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1 Analytic Derivatives

Sinkhorn Layer: The lower-level objective function [2] for the Sinkhorn layer,
given a cost matrix M ∈ Rm×n

+ , is

f(M,P) =

m∑
i=1

n∑
j=1

(MijPij + µPij(log Pij − 1)) (1)

subject to P ∈ U(r, c), where the transport polytope

U(r, c) = {P ∈ Rm×n
+ | P1n = r, PT1m = c} (2)

is defined for the prior probability vectors r ∈ Rm
+ and c ∈ Rn

+ with
∑

r = 1
and

∑
c = 1.

We can write the optimization problem as

p? = arg min
P

f(m,p)

subject to Ap = d
p > 0

(3)

where p is the vectorized (flattened) form of P, m is the vectorized form of M,
and

A = Ã−i (4)

d = d̃−i (5)

Ã =

(
e1, . . . , e1 . . . em, . . . , em

In . . . In

)
(6)

d̃ =

(
r
c

)
(7)

where the subscript−i denotes removal of the ith (any) row, and Ã ∈ R(m+n)×(mn)

is a 2×m block matrix of standard basis vectors ei ∈ Rm and identity matrices
In ∈ Rn×n.

For reference, we replicate the relevant lemma from the main paper.
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Lemma 1. Consider a function f : Rn × Rm → R and let A ∈ Rp×m and
d ∈ Rp with rank(A) = p define a set of p under-constrained linear equations
Au = d. Also let y(x) ∈ arg minu f(x,u) subject to Au = d. Assume that
y(x) exists and that f(x,u) is second-order differentiable in the neighborhood of
u = y(x). Set H = D2

Y Y f(x,y) and B = D2
XY f(x,y). Then

Dy(x) =
(
H−1AT(AH−1AT)−1AH−1−H−1

)
B. (8)

Therefore, given optimal p?, corresponding to y in Lemma 1, we can compute
the derivative Dp?(m) using (8). We do not need to consider the positivity
constraints, because optimizing the objective function always generates a non-
negative solution P?. The matrix A has already been defined, and the matrices
B and H can be derived as

B = Imn ∈ Rmn×mn (9)

H = diag

{
µ

pij

}
∈ Rmn×mn. (10)

The Hessian H is trivially invertible.
While the derivative can easily be computed using these matrices and Cholesky

inversion to compute (AH−1AT)−1, the memory and computation efficiency of
this approach is extremely inefficient. For example, the memory requirements of
this näıve approach are greater than O(m2n2).

We reduce the memory requirements to O(mn) by instead decomposing the
relevant matrices into block form, and using the sparse structure of the problem
to only store the necessary elements. For example, we store the inverse Hessian
as a vector in Rmn and never form the matrices A or B explicitly. In particular,
we exploit the block structure of AH−1AT to avoid computing the costly inverse
of this (m + n) × (m + n) matrix directly, instead using blockwise inversion to
significantly reduce the amount of computation. Finally, we do not compute the
derivative Dp?(m) ∈ Rmn×mn explicitly. Instead, we build the vector–Jacobian
product DPL(p?)Dp?(m) from left to right, never storing a matrix larger than
m× n.

2 Additional Results

Weaker (pose-only) supervision: Here we explore the types of supervision
that can be used with our model: pose-only and pose + correspondences. Since
both datasets provide ground-truth 2D–3D correspondences, we use them as an
additional source of supervision in the main paper. However, weaker pose-only
supervision can also be used, which expands the applicability of our method,
since ground-truth correspondences are difficult to obtain. Weak supervision via
the backprojection of 3D points into the image provides noisy correspondences,
which does not handle occlusions. Occlusions are rare in the sparse MegaDepth
dataset (> 95% of pose-estimated correspondences match the ground-truth la-
bels) and so weak supervision is unlikely to change the performance. However,
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Table 1. Results on test set of the synthetic ModelNet40 [9] dataset. We report quar-
tiles for rotation error (◦), translation error and reprojection error (◦), and the mean
runtime (in seconds). Results using the RANSAC estimate are denoted with R and
those using weaker pose-only supervision are denoted with L?

c . †Algorithms were run
for a maximum of 30s.

Rotation Error Translation Error Reprojection Error Time

Method Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 x̄

SoftPOSIT [3] 16.1 21.8 28.0 0.33 0.49 0.72 2.82 3.98 5.21 27†

RANSAC [4] 90.8 139 165 0.43 1.15 3.08 4.22 5.87 8.06 30†

GOSMA [1] 10.1 22.1 52.0 0.25 0.46 0.75 1.04 1.62 3.11 30†

Ours L?
c 5.91 11.35 17.99 0.19 0.33 0.56 0.45 0.76 1.21 0.12

Ours Lc 6.08 11.34 18.33 0.34 0.52 0.81 0.56 0.86 1.31 0.12

Ours L?
cR 5.19 11.03 19.06 0.04 0.09 0.19 0.35 0.67 1.19 0.12

Ours LcR 5.49 11.67 20.04 0.04 0.09 0.20 0.37 0.70 1.25 0.12

Ours L?
cR + LM 4.80 10.33 18.38 0.04 0.10 0.21 0.33 0.64 1.16 0.12

Ours LcR + LM 5.07 11.08 19.45 0.04 0.10 0.22 0.35 0.67 1.23 0.12

Ours L?
cLp 5.87 11.07 17.38 0.05 0.10 0.21 0.39 0.68 1.13 0.13

Ours LcLp 4.88 9.66 16.01 0.04 0.08 0.15 0.36 0.61 1.03 0.12

Ours L?
cLpR 4.61 10.18 17.69 0.04 0.09 0.19 0.33 0.63 1.12 0.13

Ours LcLpR 3.33 8.09 15.82 0.04 0.08 0.16 0.28 0.52 1.01 0.12

Ours L?
cLpR + LM 4.26 9.69 17.29 0.05 0.10 0.21 0.32 0.60 1.10 0.13

Ours LcLpR + LM 3.09 7.60 15.28 0.04 0.09 0.17 0.27 0.50 0.98 0.12

Ground-truth 0 0 0 0 0 0 0.18 0.18 0.18 –

there are more occlusions in the dense ModelNet40 dataset. Nonetheless, we only
get a small reduction of 2◦ (rotation) and 0.01 (translation) on the median statis-
tics with weak supervision and still outperform all SOTA methods significantly.
We report the full results in Table 1, where pose-only supervision is denoted L?

c

(since the correspondence loss does not use ground-truth correspondence labels).

Pose refinement: Here we explore the utility of additional post-processing for
improving the pose estimation accuracy. Specifically, we refine the pose estimate
for inlier 2D–3D point pairs using the Levenberg–Marquadt (LM) algorithm [6].
Inliers are determined using a 1◦ threshold from the RANSAC [4] pose estimate.
The results for the ModelNet40 [9] dataset are presented in Table 1 and for the
MegaDepth [7] dataset in Table 2. The refinement process improves the rotation
and reprojection errors but makes little difference to the translation error. This
is not unexpected, because LM optimizes the reprojection error directly, and
small translation perturbations do not affect this measure strongly.

Convergence of globally-optimal algorithms: On the large datasets we are
using, it is not feasible to run the globally-optimal algorithms until convergence,
since this would require months of computation. Even with the 30s limit, evalu-
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Table 2. Results on test set of the real-world MegaDepth [7] dataset. We report
quartiles for rotation error (◦), translation error and reprojection error (◦), and the
mean runtime (in seconds). †Algorithms were run for a maximum of 30s.

Rotation Error Translation Error Reprojection Error Time

Method Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 x̄

SoftPOSIT [3] 1.81 21.4 165 0.24 1.53 6.10 0.92 7.85 24.1 18†

RANSAC [4] 66.6 122 155 6.80 15.2 28.2 4.45 8.77 13.3 30†

GOSMA [1] 8.69 86.8 145 1.07 5.67 9.34 1.30 13.7 37.1 30†

Ours Lc 1.91 4.47 11.39 0.52 1.05 2.34 0.54 1.12 2.81 0.23

Ours LcLp 1.32 3.31 8.84 0.21 0.46 1.08 0.21 0.53 1.64 0.22

Ours LcR 0.44 1.55 7.70 0.05 0.18 0.80 0.06 0.16 1.27 0.23

Ours LcR + LM 0.34 1.31 7.27 0.05 0.18 0.82 0.06 0.13 1.16 0.23

Ours LcLpR 0.34 1.00 4.88 0.04 0.12 0.53 0.06 0.12 0.74 0.22

Ours LcLpR + LM 0.26 0.88 4.68 0.04 0.13 0.59 0.06 0.11 0.64 0.22

Ground-truth 0 0 0 0 0 0 0.02 0.02 0.03 –

ation takes 5 days per method. However, we would still like to quantify this 30s
limit, to see whether there is a runtime–accuracy trade-off that can be obtained.
To do so, we ran GOSMA on 5% of the ModelNet40 test set for 10min each.
This only improved the median results by 2.7◦ (rotation) and 0.04 (translation),
still far from the results we obtain in this paper, which indicates that the 30s
limit is not unreasonable.

Alternative feature matching strategy: At inference time, we can apply al-
ternative feature matching strategies instead of Sinkhorn normalization. Here we
explore the use of the Hungarian algorithm [5] to solve the assignment problem
exactly, enforcing strict one-to-one correspondences, as a drop-in replacement
for the Sinkhorn layer. Indeed, the Sinkhorn algorithm can be viewed as solving
a relaxation of the assignment problem. Note however that the (non-relaxed) as-
signment problem has non-differentiable constraints and so the gradient cannot
be back-propagated through the Hungarian algorithm during end-to-end learn-
ing. Differentiability is not required during inference, however. We present the
results for the ModelNet40 and MegaDepth datasets in Tables 3 and 4. Using
the Hungarian algorithm improves the results, particularly for the MegaDepth
dataset, at the expense of a slight time penalty due to the higher computational
complexity.

Outliers: Here we explore the effect of two types of outliers on our pre-trained
network. First, we add ωm and ωn random outliers to the 2D and 3D point-sets
respectively, for an outlier fraction ω. The outliers are drawn uniformly from
the bounding box enclosing the point-sets, and represent incorrect detections
in the image and 3D model. The results are shown in Table 5 and Figure 1.
They indicate that the method has some inherent robustness to outliers, with
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Table 3. Hungarian feature matching. Results on test set of the synthetic Model-
Net40 [9] dataset, with the Hungarian algorithm replacing the declarative Sinkhorn
layer (denoted “+H”). We report quartiles for rotation error (◦), translation error and
reprojection error (◦), and the mean runtime (in seconds).

Rotation Error Translation Error Reprojection Error Time

Method Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 x̄

Ours Lc 6.08 11.34 18.33 0.34 0.52 0.81 0.56 0.86 1.31 0.12

Ours Lc+H 5.90 11.21 18.28 0.08 0.20 0.43 0.39 0.70 1.18 0.17

Ours LcLp 4.88 9.66 16.01 0.04 0.08 0.15 0.36 0.61 1.03 0.12

Ours LcLp+H 4.74 9.55 15.88 0.03 0.07 0.13 0.32 0.58 1.00 0.15

Ours LcR 5.49 11.67 20.04 0.04 0.09 0.20 0.37 0.70 1.25 0.12

Ours LcR+H 5.38 11.46 19.73 0.04 0.09 0.19 0.35 0.72 1.25 0.17

Ours LcLpR 3.33 8.09 15.82 0.04 0.08 0.16 0.28 0.52 1.01 0.12

Ours LcLpR+H 3.79 8.79 16.29 0.03 0.08 0.16 0.29 0.55 1.05 0.15

Table 4. Hungarian feature matching. Results on test set of the real-world MegaDepth
[7] dataset, with the Hungarian algorithm replacing the declarative Sinkhorn layer (de-
noted “+H”). We report quartiles for rotation error (◦), translation error and repro-
jection error (◦), and the mean runtime (in seconds).

Rotation Error Translation Error Reprojection Error Time

Method Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 x̄

Ours Lc 1.91 4.47 11.39 0.52 1.05 2.34 0.54 1.12 2.81 0.23

Ours Lc+H 1.12 3.66 10.90 0.15 0.49 1.43 0.15 0.58 2.06 0.45

Ours LcLp 1.32 3.31 8.84 0.21 0.46 1.08 0.21 0.53 1.64 0.22

Ours LcLp+H 0.82 2.91 8.57 0.09 0.32 0.94 0.09 0.40 1.48 0.46

Ours LcR 0.44 1.55 7.70 0.05 0.18 0.80 0.06 0.16 1.27 0.23

Ours LcR+H 0.24 0.78 3.67 0.03 0.09 0.42 0.05 0.10 0.54 0.45

Ours LcLpR 0.34 1.00 4.88 0.04 0.12 0.53 0.06 0.12 0.74 0.22

Ours LcLpR+H 0.19 0.53 2.20 0.02 0.06 0.25 0.04 0.08 0.33 0.46

satisfactory performance up to ω = 0.5, with a median error less than 10◦.
Second, we add ωn structured outliers to the 3D point-sets, selected at random
from the set of 3D model points that do not correspond to any 2D point, due
to occlusion, blurring, or the restricted field-of-view of the camera. The results
are shown in Table 6 and Figure 2. The observed level of robustness is similar to
the case of random outliers. It is very likely that including random or structured
outliers during training would improve the robustness of the method at inference
time. However, we wished to explore the inherent robustness of the method, since
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Table 5. Random 2D and 3D outliers. Results on test set of the real-world MegaDepth
[7] dataset, with random outlier points added to the 2D and 3D point-sets. We report
quartiles for rotation error (◦), translation error and reprojection error (◦), for a given
outlier fraction ω.

Rotation Error Translation Error Reprojection Error

Method ω Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Ours LcLp 0 1.32 3.31 8.84 0.21 0.46 1.08 0.21 0.53 1.64

Ours LcLpR 0 0.34 1.00 4.88 0.04 0.12 0.53 0.06 0.12 0.74

Ours LcLpR + LM 0 0.26 0.88 4.68 0.04 0.13 0.59 0.06 0.11 0.64

Ours LcLp 0.1 4.28 7.80 14.55 0.72 1.43 2.84 0.70 1.48 2.79

Ours LcLpR 0.1 0.90 3.15 10.50 0.12 0.37 1.16 0.10 0.35 1.80

Ours LcLpR + LM 0.1 0.70 2.76 10.07 0.10 0.36 1.17 0.09 0.29 1.71

Ours LcLp 0.2 5.58 9.60 17.03 0.94 1.83 3.70 0.91 1.96 3.54

Ours LcLpR 0.2 1.82 5.27 13.65 0.22 0.64 1.58 0.18 0.71 2.53

Ours LcLpR + LM 0.2 1.47 4.86 13.34 0.20 0.62 1.58 0.15 0.62 2.47

Ours LcLp 0.3 6.23 10.60 18.51 1.07 2.11 4.23 1.07 2.29 4.08

Ours LcLpR 0.3 2.86 7.04 16.28 0.36 0.89 2.04 0.30 1.08 3.15

Ours LcLpR + LM 0.3 2.50 6.64 15.97 0.33 0.87 2.04 0.23 1.00 3.11

Ours LcLp 0.4 6.71 11.41 19.77 1.18 2.31 4.57 1.17 2.55 4.54

Ours LcLpR 0.4 3.96 8.77 18.17 0.51 1.13 2.37 0.44 1.41 3.75

Ours LcLpR + LM 0.4 3.57 8.46 17.92 0.48 1.11 2.38 0.37 1.34 3.72

Ours LcLp 0.5 7.02 11.94 20.59 1.26 2.43 4.82 1.29 2.77 4.89

Ours LcLpR 0.5 4.73 10.03 19.86 0.61 1.32 2.69 0.57 1.69 4.26

Ours LcLpR + LM 0.5 4.43 9.69 19.54 0.59 1.30 2.70 0.49 1.64 4.22

one of the benefits of a declarative approach is the ability to include RANSAC
within the data processing pipeline.

LiDAR dataset: We also trained and tested the model on the Data61/2D3D
dataset [8], a dataset of paired 3D LiDAR point-sets and 2D panoramic images
with 10 distinct outdoor scenes, of which 3 were reserved as the test set (IDs 2,
6 and 10). Each panoramic image was converted to a set of regular images with
a 72◦ field-of-view to increase the challenge of the dataset. We used a semantic
segmentation to extract, in 2D and 3D, static objects that do not lie on the
ground plane, for example, buildings and trees, and then randomly downsample
to 1000 points and pixels. Note that the 3D model has no associated visual
information, and so a blind PnP approach is appropriate for this data. The
results are given in Table 7 and show that the model works well on unstructured
laser rangefinder data.

Qualitative results: Additional qualitative results for the MegaDepth dataset
[9] are provided in Figures 3, 4, 5, and 6, including several failure cases. This
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Fig. 1. Random 2D and 3D outliers. Rotation (left) and translation (right) error with
respect to the test-time additive outlier fraction ω on the MegaDepth dataset, using
our best model with LM refinement (Ours LcLpR + LM). We do not visualize the
outlier errors, defined as any point > Q3 + 1.5(Q3 − Q1), to ensure a good scale for
visualization.

covers every scene in the test set. Recall that SoftPOSIT [3] is initialized close
to the ground-truth camera pose, and so possesses privileged information and is
not directly comparable.

Two videos of sample point-sets from the MegaDepth dataset [9], with the
camera frusta found by GOSMA (red), our method (blue), and the ground-truth
(black), are included in the supplementary material folder. The ground-truth and
our camera frusta overlap completely.

Experimental setup details: The GOSMA algorithm [1] requires a translation
domain to be provided, since the search space is otherwise unbounded. We select
a search space that encompasses all reasonable camera positions, including the
ground-truth camera location, without being too large. To do so, we compute the
coordinates of an axis-aligned bounding box that includes all 3D points except
outliers (points with coordinates below the 2.5th percentile or above the 97.5th

percentile); we extend the bounding box to include the ground-truth camera
position; and we expand the resulting translation domain by 10%.
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Table 6. Structured 3D outliers. Results on test set of the real-world MegaDepth [7]
dataset, with structured outlier points added to the 3D point-sets. We report quartiles
for rotation error (◦), translation error and reprojection error (◦), for a given outlier
fraction ω.

Rotation Error Translation Error Reprojection Error

Method ω Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Ours LcLp 0 1.32 3.31 8.84 0.21 0.46 1.08 0.21 0.53 1.64

Ours LcLpR 0 0.34 1.00 4.88 0.04 0.12 0.53 0.06 0.12 0.74

Ours LcLpR + LM 0 0.26 0.88 4.68 0.04 0.13 0.60 0.06 0.11 0.64

Ours LcLp 0.1 3.53 7.17 15.83 0.55 1.11 2.62 0.75 1.33 2.53

Ours LcLpR 0.1 1.09 3.78 11.88 0.14 0.45 1.30 0.15 0.47 1.73

Ours LcLpR + LM 0.1 0.84 3.25 11.39 0.11 0.41 1.31 0.13 0.38 1.66

Ours LcLp 0.2 4.09 8.07 17.13 0.63 1.29 3.09 0.92 1.62 2.95

Ours LcLpR 0.2 1.73 5.43 15.11 0.22 0.68 1.75 0.23 0.78 2.37

Ours LcLpR + LM 0.2 1.34 4.91 14.75 0.19 0.64 1.76 0.18 0.68 2.31

Ours LcLp 0.3 4.62 8.83 18.55 0.68 1.44 3.48 1.07 1.85 3.30

Ours LcLpR 0.3 2.59 7.28 18.29 0.32 0.90 2.29 0.35 1.13 3.02

Ours LcLpR + LM 0.3 2.13 6.78 18.20 0.28 0.87 2.33 0.28 1.05 2.96

Ours LcLp 0.4 4.91 9.54 19.43 0.75 1.56 3.75 1.18 2.05 3.58

Ours LcLpR 0.4 3.40 8.91 20.73 0.43 1.15 2.73 0.50 1.44 3.58

Ours LcLpR + LM 0.4 2.95 8.62 20.77 0.38 1.12 2.76 0.41 1.36 3.53

Ours LcLp 0.5 5.23 9.99 19.90 0.81 1.65 3.91 1.29 2.24 3.81

Ours LcLpR 0.5 4.31 10.29 23.65 0.54 1.38 3.14 0.66 1.76 4.09

Ours LcLpR + LM 0.5 3.87 10.01 23.75 0.51 1.35 3.19 0.57 1.68 4.05

Table 7. Results on test set of the LiDAR Data61/2D3D [8] dataset. We report quar-
tiles for rotation error (◦), translation error (metres) and reprojection error (◦), and
the mean runtime (in seconds).

Rotation Error Translation Error Reprojection Error Time

Method Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 x̄

Ours Lc 2.14 4.91 10.37 2.12 3.99 7.99 1.17 2.05 3.70 0.14

Ours LcLp 1.96 4.28 9.50 1.64 3.00 6.52 0.94 1.67 3.15 0.14

Ours LcR 0.36 1.18 7.16 0.19 0.88 4.95 0.11 0.34 2.59 0.14

Ours LcR + LM 0.31 0.92 6.71 0.18 0.74 4.58 0.11 0.28 2.48 0.14

Ours LcLpR 0.35 1.02 5.89 0.17 0.73 4.20 0.11 0.28 2.10 0.14

Ours LcLpR + LM 0.30 0.80 5.41 0.16 0.63 3.82 0.11 0.24 1.95 0.14
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Fig. 2. Structured 3D outliers. Rotation (left) and translation (right) error with respect
to the test-time additive outlier fraction ω on the MegaDepth dataset, using our best
model with LM refinement (Ours LcLpR + LM). We do not visualize the outlier errors,
defined as any point > Q3 + 1.5(Q3 −Q1), to ensure a good scale for visualization.
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Fig. 3. Qualitative results for the MegaDepth dataset. The 3D point-sets are projected
onto the image plane using the estimated camera poses found using (from top to
bottom) SoftPOSIT [3], RANSAC [4], GOSMA [1], our method, and the ground-truth.
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Fig. 4. Qualitative results for the MegaDepth dataset. The 3D point-sets are projected
onto the image plane using the estimated camera poses found using (from top to
bottom) SoftPOSIT [3], RANSAC [4], GOSMA [1], our method, and the ground-truth.
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Fig. 5. Qualitative results for the MegaDepth dataset. The 3D point-sets are projected
onto the image plane using the estimated camera poses found using (from top to
bottom) SoftPOSIT [3], RANSAC [4], GOSMA [1], our method, and the ground-truth.
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Fig. 6. Qualitative results for the MegaDepth dataset. The 3D point-sets are projected
onto the image plane using the estimated camera poses found using (from top to
bottom) SoftPOSIT [3], RANSAC [4], GOSMA [1], our method, and the ground-truth.
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