Supplementary Materials:
Multitask Learning Strengthens Adversarial Robustness

1 Proof for Theoretical Analysis

We present theoretical analysis to quantify how much multi-task learning improves model’s overall adversarial
robustness.

Definition 1. Given classifier F, input X, output target 'y, and loss L(x,y) = ¢(F(x),y), the feasible adversarial
examples lie in a p-norm bounded ball with radius r, B(x,7) := {Xadv, ||Xadv — X||p < r}. Then adversarial
vulnerability of a classifier over the whole dataset is

Ex[AL(x,y,7)] = Ex[max |L(x,y) - L(x+0,y)]].

[18llp<r

AL captures the change of output loss given a change in input. Intuitively, a robust model should have a smaller change
in loss given a perturbation of the input. Given the adversarial noise is imperceptible, i.e., 7 — 0, we can approximate
AL with a first-order Taylor expansion, where

IL(x,y) = L(x+6,y)| = [0xL(x,¥)d + O(6)]
Lemma 1. For a given neural network F' that predicts multiple tasks, the adversarial vulnerability is
Ex[AL(x,y,)] & Ex [[|0xLau(x, ¥)|lq) - 1[5 o< Ex [[[0x Lan(x,¥)]lq]

Proof. According to the definition of dual norm:

AL ~ |£I|1‘ax |0x L(x,¥)0| = ||0xLati (%, 3)lq - |]]p

Ex[AL] = B [[|0xLati(%,5)|lq] - 116]]

where ¢ is the dual norm of p, which satisfies % + % =land1 < p < 0.
Once given the p-norm bounded ball, i.e.,

is constant, we get

Ex[AL] o< Ex [||0xLati (%, 5)|]q]
O]

Theorem 1. (Adversarial Vulnerability of Model for Multiple Correlated Tasks) If the selected output tasks are
correlated with each other such that the covariance between the gradient of task i and task j is Cov(ry, r;), and the
gradient for each task is i.i.d. with zero mean (because the model is converged), then adversarial vulnerability of the
given model is proportional to

i—1 Cov(rj,rj
\/(1 +]M Zz 1 Z] 1 Cov(rj,r ,;)
vM

where M is the number of output tasks selected.

Proof. Denote the gradient for task c as rc, i.e.,
re = 0xLe (Xa yc:)

We define the joint gradient vector R as follows:

| M M
R =0«La(x,5) (L.(x,¥¢) = — OxLe(X,yc) = e
u i Z i ; ;

As we can see, the joint gradient is the sum of gradients from each individual task. Then we consider the expectation of
the square of the L, norm of the joint gradient:

E(|R]3) (IIZrcHz) = Z\\rcllz+2i§r rj

=1 j=1

E(IRIZ) = 173 ZEnr.HZHZZErn

=1 5=1

Since
Cov(ri, rj) = E(riry) — E(r;i)E(r;)

According to the assumption
E(I‘j) =0
We know
Cov(ri, rj) = E(rir;)

Then we get

E(|RJ3) <ZE Cov rl,rl>+2ZZE Cov(ri,rj)) ZU +2ZZECOV (ri, ;)]

=1 j=1 =1 j=1

where 02 = Cov(r;, 13)
Thus, the adversarial vulnerability is:

M i—1 Cov(rj,r;
VU E SN S Soen
vM

Ex[Aﬁ] X Ex [||ax£all(xﬂ y)H?] =

O

For a special case where all the tasks are independent of each other, independent gradients with respect to the input
are produced, we have the following corollary:

Corollary 1.1. (Adversarial Vulnerability of Model for Multiple Independent Tasks) If the output tasks selected are
independent of each other, and the gradient for each task is i.i.d. with zero mean, then the adversarial vulnerability of

given model is proportional to ﬁ where M is the number of independent output tasks selected.

Proof. According to the independent assumption, we have
Cov(rs,r;) =0
Let 02 = Cov(ri, r;). Thus we get the adversarial vulnerability to be:

2
Ex[AL] ¢ Ex [[|0Lan(x,9)ll2] =/ 77

g-

2 Experimental Setup
2.1 Cityscapes

We train DRN-105 model and evaluate against multi-task attack. We follow the original architecture setup of the original
DRN paper [4]. We used 93 layers in the shared backbone encoder network, and 13 layers in the decoder branch for
individual task prediction. We use a batch size of 24. We start with a learning rate of 0.01 and decrease the learning rate
by a factor of 10 after every 100 epochs. We trained the model for 250 epochs.

We train multi-task model against single task attack using DRN-22 model. We use 18 layers in the shared backbone
encoder network, and 9 layers in the decoder branch for individual task prediction. We use batch size of 32. We
optimize with SGD, with learning rate of 0.01, then decrease it to 0.001 at 180 epoch. We train model for 200 epoch in
total. We applied a weight decay of 0.0001 for all the models.

2.2 Taskonomy

Taskonomy dataset [S]] consists of millions of indoor scenes with labels for multiple tasks, we use 11 tasks including
semantic segmentation, depth estimation, 2D and 3D edge detection, normal vector estimation, reshading, 2D and 3D
keypoint detection, Euclidean depth, auto-encoding, and principal curvature estimation. We use the publicly available
Tiny version of dataset, which consists of 9464 images from 1500 rooms. We use examples from 80% of the rooms as
training data and examples from 20% of the rooms as test data. Images from the same room are only contained in either
the training set or the test set, and not in both. The quality of the model is measured by its ability to generalize to new
rooms.

For learning a multi-task model for joint robustness, we follow the set up described in [3]. We train a ResNet-18 as
the shared backbone encoder network for all the tasks. Each multi-task model consists of 1 to 6 different tasks. We
use an input size of 512 x 512. We use an 8 layer decoder for each individual task prediction. Following the data
preprocessing of [3], we apply equal weights to all the tasks. Start from task "semantic segmentation"” (s), we add tasks
"depth" (d), "edge texture" (e), "keypoints 2d" (k), "normal" (n), and "reshading" (r). Thus we train 6 models ‘s, ‘sd,
‘sde,” ‘sdek,” ‘sdekn,’ ‘sdeknr.” We also train ‘d,” ‘e, ‘er,” ‘k,” ‘ks,” ‘ksd’ tasks, so that we can analysis the trend of 4
tasks’ performance after multitask learning. We use the same learning rate schedule for all the models — SGD with
learning rate 0.01 and momentum 0.99. We decrease the learning rate at 100 epoch by 10 times. We train all the models
for 150 epoch. Results are shown in Figure 5 in the main paper.

For training robust models on select tasks, we use ResNet-18 as the shared encoder network. We select 11 tasks
trained in pairs with each other, which results in 110 models. We study their robustness under a single-task attack. We
follow the data processing in [5]]. For each task we considered, we try weights of 0.1 and 0.01 for the auxiliary task, and
choose the weight that produces higher robust accuracy. The chosen A, for the auxiliary tasks are shown in Table 2]
The selection of weights is important due to the complex interactions of different tasks [1]. We follow the setup in [3]],
and subsample the image from 512 to 256 using linear interpolation. For segmentation, reshading, keypoint 3D, depth
Euclidean, Auto Encoder, principle curvature, we use SGD, with learning rate 0.01 and decrease by 10 times at 140
epoch. For the other tasks we use adam, with learning rate 0.001 and decrease by 10 times at 120 and 140 epoch. Due to
the inherent difference between different tasks, we use different optimizer for different tasks for better convergence. All
the models are trained for 150 epoch. All the results are shown in Table|l} As we can see, learning versatile, multi-task
models improves adversarial robustness on 90/110 tasks.

2.3 Adversarial Training

We present the details for multi-task adversarial training in Algorithm|[I] For single task model, we choose S = {{T,}}.
The algorithm is the same as the adversarial training procedure of Madry et. al. [2]]. For multi-task model, we set
S ={Tn},{Tm, T, }1}. thus the generated adversarial images under multi-task are more diversified compared
with single-task models. In addition, all the adversarial examples are trained on multi-task loss function, where the
auxiliary task can introduce useful knowledge for learning the robust main task. We use A = 0.01 for the auxiliary task.
For all the task, we train using SGD optimizer with batch size of 32, for 200 epoch. We start with learning rate of 0.01,
and decrease the learning rate by 10 times at 180 epoch. The experiment are conducted on Cityscapes dataset.

PGD Adversarial
‘ Baseline ‘ SemSeg DepthZ Edge2D Normal Reshad Key2D Key3D DepthE AutoE Edge3D PCurve

Semseg * 13.360 — 13950 16630 14580 15700 13780 14910 14110 14720 14.900
Depthz (1072) | 11.491 — 6780 11617 12412 11120 8358 10498 4981 12230 5035
Edge2D (1072) | 10672 | 9.841 9.363 — 9.546 9943 9732 9.654 9714 9.941 9978 10.095
Normal (1072) | 40926 | [35171] 42871 39335 - 40501 39462 39930 42071 35726 37.070 41212
Reshad (1072) | 57.900 | |48.800| 57.800 55000 56.500 - 55900 53300 60.000 61.000 49300 57.600
Key2D (1072) | 11700 | 10900 10900 10700 10.500 10.900 - 11000 10.600 11000 10.800
Key3D (1072) | 49.700 49.600 50.800 45900 42200 43800 — 51200 32600 53400 52.900
DepthE (107%) | 4.850 3.530 3.390 3.250 4.270 5670 3670 3.730 - 3.700 3.330
AutoE (1072) | 59.300 60300 58300 62300 59.400 59.300 60700 58.200 - 60500 61.500
Edge3D (1072) | 15900 | 14.600 15300 16300 15400 15200 15600 16900 15400 - 14.800
PCurve (1074) | 11500 | 8.920 8900 10400 9.230 9620 [8900] 10400 11100 9190 10.400 -

Clean

SemSeg * 43.190 — 46300 46.180 46240 45440 45620 44.690 44500 45320 44.490
Depthz (1072) | 2.852 - 3.880 2.846 2505 2874 3562 3.339 3171 3.088 4.690
Edge2D (1072) | 3384 3922 3382 - 3.507 3435 3330 352 3433 3.574 3.569 3.454
Normal (1072) | 6.997 7.181 7.093 7.006 - 6989 699 7.082 6940 |6.864 6.931 7.141
Reshad (1072) | 8.027 7.985 8.103 7.941 7.901 — 8041 7957 7.940 | 7.890 8.065 8.150
Key2D (1072) | 4.156 4116 3.897 3.865 4147 - 3944 3.857 3.823 3.850 3878
Key3D (1072) | 8771 8.445 8.686 8.514 8.610 8.703 — 8.492 8.366 8.362 8.578
DepthE (1072) | 6373 6.575 5.946 6.350 6.236 5802 6418 6470 - 5.948 6.251
AutoE (1072) | 3470 3.616 3.709 3.548 3.587 3540 3780 3761 3.542 - 3.530 3.553
Edge3D (1072) | 4649 4.695 4.608 4727 4.562 4725 4364 4635 4611 4210 -
PCurve (10~%) | 8017 8.360 8.184 8.353 8.541 7733 7725 8.153 7.854 7732 —

Table 1: The absolute performance of all models trained on two tasks (Relative are shown in Figure 7 in the main paper).
Each row in the first column lists the name of the main task. The second column (baseline) shows the performance
of a model trained on a single task. The * in the row indicates the mIoU score for semantic segmentation, for which
higher is better. The values in the other rows of the table show the 11 loss, for which lower is better. The (10~™) in
the first column indicates the unit for the error. ‘SemSeg’ denotes ‘semantic segmentation,” ‘DepthZ’ denotes ‘depth
estimation,” ‘Edge2D’ denotes ‘2D edge detection,” ‘Normal’ denotes ‘Normal Vector estimation’, ‘Reshad’ denotes
‘Reshading,” ‘Key2D’ denotes ‘2D Keypoint detection,” ‘Key3D’ denotes ‘3D Keypoint detection,” ‘DepthE’ denotes
‘Euclidean depth,” ‘AutoE’ denotes ‘Auto Encoder,” ‘Edge3D’ denotes ‘3D Edge detection,” ‘PCurve’ denotes ‘Curvature
estimation.” Values superior to the baseline are bold, and the best performance for each row is in a . The table
lists the ToU (large is better) for the segmentation model, and error (small is better) for all the other tasks. We pair
each selected model with 11 other models. All the models converge after training for 150 epochs. Overall, training
on two tasks can help the individual task’s adversarial robustness on 90/110 cases, while surpassing the baseline’s
performance on the clean examples on 70/110. For instance, the adversarial robustness for the semantic segmentation
and keypoints3D estimation is always improved by multi-task learning while the clean accuracy also improves. The
results on 11 tasks support our claim that training on multiple tasks improves adversarial robustness.

)\a
\ SemSeg DepthZ Edge2D Normal Reshad Key2D Key3D DepthE AutoE Edge3D PCurve

Semseg * 0 0.01 9.01 0.1 0.1 0.01 0.01 0.1 0.01 0.1 0.01
DepthZ 0.1 0 0.1 0.01 0.1 0.1 0.01 0.1 0.1 0.1 0.01
Edge2D 0.1 0.1 0 0.1 0.1 0.01 0.1 0.1 0.01 0.01 0.1
Normal 0.1 0.01 0.1 0 0.01 0.1 0.01 0.1 0.1 0.01 0.01
Reshad 0.01 0.1 0.01 0.01 0 0.1 0.01 0.01 0.1 0.01 0.1
Key2D 0.1 0.1 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01 0.1
Key3D 0.1 0.01 0.1 0.1 0.1 0.1 0 0.1 0.1 0.01 0.01
DepthE 0.1 0.01 0.01 0.01 0.01 0.1 0.01 0 0.01 0.1 0.1
AutoE 0.1 0.01 0.01 0.1 0.01 0.1 0.01 0.1 0 0.01 0.1
Edge3D 0.1 0.01 0.01 0.01 0.01 0.1 0.01 0.01 0.1 0 0.1
PCurve 0.1 0.01 0.1 0.01 0.01 0.1 0.01 0.1 0.01 0.01 0

Table 2: The A\, value for the auxiliary task for Figure 7 in the main paper.

Algorithm 1 Adversarial Training with Multi-task Learning

Input: Initialized networks Fj, dataset D, main task 7;,,, auxiliary task Tél). Construct multi-task combination set
S = {Tn} AT, TV, .. 1}
Output:
for number of training epochs do
for number of iterations in each epoch do
Sample minibatch of n images x from D.
for each task combination S; in S do
Let £L:(x,y) = >, Ml(F3(x),y:), where ¢ = 1, ..., #(S;), T; € S;.
Compute adversarial attack images X, g,

argmax ‘Ct (xud'ua Y)7 S't'| ‘Xadv - X| |p S r

Xadv

Training the multi-task model using the generated attack image x,4, by optimizing the following loss
function:

min £4(X,y)
end for
end for
end for
return Neural network model F;

References

[1] https://slideslive.com/38917690/multitask-learning-in-the-wilderness.

[2] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. In ICLR, 2018.

[3] Trevor Standley, Amir Roshan Zamir, Dawn Chen, Leonidas J. Guibas, Jitendra Malik, and Silvio Savarese. Which
tasks should be learned together in multi-task learning? arXiv:1905.07553, 2019.

[4] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In Computer Vision and Pattern
Recognition (CVPR), 2017.

[5] Amir R Zamir, Alexander Sax, , William B Shen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:

Disentangling task transfer learning. In 2018 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2018.

	Proof for Theoretical Analysis
	Experimental Setup
	Cityscapes
	Taskonomy
	Adversarial Training

