy. To solve this problem,
we introduce translation in memory reading, leveraging that the structural in-
formation of visual inputs are retained in memory writing. Denote 2-D circular
translation along the width and height directions with (x, y) elements of the ith
memory cube at time t as M

(x,y)
i (t), memory reading f(t) ∈ Rc×h×w is

f(t) =

n∑
i=1

ri · M
(x,y)
i (t), (4)

where ri is the ith element of reading weight vector r ∈ Rn,

r = σ(γr · tan(
π

2
·S(x(t),M(t)))), (5)
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Fig. 2: The proposed three learning stages. (a) In long-term learning, the pa-
rameters in both encoder and decoder are trainable. (b) In short-term learning,
the parameters in the encoder and decoder are frozen; the memory writing is
performed before reading. (c) In online learning, the parameters in the encoder
are frozen; the memory reading is performed before writing.

where γr > 0 is the reading rate. The ith element of S(x,M) is the maximum

cosine similarity of x with M
(a,b)
i , where a = 0 : h − 1 and b = 0 : w − 1 imply

all translations. Intuitively, to find the maximum cosine similarity, we need to
repeatedly compute (3) for translated memory cube h × w times, resulting in
a high computational complexity. To solve this problem, we leverage the fast
Fourier transform (FFT) to compute the cross-correlation [36]. Recall that 2-
D cross-correlation is the inner-products between the first signal and circular
translations of the second signal [38], we can compute Si(x,Mi) as

Si(x,M) =
maxF−1(

∑c
x̂∗ � M̂i)

‖x‖F · ‖Mi‖F
, (6)

where ·̂ is the 2-D FFT, · ∗ is the complex conjugate, and
∑c

is element-wise
summation along channel dimension. The translation (x, y) in (4) for the ith
memory cube is corresponding to the location of the maximum response, i.e.,

(x, y) = arg max
(a,b)

(

C∑
x̂∗ � M̂i)[a, b]. (7)

In this way, the computational complexity for each memory cube can be reduced
from O(ch2w2) to O(chw log hw). Another advantage of translation-invariance
in memory reading is that memory usage becomes more efficient, since scene
translation is common in video stream for many robotic applications, e.g., robot
exploration and object search, which will be further explained in Sec. 6.3.

4 Learning

4.1 Long-term Learning

Inspired by the fact that human has a massive memory storage capacity [4],
we use an autoencoder in Fig. 2a for long-term learning for the following reasons.
Unsupervised Knowledge: A reconstruction model can be trained in an un-
supervised way, hence we can collect massive number of images from the internet
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or in real-time during execution to train the model without much efforts. This
agrees with our objective of long-term learning that is to remember as many
scenes as possible. In this stage, we still leverage back-propagation for the train-
ing, so that the large amount of knowledge will be ‘stored’ in the trainable pa-
rameters, which will be frozen afterwards. In this sense, the learned knowledge
can be treated as unforgettable human-like experience.
Detailed and Semantic: To precisely reconstruct images by smaller feature
maps, the output of the bottleneck layer has to contain both detailed and seman-
tic information. This is crucial for visual interestingness, since both texture and
object-level information may attract one’s interests. Feature maps are invariant
to small translations due to CNN, we leverage the invariance of visual memory
to large translations in short-term and online learning. We construct the encoder
following VGG [35] and concatenate 5 deconvolutional blocks [26] for decoder.

4.2 Short-term Learning

As aforementioned, we normally only know the uninteresting scenes before a
robotic mission is started. For known interesting objects, we prefer to use super-
vised object detectors. Therefore, we expect that our unsupervised model can be
trained incrementally with negative labeled samples within several minutes. This
is beneficial for learning environmental knowledge and quick robot deployment.

To this end, we propose the short-term learning architecture in Fig. 2b. The
memory module is inserted into the trained reconstruction model, in which all
parameters are frozen. For each sample, the output of the encoder is first writ-
ten into the memory, then memory reading is taken as inputs of the decoder.
Intuitively, the images cannot be reconstructed well initially, as feature maps are
not fully learned by the memory, and memory reading will be different from the
encoding outputs. In this sense, we can inspect the reconstruction error to know
whether the memory has learned to encode the training samples or not.

The memory leaning is much faster than back-propagation and has several
advantages. Recall that the gradient descent algorithms cannot be directly ap-
plied to neural networks for incremental learning, since all trainable parameters
are changed during training, leading the model to be biased towards the aug-
mented data (new negative labeled data), and forgetting the previously learned
knowledge. Although we can train the model on the entire data, which takes the
learned parameters from long-term learning as an initialization, it is too compu-
tationally expensive and cannot meet the requirements for short-term learning.
Nevertheless, memory learning is able to solve this problem inherently. One of
the reasons is that the tangent operator in (2) promotes writing sparsity, thus
less memory cubes are affected, resulting in safer and faster incremental learning.

4.3 Online Learning

Online learning is one of the most important capabilities for a real-time vi-
sual inerestingness prediction system, as human feelings always keep changing
according to one’s environments and experiences. Moreover, people tend to lose
interests when repeatedly observing the same objects or exploring the same
scenes, which is very common in a video stream from a mobile robot. Therefore,
we aim to establish such an online learning capability for real-time robotic sys-
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tems, instead of selecting interesting frames after processing an entire sequence
[6]. We design a few control variables that can be simply adjusted for different
applications, e.g., a hyper-parameter to control the rate of losing interests will
be useful for objects search. To this end, we propose an architecture for online
learning in Fig. 2c, in which only the frozen encoder and memory are involved.

In this stage, memory reading is performed before writing and the inputs are
continuous image sequences (a video stream), which is different from short-term
learning. If unobserved scenes or objects appear suddenly, memory reading confi-
dence will be lower than before, which can be treated as a new interest. Moreover,
since the new scenes or objects are then written into the memory, their reading
confidence level will become higher in the following images. Therefore, the model
will learn to lose interests on repetitive scenes once the scene is remembered by
the memory. In this sense, a visual interestingness is negative correlated with the
memory reading confidence. In experiments, we adopt averaged cosine similarity
over feature channel to approximate the reading confidence.

During online learning, a large translation often happens during robot ex-
ploration, hence an invariance to large translations introduced in (4) is able to
further reduce memory consumption and improve the system robustness.

5 Experiments

Evaluation Metric Prior research typically only focused on the precision or
recall rate and is not able to capture the online response of interestingness.
Therefore, we propose a new metric, i.e., area under curve of online precision
(AUC-OP) to evaluate one frame without using the information from its sub-
sequent frames (no data leakage). This metric is stricter and jointly consider
online response, precision, and recall rate. Intuitively, if K frames of a sequence
are labeled as interesting in the ground truth, an algorithm is perfect if the set
of its top K interesting frames are the same with the ground truth.

Consider a sequence I[1:N ], we take an interestingness prediction p(It) as a
true positive (interesting) if and only if p(It) ranks in the top Kt,n among a
subsequence p(It−n+1), p(It−n+2) · · · , p(It), where Kt,n is the number of inter-
esting frames in the ground truth. Note that the subsequence I[t−n+1:t] only con-
tains frames before It, as data leakage is not allowed in the online performance.
Therefore, we may calculate an online precision score for length n subsequences
as s(n) =

∑
TP/(

∑
TP+

∑
FP), where TP and FP denote the number of true pos-

itives and false positives, respectively. Since all true positives rank in the top
Kt,n, this means that no false negative is allowed. Recall that a recall rate can
be calculated as r =

∑
TP/(

∑
TP+

∑
FN), which means that the proposed online

precision score s(n) requires a 100% recall rate. For a better comparison, we
often accept true positive predictions as ranking in the top δ ·Kt,n, where δ ≥ 1.
Therefore, the overall performance of that jointly considers online performance,
precision, and recall rate is the AUC of online precision s( n

N , δ) where n
N ∈ (0, 1],

which considers all subsequence length as n = [1 : N ]. In practice, we often allow
some false negatives and δ = 2 is recommended for most of exploration task.
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Table 1: The SubT dataset. “Normal” and “Difficult” means that the percentage
of frames labeled as interesting by at least 1 subjects or 2 subjects, respectively.

Video I II III IV V VI VII Overall

Length (min) 53.1 55.7 79.4 80.0 59.0 57.5 83.0 467.7
Normal (%) 11.11 15.07 9.37 17.51 24.52 22.77 11.04 15.14
Difficult (%) 2.76 4.49 3.02 4.29 4.07 3.30 3.21 3.58
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Fig. 3: The performance on SubT with and without (w/o) online learning.

Dataset To test the online performance on robotic systems for visual interesting
scene prediction, we choose two datasets recorded by fully autonomous robots,
i.e., the SubT dataset [1] for unmanned ground vehicles (UGV) and the Drone
Filming dataset [40] for unmanned aerial vehicles (UAV).

The SubT dataset is based on the DARPA Subterranean Challenge (SubT)
Tunnel Circuit. In this challenge, the competitors are expected to build robotic
systems to autonomously search and explore the subterranean environments.
The environments pose significant challenges, including a lack of lighting, lack
of GPS and wireless communication, dripping water, thick smoke, and cluttered
or irregularly shaped environments. Each of the tunnels has a cumulative linear
distance of 4-8 km. The dataset listed in Table 1 contains seven long videos (1h)
recorded by two fully autonomous UGV from Team Explorer1. Each sequence
is evaluated by at least 3 persons. It can be seen that the SubT dataset is very
challenging, as human annotation varies a lot, i.e., only 15% and 3.6% of the
frames are labeled as interesting by at least 1 (normal category) and 2 subjects
(difficult category), respectively. Some of the interesting scenes predicted by our
algorithms are presented in Fig. 1, in which we can see that our method predicts
many interesting scenes correctly.

1 Team Explorer won the first place at the DARPA SubT Tunnel Circuit.

https://www.subt-explorer.com
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Table 2: The comparison with the state-of-the-art method on AUC-OP.

(a) The SubT Normal Category.

Methods δ = 1 δ = 2 δ = 3

baseline [25] 0.622 0.798 0.904
ours 0.662 0.842 0.923

(b) The SubT Difficult Category.

Methods δ = 1 δ = 2 δ = 4

baseline [25] 0.352 0.544 0.700
ours 0.407 0.585 0.768

The Drone Filming dataset [40] is recorded by quadcopters during autonomous
aerial filming. It also contains challenging environments, e.g., intensive light
changes, severe vibrations, and motion blur, etc. Different from other sources
such as surveillance camera, robotic visual systems pose extra challenges due to
fast background changes, limited computational resources, and unique and even
dangerous operating environments in which human beings cannot get access to.

Implementation In all experiments in this section, a memory capacity of 1000
and mean square error (MSE) loss are adopted. The memory reading and writing
rate are set as γr = γw = 5. Our algorithm is implemented using the PyTorch
library [29] and conducted on a single Nvidia GPU of GeForce GTX 1080Ti.

Efficiency During long-term learning, we perform unsupervised training with
the coco dataset [24]. It takes about 3 days running on single GPU. For short-
term learning, our model takes about 10 minutes for learning 912 uninteresting
images in the SubT dataset, which is feasible for deployment purpose of most
practical applications. For online learning, it runs about 72.01ms per frame on
single GPU, which is feasible for real-time2 robotic interestingness prediction.

Performance Online learning is able to remove many repetitive scenes thus
it is able to reduce the number of false positives dramatically. The curve of
online precision of our model for the normal category and difficult category are
presented in Fig. 3a and Fig. 3b, respectively, where the overall AUC-OP is
shown in the associated square brackets. It can be seen that our model achieves
an average of 20% higher overall performance than the model without online
learning, which verifies the importance of the proposed online learning.

Comparison To the best of our knowledge, robotic visual interestingness pre-
diction is currently underexplored, and existing methods in saliency or anomaly
detection have poor performance in this scenario. In this section, we select the
state-of-the-art method, frame prediction in [25] as the baseline, which has very
good generalization ability. Basically, it introduces temporal constraint into the
video prediction task to detect anomaly. The overall performance of the AUC-
OP of our method is presented in Table 2a and Table 2b, respectively. It can be
seen that our method achieve an average of 4.0%, 4.4%, 1.9% and 5.5%, 4.1%,
6.8% higher overall accuracy in the two categories for δ = 1, 2, 4, respectively,
which verifies its effectiveness. We next present analysis to show the effects of
the proposed writing sparsity, translational invariance, and short-term learning.

2 Real-time means processing images as fast as human brain, i.e., 100ms/frame [31].
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Table 3: The effects of the proposed modules on SubT (AUC-OP).

Methods
Normal Category Difficult Category

δ = 1 δ = 2 δ = 4 δ = 1 δ = 2 δ = 4

w/o sparsity 0.437 0.633 0.846 0.260 0.373 0.523
w/o invariance 0.330 0.510 0.752 0.212 0.268 0.379
w/o short-term 0.508 0.711 0.913 0.329 0.450 0.621

ours 0.662 0.842 0.957 0.407 0.585 0.768

Effect of Writing Sparsity To show its effectiveness, we replace our proposed
writing protocol with the one used in [16], which is denoted as ‘without (w/o)
sparsity’ in the first row of Table 3. It can be seen that our model achieves about
20-30% higher overall accuracy, which verifies the effectiveness of our method.

Effect of Translational Invariance Without the large translational invariance,
the performance will drop a lot, as translational movement is very common in
robotic applications. As shown in the second row of Table 3, our model achieves
about 20-30% higher accuracy than the one w/o translational invariance.

Effect of Short-term Learning Short-term learning plays an important role
for quick robot deployment. The performance can be largely improved if some
uninteresting scenes are known before a mission. It can be seen in the fourth
row of Table 3 that our model achieves about 10-20% higher accuracy than the
one without short-term learning (w/o short-term).

6 Ablation Study

In this section, we further test the proposed algorithm and aim to provide in-
tuitive explanations for the influences of the proposed writing protocol, memory
capacity, translational invariance, and capability of losing interests. Following
the ablation principle, all configurations are the same unless otherwise stated.

6.1 Writing Protocol

It has been pointed out that the memory learning is highly dependent on
the writing vector in (1), in which a tangent operator is introduced for writing
sparsity. This section explores this effect and compare with the writing vector
in (8) used in [16]. Note that memory defined in [16] is vectors, thus it is not
invariant to large translation. Following the ablation principle, we use the same
4-D memory structure and the reading protocol proposed in this paper.

w = softmax(γ ·D(x,M)), (8)

where γ is a parameter. To show the writing performance, we write two random
3-D tensors into the memory, i.e., f1 and f2, and compare their reading accuracy
in terms of cosine similarity in (9).

Sc(r, f) =

∑
(r� f)

‖r‖F · ‖f‖F
, (9)
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Fig. 4: The memory recall accuracy. (a) Writing vector with a tangent operator
enables sparsity, thus less memory cubes are affected in learning. (b) Larger
memory capacity leads to more computation but easy incremental learning.

where r and f are the memory reading and writing tensors, respectively. In
experiments, we set γw = γ = 5 and write both f1 and f2 5 times continuously
and show their reading accuracy in terms of number of writing in Fig. 4a. It
can be seen that both memories are able to remember the random tensors after
repeatedly writing. However, when writing a vector without a tangent operator,
the accuracy of f2 keeps dropping even when f1 is learned, i.e., Sc(r1, f1) ≈ 1.
This is because all memory cubes are affected due to the non-sparse writing
vector in (8). This will be a severe issue when a robot keeps learning the same
thing (observing the same scene), since the learned knowledge may be forgotten
due to the non-sparse writing. Nevertheless, our proposed writing vector with
the tangent operator is able to map the weight of f1 to infinite when f1 is learned,
resulting in safer writing as only a few memory cubes are affected. This verifies
the effectiveness of the proposed writing vector. We notice that sparsity is also
mentioned in [42,27,13], while it is designed for different objectives using different
strategies. For instance, [13] introduced a simple threshold and an entropy loss
to promote sparsity for reducing reconstruction accuracy to detect anomaly.

6.2 Memory Capacity

This section explores the effects of memory capacity, i.e., the number of mem-
ory cubes c, which is an important hyper-parameter for incremental learning. To
this end, we write two same random 3-D tensors f1 and f2 five times sequentially
into two different memories in terms of the memory capacity c. Their reading
accuracy for the performance comparison is shown in Fig. 4b.

As can be seen, both memories are able to learn random samples, while the
accuracy of f1 drops a lot for smaller capacity when start to write f2, although
it is remembered later when f1 is written again. We observe similar phenomenon
when the number of samples is around the same or larger than the memory
capacity. This means that a memory that has a small capacity quickly forgets
old knowledge when learning new knowledge. We can also leverage this property
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Fig. 5: Memory reading with translational invariance (WTI) recall translated
scenes better than without translation-invariance (WOTI).

for model design, since uninteresting objects can become interesting in some
cases. This means that for larger capacity, reading accuracy is less affected by
new knowledge, resulting in safer and easier incremental learning.

6.3 Translational Invariance

Although CNN features are invariant to small translations [37], they still fail
to recall memory when large translations occur. To solve this problem, we in-
troduce translational invariance by cross-correlation in (6). We next test it on
the Drone Filming dataset [40] in Fig. 5. In this sequence an ambulance ap-
pears suddenly in the 1st frame and disappears in the 5th frame. We construct
two memory modules to learn this video based on the online learning strategy
presented in Sec. 4.3. The first module adopts the cross-correlation similarity
presented in Sec. 3.2 for memory reading (denote as WTI), while another one
adopts the cosine similarity (WOTI). It can be seen that both modules cannot
recall the memory for the 1st frame, since the ambulance is not seen before.
However, the module WTI is able to recall the memory precisely in the subse-
quent frames, while the module WOTI quickly fails, although its reading is still
meaningful, e.g., the 2nd and 4th frames have correct patterns for sky, trees, and
ground. It can be seen that the recalled memory for the 3rd frame from module
WTI is roughly a translated replica of the 2nd frame of the video (this also occurs
at the 4th and 5th frame), which means that the module WTI correctly takes
the 2nd frame as the most similar scene to the 3rd frame. This phenomenon
verifies the translational invariance of our proposed reading protocol.

Note that there is a small translation for the 2nd frame from WTI. This is
because the invariance to small translations of CNN features, i.e., the features
look the same for visual memory, although they appear with a small translational
difference. Therefore, our proposed cross-correlation similarity together with the
CNN features contribute complete invariance of translation to memory recall.
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Fig. 6: The visual interestingness with different writing rates for drone video
footage [40]. As indicated by the arrows, a larger writing rate results in a faster
loss of interest for new objects during online learning.

6.4 Losing interest

To test the capability of losing interest of the algorithm, we perform a quali-
tative test on the Drone Filming dataset [40]. The objects tracked in the videos,
e.g., cars or bikes, are relatively stable, while the background keeps changing due
to the movement of the objects. This makes it suitable for testing the capability
of online learning. One of the video clips is shown in Fig. 6, where two different
online learning speeds are adopted, i.e., γw = 1.0 and γw = 0.2. It can be seen
that the interestingness level of both settings become high when new objects or
scenes appear, i.e., both settings are able to detect novel objects. However, the
interestingness level with a larger writing rate always drops faster, meaning it
is quicker to lose interest of the similar scenes. This verifies our objective that a
simple hyper-parameter can be adjusted for different missions.

7 Conclusion

In this paper, we developed an unsupervised online learning algorithm for
visual robotic interestingness prediction. We first proposed a novel translation-
invariant 4-D visual memory, which can be trained without back-propagation. To
better fit for practical applications, we designed a three-stage learning architec-
ture, i.e., long-term, short-term, and online learning. Concretely, the long-term
learning stage is responsible for human-like life-time knowledge accumulation
and trained on unlabeled data via back-propagation. The short-term learning is
responsible for learning environmental knowledge and trained via visual memory
for quick robot deployment. The online learning is responsible for environment
adaption and leverage the visual memory to identify the interesting scenes. The
experiments show that, implemented on a single machine, our approach is able
to learn online and find interesting scenes efficiently in real-world robotic tasks.
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