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This supplementary material provides a more detailed description of our implemen-
tation details, data collection system, and some visualization of the results in the paper.
We also provide a demo video to demonstrate the model and results of our proposed
RF-Diary.

Appendix A: Implementation Details

Network Architecture: For the RF skeleton generator, we use a pre-trained spatio-
temporal skeleton generation model in [5]. For the skeleton feature encoder, we use an
HCN network [2] pre-trained on the skeleton modality of NTU RGB-D dataset. For the
video feature encoder, we use I3D network [1] pre-trained on the Charades dataset as
initialization. For the RNN language generator, we use a network architecture similar to a
state-of-the-art video captioning model [4]. The hidden state size is 512 for both encoder
and decoder LSTMs, and the word embedding dimension is also 512. The language
generator is pre-trained with the I3D network on the Charades dataset. We implement
the discriminators Dm, Dn following Least Square Generative Adversarial Network [3].
Dm is with three 3D convolution layers (kernel size=3) followed by 2 fully-connected
layers, and Dn is with two 1D convolution layers on time (kernel size=3) followed by 2
fully-connected layers.

Training details: At each iteration, the data loader samples an RF clip, its paired
3 videos with different viewpoints, and a video from the Charades dataset. We first
use a pre-trained RF skeleton generator [5] to extract 3D human skeletons from RF
signals. After that, the extracted skeletons are associated and smoothed across time using
a hidden Markov model. Then the skeleton sequence first passes the HCN, and then
combines with the features from corresponding floor-maps to generate uP .

We forward a batch of the four videos to the I3D feature extraction network and
perform a discriminator on the extracted video features to give the discriminator loss. The
L2 loss is added between features from the 3 paired videos and the skeleton sequence.
Since the L2 loss has a small magnitude, we give it a 500 weight.

We then combine the features (uP , vPn , vUn ) from all RGB videos and RF into one
batch and forward them to the language model to get the caption loss. The loss is then
combined with the feature alignment losses and backpropagated through the network.
We update the discriminator 1 step for every 5 steps of the model.

To train our model, we use Adam optimizer with learning rate 4e-4, weight decay 5e-
4, batch size 2 for each GPU. We train our model with 300 epochs in total, with a learning
rate drop at 100 and 200 epochs (each epoch corresponds to one pass over RCD dataset).
? Indicates equal contribution. Correspondence to Tianhong Li <tianhong@mit.edu>.
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All experiments are performed on 8 Nvidia Titan X Pascal GPUs. During testing, the
RF-based model can run in real-time with only one GPU. All our experimental results
are averaging over 5 runs.

Appendix B: Data Collection

Floormap: We use a laser distance meter like the one in the figure
aside. It costs about $15 and is widely available. We use it to measure
the locations and size of the objects. We always set the object’s
longer side to be the length and shorter side to be the width. The
rotation of the object is defined as the angle between the long side
of the object and the X-axis of the coordinate system.

RF: we use a radio device to collect RF signals (orange box in
Figure 1). The raw RF signal from one antenna array is a complex
matrix s of shape 14x128, where 14 is the number of antennas
(N ) and 128 is the number of evenly spaced channels between 5.4
GHz and 7.2 GHz (T ). The raw RF signal is then processed using
standard FMCW and antenna array equations to generate vertical
and horizontal heatmaps, where the value at each pixel is given by:

P (x, y) =

N∑
n=1

T∑
t=1

sn,te
j·2π dn(x,y)

λt ,

where dn denotes the round trip distance from the transmit antenna
to the point at (x, y), and back to the k-th receive antenna. The
transmission power of our device is less than one millie Watt, similar to a commercial
WiFi router.

Camera System: We design a wireless camera system to collect multi-view videos
across the home to provide ground truth caption (blue boxes in Figure 1). We use 12
Raspberry Pi 3 single-board computers to control each camera and a laptop to control
the Pis. The remote Raspberry Pis are synchronized with the camera system controller.
Our radio and cameras are synchronized using network time protocol (NTP), whose
synchronization error is typically less than 10ms. The original video is of size 1232x1640
and is resized and center-cropped to 224x224 to feed into the I3D network.

Appendix C: Feature Alignment Details

To align the features from video and RF, we need to make them consistent in both
the temporal dimension and the feature dimension. Since the frame-rate of heatmaps
from RF is 30 FPS, while the frame-rate of the video frame is 15 FPS. We add one
down-sample layer in RF skeleton generator so the extracted skeletons are in 15 FPS.
We further modified the HCN architecture to have similar padding and pooling strategy
as the I3D network so the extracted features from both modalities have the same size in
the temporal dimension.
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Fig. 1. The figure shows our data collection system. Orange box is our radio device to collect RF
signals. Blue boxes show the camera system to collect video frames across the home.

Since we use a person-centric representation for the floormaps, we will get a different
floormap representation at each different time step. The person-centric floormap repre-
sentations are generated using the measured floormap and the intermediate skeletons,
which are in 15 FPS. We further downsample the temporal dimension of floormaps using
bilinear interpolation so that the features from floormaps and skeletons can be combined
to get features u. Feature dimension of u should be consistent with the video feature v
generated by I3D (i.e. 1024), so we require the embedding layer for u with the same
output size of 1024. In this way, both the temporal dimension and the feature dimension
is consistent between u and v so that we can perform feature alignment over them.

Appendix D: Feature Alignment Visualization

To further illustrate the effectiveness of our feature alignment framework, we perform
visualization on the feature spaces we learned. In our feature alignment framework, there
are in total three feature spaces: features extracted from RF+floormap on RCD, features
extracted from videos on RCD, and features extracted from videos on the Charades
dataset. We visualize these three distributions using t-SNE to see the difference between
them.

As shown in Figure 2, without feature alignment (left), the two feature distributions
extracted from the video-captioning network are close to each other while far away
from the feature distribution of the RF-Diary. After applying the L2-norm (middle), the
features extracted from RF signals are aligned with the features extracted from the video
on RCD, while the features extracted from Charades dataset are decoupled with those
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Fig. 2. Distribution of features extracted by RF-Diary and video-caption model. Left: without
feature alignment. Middle: with L2-norm, Right: with L2-norm and discriminator.

from RCD because only the features extracted from RCD are affected by the L2-norm.
In the third figure, we show that this decoupling can be solved by adding a discriminator
between the two feature distributions from paired and unpaired videos.
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