
Self-Challenging Improves Cross-Domain
Generalization

Zeyi Huang?, Haohan Wang?, Eric P. Xing, and Dong Huang

School of Computer Science, Carnegie Mellon University
{zeyih@andrew, haohanw@cs, epxing@cs, donghuang@}.cmu.edu

Abstract. Convolutional Neural Networks (CNN) conduct image clas-
sification by activating dominant features that correlated with labels.
When the training and testing data are under similar distributions, their
dominant features are similar, leading to decent test performance. The
performance is nonetheless unmet when tested with different distribu-
tions, leading to the challenges in cross-domain image classification. We
introduce a simple training heuristic, Representation Self-Challenging
(RSC), that significantly improves the generalization of CNN to the out-
of-domain data. RSC iteratively challenges (discards) the dominant fea-
tures activated on the training data, and forces the network to activate
remaining features that correlate with labels. This process appears to ac-
tivate feature representations applicable to out-of-domain data without
prior knowledge of the new domain and without learning extra network
parameters. We present the theoretical properties and conditions of RSC
for improving cross-domain generalization. The experiments endorse the
simple, effective, and architecture-agnostic nature of our RSC method.

Keywords: cross-domain generalization, robustness

1 Introduction

Imagine teaching a child to visually differentiate “dog” from “cat”: when
presented with a collection of illustrations from her picture books, she may
immediately answer that “cats tend to have chubby faces” and end the learning.
However, if we continue to ask for more differences, she may start to notice other
features like ears or body-size. We conjecture this follow-up challenge question
plays a significant role in helping human reach the remarkable generalization
ability. Most people should be able to differentiate “cat” from “dog” visually
even when the images are presented in irregular qualities. After all, we did not
stop learning after we picked up the first clue when we were children, even the
first clue was good enough to help us recognize all the images in our textbook.

Nowadays, deep neural networks have exhibited remarkable empirical results
over various computer vision tasks, yet these impressive performances seem un-
met when the models are tested with the samples in irregular qualities [32] (i.e.,

? equal contribution; codes are available at https://github.com/DeLightCMU/RSC

2 Huang et al.

∂L/∂zi

∂L/∂zi

∂L/∂zi

∂L/∂zi

representation and gradient

∂L/∂zi

∂L/∂zi

∂L/∂zi

∂L/∂zi

representation and gradient

∂L/∂zi

∂L/∂zi

∂L/∂zi

∂L/∂zi

representation and gradient

Fig. 1. The essence of our Representation Self-Challenging (RSC) training method:
top two panels: the algorithm mutes the feature representations associated with the
highest gradient, such that the network is forced to predict the labels through other
features; bottom panel: after training, the model is expected to leverage more features
for prediction in comparison to models trained conventionally.

out-of-domain data, samples collected from the distributions that are similar
to, but different from the distributions of the training samples). To account for
this discrepancy, technologies have been invented under the domain adaptation
regime [2, 3], where the goal is to train a model invariant to the distributional
differences between the source domain (i.e., the distribution of the training sam-
ples) and the target domain (i.e., the distribution of the testing samples) [5, 33].

As the influence of machine learning increases, the industry starts to demand
the models that can be applied to the domains that are not seen during the train-
ing phase. Domain generalization [18], as an extension of domain adaptation, has
been studied as a response. The central goal is to train a model that can align
the signals from multiple source domains.

Further, Wang et al. extend the problem to ask how to train a model that
generalizes to an arbitrary domain with only the training samples, but not the
corresponding domain information, as these domain information may not be
available in the real world [31]. Our paper builds upon this set-up and aims to
offer a solution that allows the model to be robustly trained without domain
information and to empirically perform well on unseen domains.

In this paper, we introduce a simple training heuristic that improves cross-
domain generalization. This approach discards the representations associated
with the higher gradients at each epoch, and forces the model to predict with
remaining information. Intuitively, in a image classification problem, our heuris-
tic works like a “self-challenging” mechanism as it prevents the fully-connected
layers to predict with the most predictive subsets of features, such as the most
frequent color, edges, or shapes in the training data. We name our method Rep-
resentation Self Challenging (RSC) and illustrate its main idea in Figure 1.

Self-Challenging Improves Cross-Domain Generalization 3

We present mathematical analysis that RSC induces a smaller generaliza-
tion bound. We further demonstrate the empirical strength of our method with
domain-agnostic cross-domain evaluations, following previous setup [31]. We also
conduct ablation study to examine the alignment between its empirical perfor-
mance and our intuitive understanding. The inspections also shed light upon the
choices of its extra hyperparameter.

2 Related Work

We summarize the related DG works from two perspectives: learning domain
invariant features and augmenting source domain data. Further, as RSC can be
broadly viewed as a generic training heuristic for CNN, we also briefly discuss
the general-purpose regularizations that appear similar to our method.

DG through Learning Domain Invariant Features: These methods
typically minimize the discrepancy between source domains assuming that the
resulting features will be domain-invariant and generalize well for unseen tar-
get distributions. Along this track, Muandet et al. employed Maximum Mean
Discrepancy (MMD) [18]. Ghifary et al. proposed a multi-domain reconstruc-
tion auto-encoder [10]. Li et al. applied MMD constraints to an autoencoder via
adversarial training [15].

Recently, meta-learning based techniques start to be used to solve DG prob-
lems. Li et al. alternates domain-specific feature extractors and classifiers across
domains via episodic training, but without using inner gradient descent up-
date [14]. Balaji et al. proposed MetaReg that learns a regularization function
(e.g., weighted `1 loss) particularly for the networks classification layer, while
excluding the feature extractor [1].

Further, recent DG works forgo the requirement of source domains parti-
tions and directly learn the cross-domain generalizable representations through
a mixed collection of training data. Wang et al. extracted robust feature rep-
resentation by projecting out superficial patterns like color and texture [31].
Wang et al. penalized models tendency in predicting with local features in order
to extract robust globe representation [30]. RSC follows this more recent path
and directly activates more features in all source domain data for DG without
knowledge of the partition of source domains.

DG through Augmenting Source Domain: These methods augment the
source domain to a wider span of the training data space, enlarging the possibility
of covering the span of the data in the target domain. For example, An auxiliary
domain classifier has been introduced to augment the data by perturbing input
data based on the domain classification signal [23]. Volpi et al. developed an
adversarial approach, in which samples are perturbed according to fictitious
target distributions within a certain Wasserstein distance from the source [29].
A recent method with state-of-the art performance is JiGen [4], which leverages
self-supervised signals by solving jigsaw puzzles.

Key difference: These approaches usually introduce a model-specific DG
model and rely on prior knowledge of the target domain, for instance, the tar-

4 Huang et al.

get spatial permutation is assumed by JiGen [4]. In contrast, RSC is a model-
agnostic training algorithm that aims to improve the cross-domain robustness of
any given model. More importantly, RSC does not utilize any knowledge of par-
titions of domains, either source domain or target domain, which is the general
scenario in real world application.

Generic Model Regularization: CNNs are powerful models and tend to
overfit on source domain datasets. From this perspective, model regularization,
e.g., weight decay [19], early stopping, and shake-shake regularization [8], could
also improve the DG performance. Dropout [25] mutes features by randomly
zeroing each hidden unit of the neural network during the training phase. In
this way, the network benefit from the assembling effect of small subnetworks
to achieve a good regularization effect. Cutout [6] and HaS [24] randomly drop
patches of input images. SpatialDropout [26] randomly drops channels of a fea-
ture map. DropBlock [9] drops contiguous regions from feature maps instead of
random units. DropPath [11] zeroes out an entire layer in training, not just a
particular unit. MaxDrop [20] selectively drops features of high activations across
the feature map or across the channels. Adversarial Dropout [21] dropouts for
maximizing the divergence between the training supervision and the outputs
from the network. [12] leverages Adversarial Dropout [21] to learn discrimina-
tive features by enforcing the cluster assumption.

Key difference: RSC differs from above methods in that RSC locates and
mutes most predictive parts of feature maps by gradients instead of randomness,
activation or prediction divergence maximization. This selective process plays an
important role in improving the convergence, as we will briefly argue later.

3 Method

Notations: (x,y) denotes a sample-label pair from the data collection (X,Y)
with n samples, and z (or Z) denotes the feature representation of (x,y) learned
by a neural network. f(·; θ) denotes the CNN model, whose parameters are
denoted as θ. h(·; θtop) denotes the task component of f(·; θ); h(·; θtop) takes
z as input and outputs the logits prior to a softmax function; θtop denotes
the parameters of h(·; θtop). l(·, ·) denotes a generic loss function. RSC requires
one extra scalar hyperparameter: the percentage of the representations to be
discarded, denoted as p. Further, we use ·̂ to denote the estimated quantities,
use ·̃ to denote the quantities after the representations are discarded, and use
t in the subscript to index the iteration. For example, θ̂t means the estimated
parameter at iteration t.

3.1 Self-Challenging Algorithm

As a generic deep learning training method, RSC solves the same standard loss
function as the ones used by many other neural networks, i.e.,

θ̂ = arg min
θ

∑
〈x,y〉∼〈X,Y〉

l(f(x; θ),y),

Self-Challenging Improves Cross-Domain Generalization 5

but RSC solves it in a different manner.
At each iteration, RSC inspects the gradient, identifies and then mutes the

most predictive subset of the representation z (by setting the corresponding
values to zero), and finally updates the entire model.

This simple heuristic has three steps (for simplicity, we drop the indices of
samples and assume the batch size is 1 in the following equations):

1. Locate: RSC first calculates the gradient of upper layers with respect to the
representation as follows:

gz = ∂(h(z; θ̂top
t)� y)/∂z, (1)

where � denotes an element-wise product. Then RSC computes the (100−
p)th percentile, denoted as qp. Then it constructs a masking vector m in the
same dimension of g as follows. For the ith element:

m(i) =

{
0, if gz(i) ≥ qp
1, otherwise

(2)

In other words, RSC creates a masking vector m, whose element is set to 0
if the corresponding element in g is one of the top p percentage elements in
g, and set to 1 otherwise.

2. Mute: For every representation z, RSC masks out the bits associated with
larger gradients by:

z̃ = z�m (3)

3. Update: RSC computes the softmax with perturbed representation with

s̃ = softmax(h(z̃; θ̂top
t)), (4)

and then use the gradient

g̃θ = ∂l(s̃,y)/∂θ̂t (5)

to update the entire model for θ̂t+1 with optimizers such as SGD or ADAM.

We summarize the procedure of RSC in Algorithm 1. No that operations
of RSC comprise of only few simple operations such as pooling, threshold and
element-wise product. Besides the weights of the original network, no extra pa-
rameter needs to be learned.

3.2 Theoretical Evidence

To expand the theoretical discussion smoothly, we will refer to the “dog” vs.
“cat” classification example repeatedly as we progress. The basic set-up, as we
introduced in the beginning of this paper, is the scenario of a child trying to
learn the concepts of “dog” vs. “cat” from illustrations in her book: while the

6 Huang et al.

Algorithm 1: RSC Update Algorithm

Input: data set 〈X,Y〉, percentage of representations to discard p, other
configurations such as learning rate η, maximum number of epoches T , etc;

Output: Classifier f(·; θ̂);
random initialize the model θ̂0;
while t ≤ T do

for every sample (or batch) x,y do
calculate z through forward pass;
calculate gz with Equation 1;
calculate qp and m as in Equation 2;
generate z̃ with Equation 3;
calculate gradient g̃θ with Equation 4 and Equation 5;

update θ̂t+1 as a function of θ̂t and g̃θ
end

end

hypothesis “cats tend to have chubby faces” is good enough to classify all the
animals in her picture book, other hypotheses mapping ears or body-size to
labels are also predictive.

On the other hand, if she wants to differentiate all the “dogs” from “cats”
in the real world, she will have to rely on a complicated combination of the
features mentioned about. Our main motivation of this paper is as follows: this
complicated combination of these features is already illustrated in her picture
book, but she does not have to learn the true concept to do well in her finite
collection of animal pictures.

This disparity is officially known as “covariate shift” in domain adaptation
literature: the conditional distribution (i.e., the semantic of a cat) is the same
across every domain, but the model may learn something else (i.e., chubby faces)
due to the variation of marginal distributions.

With this connection built, we now proceed to the theoretical discussion,
where we will constantly refer back to this “dog” vs. “cat” example.

Background As the large scale deep learning models, such as AlexNet or
ResNet, are notoriously hard to be analyzed statistically, we only consider a
simplified problem to argue for the theoretical strength of our method: we only
concern with the upper layer h(·; θtop) and illustrate that our algorithm helps
improve the generalization of h(·; θtop) when Z is fixed. Therefore, we can di-
rectly treat Z as the data (features). Also, for convenience, we overload θ to
denote θtop within the theoretical evidence section.

We expand our notation set for the theoretical analysis. As we study the
domain-agnostic cross-domain setting, we no longer work with i.i.d data. There-
fore, we use Z and Y to denote the collection of distributions of features and
labels respectively. Let Θ be a hypothesis class, where each hypothesis θ ∈ Θ
maps Z to Y. We use a set D (or S) to index Z, Y and θ. Therefore, θ?(D)

Self-Challenging Improves Cross-Domain Generalization 7

denotes the hypothesis with minimum error in the distributions specified with
D, but with no guarantees on the other distributions.

e.g., θ?(D) can be “cats have chubby faces” when D specifies the distribution
to be picture book.

Further, θ? denotes the classifier with minimum error on every distribution
considered. If the hypothesis space is large enough, θ? should perform no worse
than θ?(D) on distributions specified by D for any D.

e.g., θ? is the true concept of “cat”, and it should predict no worse than “cats
have chubby faces” even when the distribution is picture book.

We use θ̂ to denote any ERM and use θ̂RSC to denote the ERM estimated by
the RSC method. Finally, following conventions, we consider l(·, ·) as the zero-
one loss and use a shorthand notation L(θ;D) = E〈z,y〉∼〈Z(D),Y(D)〉l(h(z; θ),y)
for convenience, and we only consider the finite hypothesis class case within the
scope of this paper, which leads to the first formal result:

Corollary 1. If

|e(z(S); θ?RSC)− e(z̃(S); θ?RSC)| ≤ ξ(p), (6)

where e(·; ·) is a function defined as

e(z; θ?) := E〈z,y〉∼S l(f(z; θ?); y)

and ξ(p) is a small number and a function of RSC’s hyperparameter p; z̃ is the
perturbed version of z generated by RSC, it is also a function of p, but we drop
the notation for simplicity. If Assumptions A1, A2, and A3 (See Appendix)
hold, we have, with probability at least 1− δ

L(θ̂RSC(S);S)− L(θ?RSC(S);D)

≤ (2ξ(p) + 1)

√
2(log(2|ΘRSC|) + log(2/δ))

n

As the result shows, whether RSC will succeed depends on the magnitude
of ξ(p). The smaller ξ(p) is, the tighter the bound is, the better the generaliza-
tion bound is. Interestingly, if ξ(p) = 0, our result degenerates to the classical
generalization bound of i.i.d data.

While it seems the success of our method will depend on the choice of Θ to
meet Condition 6, we will show RSC is applicable in general by presenting it
forces the empirical counterpart ξ̂(p) to be small. ξ̂(p) is defined as

ξ̂(p) :=|h(θ̂RSC, z)− h(θ̂RSC, z̃)|,

8 Huang et al.

where the function h(·, ·) is defined as

h(θ̂RSC, z) =
∑

(z,y)∼S

l(f(z; θ̂RSC); y). (7)

We will show ξ̂(p) decreases at every iteration with more assumptions:

A4: Discarding the most predictive features will increase the loss at current
iteration.

A5: The learning rate η is sufficiently small (η2 or higher order terms are neg-
ligible).

Formally,

Corollary 2. If Assumption A4 holds, we can simply denote

h(θ̂RSC(t), z̃t) = γt(p)h(θ̂RSC(t), zt),

where h(·, ·) is defined in Equation 7. γt(p) is an arbitrary number greater than
1, also a function of RSC’s hyperparameter p. Also, if Assumption A5 holds, we
have:

Γ (θ̂RSC(t+ 1)) = Γ (θ̂RSC(t))− (1− 1

γt(p)
)||g̃||22η

where

Γ (θ̂RSC(t)) := |h(θ̂RSC(t), zt)− h(θ̂RSC(t), z̃t)|

t denotes the iteration, zt (or z̃t) denotes the features (or perturbed features) at

iteration t, and g̃ = ∂h(θ̂RSC(t), z̃t)/∂θ̂RSC(t)

Fig. 2. Γ (θ̂RSC(t)), i.e., “Loss Difference”,
plotted for the PACS experiment (de-
tails of the experiment setup will be dis-
cussed later). Except for the first epoch,

Γ (θ̂RSC(t)) decreases consistently along the
training process.

Notice that ξ̂(p) = Γ (θ̂RSC),

where θ̂RSC is θ̂RSC(t) at the last it-

eration t. We can show that ξ̂(p) is

a small number because Γ (θ̂RSC(t))
gets smaller at every iteration. This
discussion is also verified empirically,
as shown in Figure 2.

The decreasing speed of Γ (θ̂RSC(t))
depends on the scalar γt(p): the

greater γt(p) is, the faster Γ (θ̂RSC(t))
descends. Further, intuitively, the
scale of γt(p) is highly related to the
mechanism of RSC and its hyperpa-
rameter p. For example, RSC discards
the most predictive representations,
which intuitively guarantees the incre-
ment of the empirical loss (Assump-
tion A4).

Self-Challenging Improves Cross-Domain Generalization 9

Finally, the choice of p governs the increment of the empirical loss: if p is
small, the perturbation will barely affect the model, thus the increment will
be small; while if p is large, the perturbation can alter the model’s response
dramatically, leading to significant ascend of the loss. However, we cannot blindly
choose the largest possible p because if p is too large, the model may not be able
to learn anything predictive at each iteration.

In summary, we offer the intuitive guidance of the choice of hyperparamter
p: for the same model and setting,

– the smaller p is, the smaller the training error will be;
– the bigger p is, the smaller the (cross-domain) generalization error (i.e.,

difference between testing error and training error) will be.

Therefore, the success of our method depends on the choice of p as a balance of
the above two goals.

3.3 Engineering Specification & Extensions

For simplicity, we detail the RSC implementation on a ResNet backbone + FC
classification network. RSC is applied to the training phase, and operates on the
last convolution feature tensor of ResNet. Denote the feature tensor of an input
sample as Z and its gradient tensor of as G. G is computed by back propagating
the classification score with respect to the ground truth category. Both of them
are of size [7× 7× 512].

Spatial-wise RSC: In the training phase, global average pooling is applied
along the channel dimension to the gradient tensor G to produce a weighting
matrix wi of size [7 × 7]. Using this matrix, we select top p percentage of the
7 × 7 = 49 cells, and mute its corresponding features in Z. Each of the 49 cells
correspond to a [1×1×512] feature vector in Z. After that, the new feature tensor
Znew is forwarded to the new network output. Finally, the network is updated
through back-propagation. We refer this setup as spatial-wise RSC, which is the
default RSC for the rest of this paper.

Channel-wise RSC: RSC can also be implemented by dropping features
of the channels with high-gradients. The rational behind the channel-wise RSC
lies in the convolutional nature of DNNs. The feature tensor of size [7× 7× 512]
can be considered a decomposed version of input image, where instead of the
RGB colors, there are 512 different characteristics of the each pixels. The C
characteristics of each pixel contains different statistics of training data from
that of the spatial feature statistics.

For channel-wise RSC, global average pooling is applied along the spatial
dimension of G, and produce a weighting vector of size [1 × 512]. Using this
vector, we select top p percentage of its 512 cells, and mute its corresponding
features in Z. Here, each of the 512 cells correspond to a [7× 7] feature matrix
in Z. After that, the new feature tensor Znew is forwarded to the new network
output. Finally, the network is updated through back-propagation.

Batch Percentage: Some dropout methods like curriculum dropout [17]
do not apply dropout at the beginning of training, which improves CNNs by

10 Huang et al.

learning basic discriminative clues from unchanged feature maps. Inspired by
these methods, we randomly apply RSC to some samples in each batch, leaving
the other unchanged. This introduces one extra hyperparameter, namely Batch
Percentage: the percentage of samples to apply RSC in each batch. We also apply
RSC to top percentage of batch samples based on cross-entropy loss. This setup
is slightly better than randomness.

Detailed ablation study on above extensions will be conducted in the exper-
iment section below.

4 Experiments

4.1 Datasets

We consider the following four data collections as the battleground to evaluate
RSC against previous methods.

– PACS [13]: seven classes over four domains (Artpaint, Cartoon, Sketches,
and Photo). The experimental protocol is to train a model on three domains
and test on the remaining domain.

– VLCS [27]: five classes over four domains. The domains are defined by
four image origins, i.e., images were taken from the PASCAL VOC 2007,
LabelMe, Caltech and Sun datasets.

– Office-Home [28]: 65 object categories over 4 domains (Art, Clipart, Prod-
uct, and Real-World).

– ImageNet-Sketch [30]: 1000 classes with two domains. The protocol is to
train on standard ImageNet [22] training set and test on ImageNet-Sketch.

4.2 Ablation Study

We conducted five ablation studies on possible configurations for RSC on the
PACS dataset [13]. All results were produced based on the ResNet18 baseline in
[4] and were averaged over five runs.

(1) Feature Dropping Strategies (Table 1). We compared the two atten-
tion mechanisms to select the most discriminative spatial features. The “Top-
Activiation” [20] selects the features with highest norms, whereas the “Top-
Gradient” (default in RSC) selects the features with high gradients. The com-
parison shows that “Top-Gradient” is better than “Top-Activation”, while both
are better than the random strategy. Without specific note, we will use “Top-
Gradient” as default in the following ablation study.

(2) Feature Dropping Percentage (choice of p) (Table 2): We ran RSC at
different dropping percentages to mute spatial feature maps. The highest average
accuracy was reached at p = 33.3%. While the best choice of p is data-specific,
our results align well with the theoretical discussion: the optimal p should be
neither too large nor too small.

(3) Batch Percentage (Table 3): RSC has the option to be only randomly
applied to a subset of samples in each batch. Table 3 shows that the performance

Self-Challenging Improves Cross-Domain Generalization 11

Feature Drop Strategies backbone artpaint cartoon sketch photo Avg ↑
Baseline [4] ResNet18 78.96 73.93 70.59 96.28 79.94

Random ResNet18 79.32 75.27 74.06 95.54 81.05
Top-Activation ResNet18 80.31 76.05 76.13 95.72 82.03
Top-Gradient ResNet18 81.23 77.23 77.56 95.61 82.91

Table 1. Ablation study of Spatial-wise RSC on Feature Dropping Strategies. Feature
Dropping Percentage 50.0% and Batch Percentage 50.0%.

Feature Dropping Percentage backbone artpaint cartoon sketch photo Avg↑
66.7% ResNet18 80.11 76.35 76.24 95.16 81.97
50.0% ResNet18 81.23 77.23 77.56 95.61 82.91
33.3% ResNet18 82.87 78.23 78.89 95.82 83.95
25.0% ResNet18 81.63 78.06 78.12 96.06 83.46
20.0% ResNet18 81.22 77.43 77.83 96.25 83.18
13.7% ResNet18 80.71 77.18 77.12 96.36 82.84

Table 2. Ablation study of Spatial-wise RSC on Feature Dropping Percentage. We
used “Top-Gradient” and fixed the Batch Percentage (50.0%) here.

Batch Percentage backbone artpaint cartoon sketch photo Avg↑
50.0% ResNet18 82.87 78.23 78.89 95.82 83.95
33.3% ResNet18 82.32 78.75 79.56 96.05 84.17
25.0% ResNet18 81.85 78.32 78.75 96.21 83.78

Table 3. Ablation study of Spatial-wise RSC on Batch Percentage. We used “Top-
Gradient” and fixed Feature Dropping Percentage (33.3%).

Method backbone artpaint cartoon sketch photo Avg↑
Spatial ResNet18 82.32 78.75 79.56 96.05 84.17

Spatial+Channel ResNet18 83.43 80.31 80.85 95.99 85.15

Table 4. Ablation study of Spatial-wise RSC verse Spatial+Channel RSC. We
used the best strategy and parameter by Table 3:“Top-Gradient”, Feature Dropping
Percentage(33.3%) and Batch Percentage(33.3%).

Method backbone artpaint cartoon sketch photo Avg↑
Baseline [4] ResNet18 78.96 73.93 70.59 96.28 79.94
Cutout[6] ResNet18 79.63 75.35 71.56 95.87 80.60

DropBlock[9] ResNet18 80.25 77.54 76.42 95.64 82.46
AdversarialDropout[21] ResNet18 82.35 78.23 75.86 96.12 83.07

Random(S+C) ResNet18 79.55 75.56 74.39 95.36 81.22
Top-Activation(S+C) ResNet18 81.03 77.86 76.65 96.11 82.91

RSC: Top-Gradient(S+C) ResNet18 83.43 80.31 80.85 95.99 85.15

Table 5. Ablation study of Dropout methods. “S” and “C” represent spatial-wise and
channel-wise respectively. For fair comparison, results of above methods are report
at their best setting and hyperparameters. RSC used the hyperparameters selected
in above ablation studies:“Top-Gradient”, Feature Dropping Percentage (33.3%) and
Batch Percentage (33.3%).

is relatively constant. Nevertheless we still choose 33.3% as the best option on
the PACS dataset.

(4) Spatial-wise plus Channel-wise RSC (Table 4): In “Spatial+Channel”,
both spatial-wise and channel-wise RSC were applied on a sample at 50% prob-
ability, respectively. (Better options of these probabilities could be explored.) Its

12 Huang et al.

improvement over Spatial-wise RSC indicates that it further activated features
beneficial to target domains.

PACS backbone artpaint cartoon sketch photo Avg ↑
Baseline[4] AlexNet 66.68 69.41 60.02 89.98 71.52

Hex[31] AlexNet 66.80 69.70 56.20 87.90 70.20
PAR[30] AlexNet 66.30 66.30 64.10 89.60 72.08

MetaReg[1] AlexNet 69.82 70.35 59.26 91.07 72.62
Epi-FCR[14] AlexNet 64.70 72.30 65.00 86.10 72.00

JiGen[4] AlexNet 67.63 71.71 65.18 89.00 73.38
MASF[7] AlexNet 70.35 72.46 67.33 90.68 75.21

RSC(ours) AlexNet 71.62 75.11 66.62 90.88 76.05
Baseline[4] ResNet18 78.96 73.93 70.59 96.28 79.94
MASF[7] ResNet18 80.29 77.17 71.69 94.99 81.03

Epi-FCR[14] ResNet18 82.10 77.00 73.00 93.90 81.50
JiGen[4] ResNet18 79.42 75.25 71.35 96.03 80.51

MetaReg[1] ResNet18 83.70 77.20 70.30 95.50 81.70
RSC(ours) ResNet18 83.43 80.31 80.85 95.99 85.15
Baseline[4] ResNet50 86.20 78.70 70.63 97.66 83.29
MASF[7] ResNet50 82.89 80.49 72.29 95.01 82.67

MetaReg[1] ResNet50 87.20 79.20 70.30 97.60 83.60
RSC(ours) ResNet50 87.89 82.16 83.35 97.92 87.83

Table 6. DG results on PACS[13] (Best in bold).

VLCS backbone Caltech Labelme Pascal Sun Avg ↑
Baseline[4] AlexNet 96.25 59.72 70.58 64.51 72.76

Epi-FCR[14] AlexNet 94.10 64.30 67.10 65.90 72.90
JiGen[4] AlexNet 96.93 60.90 70.62 64.30 73.19
MASF[7] AlexNet 94.78 64.90 69.14 67.64 74.11

RSC(ours) AlexNet 97.61 61.86 73.93 68.32 75.43

Table 7. DG results on VLCS [27] (Best in bold).

(5) Comparison with different dropout methods (Table 5): Dropout has in-
spired a number of regularization methods for CNNs. The main differences be-
tween those methods lie in applying stochastic or non-stochastic dropout mech-
anism at input data, convolutional or fully connected layers. Results shows that
our gradient-based RSC is better. We believe that gradient is an efficient and
straightforward way to encode the sensitivity of output prediction. To the best
of our knowledge, we compare with the most related works and illustrate the
impact of gradients. (a) Cutout [6]. Cutout conducts random dropout on input
images, which shows limited improvement over the baseline. (b) DropBlock [9].
DropBlock tends to dropout discriminative activated parts spatially. It is bet-
ter than random dropout but inferior to non-stochastic dropout methods in
Table 5 such as AdversarialDropout, Top-Activation and our RSC. (c) Adver-
sarialDropout [21, 12]. AdversarialDropout is based on divergence maximization,
while RSC is based on top gradients in generating dropout masks. Results show
evidence that the RSC is more effective than AdversarialDropout. (d) Random
and Top-Activation dropout strategies at their best hyperparameter settings.

Self-Challenging Improves Cross-Domain Generalization 13

Office-Home backbone Art Clipart Product Real Avg ↑
Baseline[4] ResNet18 52.15 45.86 70.86 73.15 60.51
JiGen[4] ResNet18 53.04 47.51 71.47 72.79 61.20

RSC(ours) ResNet18 58.42 47.90 71.63 74.54 63.12

Table 8. DG results on Office-Home [28] (Best in bold).

ImageNet-Sketch backbone Top-1 Acc ↑ Top-5 Acc ↑
Baseline[31] AlexNet 12.04 24.80

Hex[31] AlexNet 14.69 28.98
PAR [30] AlexNet 15.01 29.57

RSC(ours) AlexNet 16.12 30.78

Table 9. DG results on ImageNet-Sketch [30].

4.3 Cross-Domain Evaluation

Through the following experiments, we used “Top-Gradient” as feature dropping
strategy, 33.3% as Feature Dropping Percentages, 33.3% as Batch Percentage,
and Spatial+Channel RSC. All results were averaged over five runs. In our RSC
implementation, we used the SGD solver, 30 epochs, and batch size 128. The
learning rate starts with 0.004 for ResNet and 0.001 for AlexNet, learning rate
decayed by 0.1 after 24 epochs. For PACS experiment, we used the same data
augmentation protocol of randomly cropping the images to retain between 80%
to 100%, randomly applied horizontal flipping and randomly (10% probability)
convert the RGB image to greyscale, following [4].

In Table. 6,7,8, we compare RSC with the latest domain generalization work,
such as Hex [31], PAR [30], JiGen [4] and MetaReg [1]. All these work only report
results on different small networks and datasets. For fair comparison, we com-
pared RSC to their reported performances with their most common choices of
DNNs (i.e., AlexNet, ResNet18, and ResNet50) and datasets. RSC consistently
outperforms other competing methods.

The empirical performance gain of RSC can be better appreciated if we have
a closer look at the PACS experiment in Table. 6. The improvement of RSC
from the latest baselines [4] are significant and consistent: 4.5 on AlexNet, 5.2
on ResNet18, and 4.5 on ResNet50. It is noticeable that, with both ResNet18
and ResNet50, RSC boosts the performance significantly for sketch domain,
which is the only colorless domain. The model may have to understand the
semantics of the object to perform well on the sketch domain. On the other
hand, RSC performs only marginally better than competing methods in photo
domain, which is probably because that photo domain is the simplest one and
every method has already achieved high accuracy on it.

5 Discussion

Standard ImageNet Benchmark: With the impressive performance observed
in the cross-domain evaluation, we further explore to evaluate the benefit of RSC
with other benchmark data and higher network capacity.

14 Huang et al.

ImageNet backbone Top-1 Acc ↑ Top-5 Acc ↑ #Param. ↓
Baseline ResNet50 76.13 92.86 25.6M

RSC(ours) ResNet50 77.18 93.53 25.6M
Baseline ResNet101 77.37 93.55 44.5M

RSC(ours) ResNet101 78.23 94.16 44.5M
Baseline ResNet152 78.31 94.05 60.2M

RSC(ours) ResNet152 78.89 94.43 60.2M

Table 10. Generalization results on ImageNet. Baseline was produced with official
Pytorch implementation and their ImageNet models.

We conducted image classification experiments on the Imagenet database[22].
We chose three backbones with the same architectural design while with clear hi-
erarchies in model capacities: ResNet50, ResNet101, and ResNet152. All models
were finetuned for 80 epochs with learning rate decayed by 0.1 every 20 epochs.
The initial learning rate for ResNet was 0.01. All models follow extra the same
training prototype in default Pytorch ImageNet implementation, using original
batch size of 256, standard data augmentation and 224× 224 as input size.

The results in Table 10 shows that RSC exhibits the ability reduce the perfor-
mance gap between networks of same family but different sizes (i.e., ResNet50
with RSC approaches the results of baseline ResNet101, and ResNet101 with
RSC approaches the results of baseline ResNet151). The practical implication
is that, RSC could induce faster performance saturation than increasing model
sizes. Therefore one could scale down the size of networks to be deployed at
comparable performance.

6 Conclusion

We introduced a simple training heuristic method that can be directly applied
to almost any CNN architecture with no extra model architecture, and almost
no increment of computing efforts. We name our method Representation Self-
challenging (RSC). RSC iteratively forces a CNN to activate features that are
less dominant in the training domain, but still correlated with labels. Theoretical
and empirical analysis of RSC validate that it is a fundamental and effective
way of expanding feature distribution of the training domain. RSC produced
the state-of-the-art improvement over baseline CNNs under the standard DG
settings of small networks and small datasets. Moreover, our work went beyond
the standard DG settings, to illustrate effectiveness of RSC on more prevalent
problem scales, e.g., the ImageNet database and network sizes up-to ResNet152.

Acknowledgement

This work was partially supported by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Interior/ Interior Business Center (DOI/IBC)
contract number D17PC00340. In addition, Haohan Wang is supported by NIH
R01GM114311, NIH P30DA035778, and NSF IIS1617583.

Self-Challenging Improves Cross-Domain Generalization 15

References

1. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: Towards domain gener-
alization using meta-regularization. In: Advances in Neural Information Processing
Systems. pp. 998–1008 (2018)

2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A
theory of learning from different domains. Machine learning 79(1), 151–175 (2010)

3. Bridle, J.S., Cox, S.J.: Recnorm: Simultaneous normalisation and classification
applied to speech recognition. In: Advances in Neural Information Processing Sys-
tems. pp. 234–240 (1991)

4. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain
generalization by solving jigsaw puzzles. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2229–2238 (2019)

5. Csurka, G.: Domain adaptation for visual applications: A comprehensive survey.
arXiv preprint arXiv:1702.05374 (2017)

6. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552 (2017)

7. Dou, Q., Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via
model-agnostic learning of semantic features. arXiv preprint arXiv:1910.13580
(2019)

8. Gastaldi, X.: Shake-shake regularization. arXiv preprint arXiv:1705.07485 (2017)
9. Ghiasi, G., Lin, T.Y., Le, Q.V.: Dropblock: A regularization method for convo-

lutional networks. In: Advances in Neural Information Processing Systems. pp.
10727–10737 (2018)

10. Ghifary, M., Bastiaan Kleijn, W., Zhang, M., Balduzzi, D.: Domain generalization
for object recognition with multi-task autoencoders. In: Proceedings of the IEEE
international conference on computer vision. pp. 2551–2559 (2015)

11. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: Ultra-deep neural networks
without residuals. arXiv preprint arXiv:1605.07648 (2016)

12. Lee, S., Kim, D., Kim, N., Jeong, S.G.: Drop to adapt: Learning discriminative
features for unsupervised domain adaptation. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. pp. 91–100 (2019)

13. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain
generalization. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 5542–5550 (2017)

14. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training
for domain generalization. arXiv preprint arXiv:1902.00113 (2019)

15. Li, H., Jialin Pan, S., Wang, S., Kot, A.C.: Domain generalization with adversarial
feature learning. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 5400–5409 (2018)

16. Mitchell, T.M., et al.: Machine learning. 1997. Burr Ridge, IL: McGraw Hill 45(37),
870–877 (1997)

17. Morerio, P., Cavazza, J., Volpi, R., Vidal, R., Murino, V.: Curriculum dropout.
In: Proceedings of the IEEE International Conference on Computer Vision. pp.
3544–3552 (2017)

18. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant
feature representation. In: International Conference on Machine Learning. pp. 10–
18 (2013)

19. Nowlan, S.J., Hinton, G.E.: Simplifying neural networks by soft weight-sharing.
Neural computation 4(4), 473–493 (1992)

16 Huang et al.

20. Park, S., Kwak, N.: Analysis on the dropout effect in convolutional neural networks.
In: Asian conference on computer vision. pp. 189–204. Springer (2016)

21. Park, S., Park, J., Shin, S.J., Moon, I.C.: Adversarial dropout for supervised and
semi-supervised learning. In: Thirty-Second AAAI Conference on Artificial Intel-
ligence (2018)

22. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

23. Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S., Jyothi, P., Sarawagi,
S.: Generalizing across domains via cross-gradient training. arXiv preprint
arXiv:1804.10745 (2018)

24. Singh, K.K., Lee, Y.J.: Hide-and-seek: Forcing a network to be meticulous for
weakly-supervised object and action localization. In: 2017 IEEE international con-
ference on computer vision (ICCV). pp. 3544–3553. IEEE (2017)

25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research 15(1), 1929–1958 (2014)

26. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object local-
ization using convolutional networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 648–656 (2015)

27. Torralba, A., Efros, A.A., et al.: Unbiased look at dataset bias. In: CVPR. vol. 1,
p. 7. Citeseer (2011)

28. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing
network for unsupervised domain adaptation. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 5018–5027 (2017)

29. Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Gen-
eralizing to unseen domains via adversarial data augmentation. In: Advances in
Neural Information Processing Systems. pp. 5334–5344 (2018)

30. Wang, H., Ge, S., Xing, E.P., Lipton, Z.C.: Learning robust global representations
by penalizing local predictive power. In: Advances in Neural Information Process-
ing Systems (NeurIPS 2019) (2019)

31. Wang, H., He, Z., Lipton, Z.C., Xing, E.P.: Learning robust representations by
projecting superficial statistics out. In: International Conference on Learning Rep-
resentations (2019)

32. Wang, H., Wu, X., Huang, Z., Xing, E.P.: High-frequency component helps ex-
plain the generalization of convolutional neural networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8684–
8694 (2020)

33. Wang, M., Deng, W.: Deep visual domain adaptation: A survey. Neurocomputing
312, 135–153 (2018)

