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We present IP-Net, Implicit Part Network which, given a point cloud (single
view, sparse or dense) of a dressed human, reconstructs the outer 3D surface,
inner body surface and predicts part-correspondences to the SMPL model. In
the following sections we describe our body shape under clothing registrations
which builds on top of the method proposed by [6] (code by [6] is not public).
We then go on to show additional results for our method in subsequent sections.

1 Data preparation

Body shape under clothing registration. To train IP-Net we require body
shape under clothing, for the inner surface prediction. Given a 3D scan, we
propose an optimization based approach to register the body mesh, B, under
clothing. Our approach builds on [6]. Similar to [6], we model B = B(·) us-
ing a modified SMPL, M(·), which uses pose(θ), shape(β) and translation(t)
parameters to model undressed humans in 3D.

M(β,θ, t) = W (T (β,θ), J(β),θ,W) + t (1)

T (β,θ) = T + Bs(β) + Bp(θ), (2)

where T is a base template mesh with 6890 vertices in a canonical T-pose.
Bp(·) represents the pose dependent deformations of a skeleton J(β). Bs(·) rep-
resents the shape dependent deformations. The model is skinned, W (·), with
blend weights, W.

We further make the template T optimizable to model surface variations
outside the PCA shape space of the SMPL model. We incorporate translation,
t in pose parameters, θ for brevity in further notation.

B = B(β,θ,T) = W (T (β,θ,T), J(β),θ,W) (3)

T (β,θ,T) = T + Bs(β) + Bp(θ). (4)

We first segment garment and skin parts on the scans using the approach pro-
posed by Bhatnagar et al.[3] and initialize the pose and shape parameters using
registration proposed in [2,4]. We use a similar objective Eskin (Eq. 3 in [6]) to
register the visible skin parts on the scans. To register skin parts underneath the
garments we make slight modifications to the Ecloth term in Eq. 4 [6] by replac-
ing the Geman-McClure cost function by a hinge cost and also add a geodesic
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term to force smoothness near the garment boundaries. The objective can be
formally written as follows:

Ecloth =
∑
vi2S

gi ∗ (1− li) ∗ (H(d1(vi, p̂i), c) + d2(vi, p̂i)) (5)

H(x, c) =

{
x if x < c

0 otherwise
(6)

d1(vi, p̂i) =

{
d(vi,B) if vi is outside B
0 otherwise

(7)

d2(vi, p̂i) =

{
w ∗ d(vi,B) if vi is inside B
0 otherwise

(8)

where H(·) acts as a hinge for loose clothing, d2(·) and d1(·) are the scaled
distance functions to ensure that ‘body is brought close to the garment surface’
and ‘body should not intersect the garment surface’ respectively. li and gi are
the skin identifier label and normalised geodesic cost respectively. We use w = 20
and c = 0.01.

We additionally enforce facial landmark matching to register better facial
details. To get 3D facial landmarks for a scan we render it from multiple view-
points and run openpose [1] to get 2D facial landmarks on images. We then solve
graphcut to lift the multi-view landmarks to 3D (this is similar to what [3] use
for lifting 2D segmentation to scans). We use the following objective to match
facial landmarks between the body and the scan

Eface = |L− f(B)|2, (9)

where L, f are facial landmarks on scan and SMPL facial landmark regressor
respectively.

In order to ensure that B is smooth and retains human body like appearance
we add the following regularization term. For the skin vertices it is important
to ensure that the surface near the garment boundary is tightly coupled to the
underlying body where as vertices away from the boundary can deform to explain
hair, hands etc.

Elap =
∑
vi2B

{
(1− li) ∗ |Li(v

init
i )− Li(vi)|2+

li ∗ (1− gi) ∗ |Li(v
init
i )− Li(vi)|2

}
.

(10)

Here Li is the laplacian operator at vertex vi. li and gi are the skin label and
normalised geodesic cost respectively.

Overall objective: We jointly optimise the SMPL parameters (θ, β) and the
template T, to minimise the objectives described above.

E(θ,β,T) = wskinEskin + wfaceEface + wclothEcloth + wlapElap, (11)
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Loose fit

Tight fit

Fig. 1: To train IP-Net we require estimating body shape under clothing from a dressed
scan. We show (L to R) input scan, estimated body shape, estimated body overlay-ed
with scan.

where w are the weights associated with the corresponding objectives. We found
scheduling of weights important for a smooth registration process.

wfskin/cloth/faceg = cfskin/cloth/faceg ∗ k,

wlap = clap/k (12)

In our experiments we keep cskin, cface, cgarm and clap as 5, 1, 5 and 100 re-
spectively. k denotes optimization iteration. We show qualitative results in Fig.
1

2 Evaluating body shape prediction by IP-Net

We evaluate our body shape estimation on BUFF [6]. We report the main results
in Sec. 4.4 (main paper). We provide more detailed results here in Table 1.

3 Why not independent networks for inner and outer
surfaces?

In Sec. 4.6 (main) paper we quantitatively show that having a joint model sig-
nificantly reduces the inter-penetrations between the inner and the outer surface
predictions. We show qualitative results in Fig. 2

4 IP-Net: Implementation details

The input to IP-Net is a 3D voxel grid obtained by voxelizing the sparse input
point cloud into a 128x128x128 grid. IP-Net encoder f enc(·|wenc), consists of
3x{Conv3D, Conv3D+stride} layers. IP-Net part predictor fpart(·|wpart) and
IP-Net part-conditioned classifiers {fp(·|wp)}N�1

p=0 , each consist of 2x{FC} layers.
All except the final layer of IP-Net have Relu activation. We use categorical
cross-entropy losses with Adam optimizer for training.
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t-shirt, long pants soccer out�t

tilt-twist-left 00005 00096 00032 03223 00114 00005 00032 03223 00114

Yang et al.[5] 17.29 18.68 13.76 17.90 15.42 16.77 16.96 20.41 16.40
Zhang et al.[6] 2.52 2.83 2.36 2.27 2.31 2.44 2.28 2.17 2.23
Ours 3.98 3.33 4.51 5.34 6.29 2.87 3.65 5.82 4.93

hips 00005 00096 00032 03223 0014 00005 00032 03223 0014

Yang et al.[5] 21.02 21.66 15.77 21.84 18.05 22.52 16.81 22.03 17.54
Zhang et al.[6] 2.75 2.64 2.63 2.40 2.56 2.58 2.50 2.38 2.51
Ours 3.83 3.86 3.47 5.96 7.31 3.23 3.56 5.72 5.06

shoulders-mill 00005 00096 00032 03223 0014 00005 00032 03223 0014

Yang et al.[5] 18.77 NA 18.02 18.15 14.78 18.74 17.88 19.74 16.37
Zhang et al.[6] 2.49 NA 2.72 2.26 2.59 2.83 2.28 2.33 2.51
Ours 3.40 NA 3.68 6.12 6.75 3.29 3.85 5.99 6.59

Table 1: Body Shape Evaluation on BUFF [6] We compare vertex-to-surface RMSE
(mm). Note that [6] use 4D scan sequence to jointly optimize the shape of a subject
whereas we make a prediction using just the �rst frame of the sequence. Moreover, we
do not use BUFF for training. It is interesting to note that we report higher error on
subjects 00114 and 03223. These are female subjects in the dataset and we trained
IP-Net inner surface classi�er with scans registered to male SMPL model. The error
for male subjects is signi�cantly low

5 Limitations

We discuss some important limitations of our approach in Fig. 3

{ IP-Net struggle with out of distribution poses. In Fig. 3 �rst set, we have a
person bending forward, and a similar pose was not present in our training
set.

{ Our registration fails in the presence of non-clothing objects.
{ Facial details still need to be improved.
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Fig. 2: Advantage of IP-Net being a joint model for inner body surface and outer
surface. In each set (L to R) we show input point cloud, inner (blue) and outer (o�-
white) surface reconstruction by two independent networks, IP-Net reconstructions.
reconstructions from IP-Net have visibly fewer inter-penetrations.

Fig. 3: We present some of the failure cases of our proposed approach. In the �rst set,
we show the input point cloud and the generated surface reconstruction by IP-Net.
Unseen poses are di�cult for IP-Net. In the second set we show the GT scan with
the person holding an object, the IP-Net reconstruction and the resultant registration
with artefacts around the hand. Our approach cannot deal with non-clothing objects.
In the third set we show the input point cloud, the IP-Net generated surface and the
registration. Notice that facial details are missing.
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