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A Proof of Theorems

In this section, we provide proofs for the three theorems in the paper. For
completeness, we provide notations described in the paper again. We consider a
Multiple Layer Perceptron (MLP), fθ(x), represented as a layer-wise linear and
nonlinear transform, as follows:

hk = Wkxk−1, xk = φ(hk), k = 1, ...,K, (1)

where x0 = x, Wk ∈ Rdk×dk−1 and the learnable parameters θ = {Wk, k =
1, ...,K}. To simplify the notation, we set xK = hK as the output of the network
fθ(x). We denote the covariance matrix of the layer input Σx = Ep(x)(xxT ) and

the covariance matrix of the layer output-gradient Σ∇h = Eq(y|x)( ∂`∂h
T ∂`
∂h ). Here,

we follow matrix notation, where all the vectors are column vectors, except the
gradient vectors, which are row vectors.

Proposition 1. Given Σx, Σ∇h and F = Σx ⊗Σ∇h, we have: 1) λmax(F ) =
λmax(Σx) · λmax(Σ∇h); 2) κ(F ) = κ(Σx) · κ(Σ∇h).

Proof. The proof is mainly based on the conclusion from Theorem 4.2.12 in [5],
which is restated as follows:

Lemma 1. Let A ∈ Rm×m and B ∈ Rn×n. Furthermore, let λa be the arbitrary
eigenvalue of A and λb be the arbitrary eigenvalue of B. We have λa · λb as an
eigenvalue of A⊗B. Furthermore, any eigenvalue of A⊗B arises as a product
of the eigenvalues of A and B.

Based on the definitions of Σx and Σ∇h, we have that Σx and Σ∇h are
positive semidefinite. Therefore, all the eigenvalues of Σx/Σ∇h are non-negative.
Let λ(A) denote the eigenvalue of matrix A. Based on Lemma 1, we have
λ(F ) = λ(Σx)λ(Σ∇h). Since λ(Σx) and λ(Σ∇h) are non-negative, we thus have
λmax(F ) = λmax(Σx) · λmax(Σ∇h). Similarly, we can prove that λmin(F ) =
λmin(Σx) · λmin(Σ∇h). We thus have κ(F ) = κ(Σx) · κ(Σ∇h).



2 Huang et al.

Theorem 1. Given a rectifier neural network (Eqn. 1) with nonlinearity φ(αx) =

αφ(x) (α > 0 ), if the weight in each layer is scaled by Ŵk = αkWk (k = 1, ...,K

and αk > 0), we have the scaled layer input: x̂k = (
k∏
i=1

αi)xk. Assuming that

∂L
∂ĥK

= µ ∂L
∂hK

, we have the output-gradient: ∂L
∂ĥk

= µ(
K∏

i=k+1

αi)
∂L
∂hk

, and weight-

gradient: ∂L
∂Ŵk

= (µ
K∏

i=1,i6=k
αi)

∂L
∂Wk

, for all k = 1, ...,K.

Proof. (1) We first demonstrate that the scaled layer input x̂k = (
k∏
i=1

αi)xk

(k = 1, ...,K), using mathematical induction. It is easy to validate that ĥ1 = α1h1

and x̂1 = α1x1. We assume that ĥt = (
t∏
i=1

αi)ht and x̂t = (
t∏
i=1

αi)xt hold, for

t = 1, ..., k. When t = k + 1, we have

ĥk+1 = Ŵk+1x̂k+1 = αk+1Wk+1(

k∏
i=1

αi)xk = (

k+1∏
i=1

αi)hk+1. (2)

We thus have

x̂k+1 = φ(ĥk+1) = φ((

k+1∏
i=1

αi)hk+1) = (

k+1∏
i=1

αi)φ(hk+1) = (

k+1∏
i=1

αi)xk+1. (3)

By induction, we have x̂k = (
k∏
i=1

αi)xk, for k = 1, ...,K. We also have

ĥk = (
k∏
i=1

αi)hk for k = 1, ...,K.

(2) We then demonstrate that the scaled output-gradient ∂L
∂ĥk

= µ(
K∏

i=k+1

αi)
∂L
∂hk

for k = 1, ...,K. We also provide this using mathematical induction. Based on
back-propagation, we have

∂L
∂xk−1

=
∂L
∂hk

Wk,
∂L

∂hk−1
=

∂L
∂xk−1

∂xk−1
∂hk−1

, (4)

and

∂x̂k−1

∂ĥk−1
=

∂(
k−1∏
i=1

αi)xk−1

∂(
k−1∏
i=1

αi)hk−1

=

(
k−1∏
i=1

αi)∂xk−1

(
k−1∏
i=1

αi)∂hk−1

=
∂xk−1
∂hk−1

, k = 2, ...,K. (5)

Based on the assumption that ∂L
∂ĥK

= µ ∂L
∂hK

, we have ∂L
∂ĥK

= µ(
K∏

i=K+1

αi)
∂L
∂hK

1.

1 We denote
b∏
i=a

αi = 1 if a > b.
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We assume that ∂L
∂ĥt

= µ(
K∏

i=t+1

αi)
∂L
∂ht

holds, for t = K, ...k. When t = k − 1,

we have

∂L
∂x̂k−1

=
∂L
∂ĥk

Ŵk = µ(

K∏
i=k+1

αi)
∂L
∂hk

αkWk = µ(

K∏
i=k

αi)
∂L

∂xk−1
. (6)

We also have

∂L
∂ĥk−1

=
∂L

∂x̂k−1
.
∂x̂k−1

∂ĥk−1
= µ(

K∏
i=k

αi)
∂L

∂xk−1
.
∂xk−1
∂hk−1

= µ(

K∏
i=k

αi)
∂L

∂hk−1
. (7)

By induction, we thus have ∂L
∂ĥk

= µ(
K∏

i=k+1

αi)
∂L
∂hk

, for k = 1, ...,K.

(3) Based on ∂L
∂Wk

= ∂L
∂hk

T
xTk−1, x̂k = (

k∏
i=1

αi)xk and ∂L
∂ĥk

= µ(
K∏

i=k+1

αi)
∂L
∂hk

,

it is easy to prove that ∂L
∂Ŵk

= (µ
K∏

i=1,i6=k
αi)

∂L
∂Wk

for k = 1, ...,K.

Theorem 2. Under the same condition of Theorem 1, for the normalized network
with hk = Wkxk−1 and sk = BN(hk), we have: x̂k = xk, ∂L

∂ĥk
= 1

αk

∂L
∂hk

,
∂L
∂Ŵk

= 1
αk

∂L
∂Wk

, for all k = 1, ...,K.

Proof. (1) Following the proof in Theorem 1, by mathematical induction, it is

easy to demonstrate that ĥk = αkhk, ŝk = sk and x̂k = xk, for all k = 1, ...,K.
(2) We also use mathematical induction to demonstrate ∂L

∂ĥk
= 1

αk

∂L
∂hk

for all

k = 1, ...,K.
We first show the formulation of the gradient back-propagating through each

neuron of the BN layer as:

∂L
∂h

=
1

σ
(
∂L
∂s
− EB(

∂L
∂s

)− EB(
∂L
∂s
s)s), (8)

where σ is the standard deviation and EB denotes the expectation over mini-batch
examples. We have σ̂K = αKσK based on ĥK = αKhK . Since ŝK = sK , we have
∂L
∂ŝK

= ∂L
∂sK

. Therefore, we have ∂L
∂ĥK

= σK

σ̂K

∂L
∂hK

= 1
αK

∂L
∂hK

from Eqn. 8.

Assume that ∂L
∂ĥt

= 1
αt

∂L
∂ht

for t = K, ..., k + 1. When t = k, we have:

∂L
∂x̂k

=
∂L

∂ĥk+1

Ŵk+1 =
1

αk+1

∂L
∂hk+1

αk+1Wk+1 =
∂L
∂xk

. (9)

Following the proof for Theorem 1 , it is easy to get ∂L
∂ŝk

= ∂L
∂sk

. Based on
∂L
∂ŝk

= ∂L
∂sk

and ŝk = sk, we have ∂L
∂ĥk

= σk

σ̂k

∂L
∂hk

= 1
αk

∂L
∂hk

from Eqn. 8.

By induction, we have ∂L
∂ĥk

= 1
αk

∂L
∂hk

, for all k = 1, ...,K.

(3) Based on ∂L
∂Wk

= ∂L
∂hk

T
xTk−1, x̂k = xk and ∂L

∂ĥk
= 1

αk

∂L
∂hk

, we have that
∂L
∂Ŵk

= 1
αk

∂L
∂Wk

, for all k = 1, ...,K.
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Fig. I. Conditioning analysis for unnormalized (‘Plain’) and normalized (‘BN’) networks.
We show the maximum eigenvalue λmax and the generalized condition number κp for
comparison between the full FIM F and sub-FIMs {Fk}. The experiments are performed
on an 8-layer MLP with 24 neurons in each layer, for MNIST classification. The input
image is center-cropped and resized to 12 × 12 to remove uninformative pixels. We
report the corresponding spectrum at random initialization [8].
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Fig. II. Conditioning analysis for unnormalized (‘Plain’) and normalized (‘BN’) net-
works. We show the maximum eigenvalue λmax and the generalized condition number
κp for comparison between the full second moment matrix of sample gradient M and
sub-{Mk}. The experiments are performed on an 8-layer MLP with 24 neurons in
each layer, for MNIST classification. The input image is center-cropped and resized
to 12× 12 to remove uninformative pixels. We report the corresponding spectrum at
random initialization [8].
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Fig. III. Conditioning analysis for unnormalized (‘Plain’) and normalized (‘BN’) net-
works. The experiments are performed on a 4-layer MLP with 24 neurons in each layer,
for MNIST classification. The input image is center-cropped and resized to 12× 12 to
remove the uninformative pixels. We report the corresponding spectrum at random
initialization [8].
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Fig. IV. Conditioning analysis for unnormalized (‘Plain’) and normalized (‘BN’) net-
works. The experiments are performed on a 4-layer MLP with 36 neurons in each layer,
for MNIST classification. The input image is center-cropped and resized to 12× 12 to
remove the uninformative pixels. We report the corresponding spectrum at random
initialization [8].
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B Comparison Between the Analyses with Full Curvature
and Sub-curvature Matrices

In Section 3 of the paper, we conduct experiments to analyze the training
dynamics of the unnormalized (‘Plain’) and batch normalized [6] (‘BN’) networks,
on an 8-layer MLP, by analyzing the spectrum of the full Fisher Information
Matrix (FIM) and sub-FIMs. We only report the sub-FIMs with respect to the
3rd and 6th layer, due to the page limit. Here, we show the corresponding results
for all sum-FIMs in Figure I.

We also conduct experiments to analyze ‘Plain’ and ‘BN’, using the second
moment matrix of sample gradient M. The results are shown in Figure II. We
have the same observation as when using the full FIM. It is interesting to
use sub-Hessian for the conditioning analysis, since Hessian provides a good
characterization of the landscapes [9]. We believe that the max eigenvalue of
sub-Hessian can also indicate the magnitude of the weight-gradient in each layer,
like the sub-FIM/sub-M. However, the general condition number shown in this
paper is not well defined for sub-Hessian, since it has negative eigenvalues.

We further conduct experiments on a 4-layer MLP with 24 neurons in each
layer, and a 4-layer MLP with 36 neurons in each layer. The corresponding results
with different curvature matrices are shown in Figures III and IV, respectively.

Complexity Analysis Here, we provide the complexity analysis. For simpli-
fying notation, we consider a L layer MLP with d neurons in each layer. The
example number is N . For full conditioning analysis, the cost includes computing
the curvature matrix (O(N(Ld2)2)) and the eigen-decomposition (O((Ld2)3)).
The computation cost is reduced to O(NL(d2)2) +O(L(d2)3) for layer-wise con-
ditioning analysis, and further reduced to O(NLd2) +O(Ld3) using our efficient
approximation. Note that we only consider naive implementation without any
tricks in acceleration (e.g., using implicitly restarted Lanczos method [9]).

C More Experiments in Exploring Batch Normalized
Networks

In this section, we provide more experimental results relating to the exploration
of batch normalization (BN) [6] by layer-wise conditioning analysis, which is
discussed in Section 4 of the paper. We include experiments that train neural
networks with Stochastic Gradient Descent (SGD), experiments relating to weight
domination and experiments relating to dying/full neurons, as discussed in the
paper.

C.1 Experiments with SGD

Here, we perform experiments on the Multiple Layer Perceptron (MLP) for
MNIST classification and Convolutional Neural Networks (CNNs) for CIFAR-10
and ImageNet [1] classification.
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Fig.V. Analysis of the magnitude of the layer input (indicated by λmax(Σx)) and layer
output-gradient (indicated by λmax(Σ∇h) ). We use the SGD with a batch size of 1024
to train the 20-layer MLP for classification. The results of (a)(b)(c) are under random
initialization [8], while (d)(e)(f) use He-initialization [2].
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Fig.VI. Analysis on the condition number of the layer input (indicated by κp(Σx))
and layer output-gradient (indicated by κp(Σ∇h) ). The experimental setups are the
same as in Figure V.

MLP for MNIST Classification Here, we use the same experimental setup
as the experiments described in the paper for MNIST classification, except that
we use SGD with a batch size of 1024. The results are shown in Figures V and
VI. We obtain similar results as those obtained using full gradient descent, as
described in Section 4 of the paper.

We also conduct experiments using the Adam optimizer [7]. We again use a
batch size of 1024 to train the 20-layer MLP for classification. We report the
best training loss among the learning rates in {0.001, 0.0005, 0.0001}. The results
under random initialization [8] are shown in Figure VII. We observe that: 1)
‘Plain’ with the Adam optimizer can well adjust the magnitude of the layer
input (Figure VII (a)) and layer output-gradient (Figure VII (b)) during training,
compared to ‘Plain’ with the naive SGD optimizer (Figure V (a) and (b)); 2)
‘BN’ can better stabilize the training; 3) ‘BN’ has better conditioning than ‘Plain’
during training.

CNN for CIFAR-10 Classification We perform a layer-wise conditioning
analysis on the VGG-style and residual network [3] architectures. Note that we
view the activation in each spatial location of the feature map as an independent
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Fig.VII. Layer-wise conditioning analysis results with Adam optimizer [7]. We use
a batch size of 1024 to train the 20-layer MLP for classification. Figures (a) and (b)
show the magnitude of the layer input and layer output-gradient, respectively. Figure
(c) shows the training loss with respect to the epochs. Figures (d) and (e) show the
condition number of the layer input and layer output-gradient, respectively.
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Fig.VIII. Layer-wise conditioning analysis on the VGG-style network for CIFAR-
10 classification. Figures (a) and (b) show the condition number of the layer input
(indicated by κp(Σx)) and layer output-gradient (indicated by κp(Σ∇h) ), respectively.
Figure (c) shows the training loss with respect to the epochs.
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Fig. IX. Layer-wise conditioning analysis on the residual network [3] for CIFAR-10
classification. Figures (a) and (b) show the condition number of the layer input (indicated
by κp(Σx)) and layer output-gradient (indicated by κp(Σ∇h) ), respectively. Figure (c)
shows the training loss with respect to the epochs.
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example, when calculating the covariance matrix of the convolutional layer input
and output-gradient. This process is similar to the process proposed in BN to
normalize the convolutional layer [6].

We use the 20-layer residual network described in the paper [3] for CIFAR-
10 classification. The VGG-style network is constructed based on the 20-layer
residual network, removing the residual connections.

We use the same setups as described in [3], except that we do not use weight
decay in order to simplify the analysis and run the experiments on one GPU.
Since the unnormalized networks (including the VGG-style and residual network)
do not converge with the large learning rate of 0.1, we run additional experiments
with a learning rate of 0.01, and report these results.

Figures VIII and Figure IX show the results for the VGG-Style and residual
network, respectively. We obtain the same observations as those made for the
MLP for MNIST classification.
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Fig.X. Layer-wise conditioning analysis on the residual network [3] for ImageNet
classification. Figures (a) and (b) show the condition number of the layer input (indicated
by κp(Σx)) and layer output-gradient (indicated by κp(Σ∇h) ), respectively. Figure (c)
shows the training loss with respect to the training iterations.

CNN for ImageNet Classification We also perform a layer-wise conditioning
analysis on ImageNet using a 18-layer residual network [3]. We use the same
setups as described in [3], except that we run the experiments on one GPU.
Figure X show the results. We also obtain the same observations as those made
for the MLP for MNIST classification.

C.2 Experiments Relating to Weight Domination

Gradient Explosion of BN In Section 4.1 of the paper, we mention that,
even for the network with BN, there is still the possibility that the magnitude
of the weight in certain layers is significantly increased. Here, we provide the
experimental results.

We conduct experiments on a 100-layer batch normalized MLP with 256
neurons in each layer for MNIST classification. We calculate the maximum
eigenvalues of the sub-FIMs, and provide the results for the first seven iterations
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(b) 110-layer VGG-style CNN

Fig.XI. Experiments relating to gradient explosion of BN in deep networks without
residual connections. We show the results of (a) a 100-layer MLP for MNIST classification
and (b) a 110-layer VGG-style CNN for CIFAR-10 classification.
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Fig.XII. Exploring the effectiveness of weight domination on a 16-layer VGG network
with BN for CIFAR-10 classification. We simulate weight domination in a specific layer
by blocking its weight updates. We denote ‘0’ in the legend as the state of weight
dominant (the first digit represents the first three consecutive convolutional layers).

in Figure XI (a). We observe that the weight-gradient has exponential explosion
at initialization (‘Iter0’). After a single step, the first-step gradients dominate the
weights due to gradient explosion in lower layers, hence the exponential growth in
the magnitude of the weight. This increased magnitude of weight leads to small
weight gradients (‘Iter1’ to ‘Iter7’), which is caused by BN, as discussed in the
paper. Therefore, some layers (especially the lower layers) of the network enter
the state of weight domination. We obtain similar observations on the 110-layer
VGG-style network for CIFAR-10 classification, as shown in Figure XI (b).

Investigation of Weight Domination Weight domination sometimes harms
the learning of the network, because this state limits the representational ability
of the corresponding layer. We conducted experiments on a five-layer MLP and
provided the results in the paper. Here, we also conduct experiments on CNNs
for CIFAR-10 datasets, shown in Figure XII. We observe that the network with
certain layers being in states of weight domination can still decrease the loss, but
with degenerated performance.

C.3 Experiments Relating to Dying Neurons

In Section 4.2 of the paper, we mentioned that ‘Plain’ has dying/full neurons,
and the number of dying/full neurons increases as the layer number increases.
Figure XIII shows the details of this phenomenon.
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Fig.XIII. Dying and full neurons during training. The experiments are performed on
a 20-layer MLP with 256 neurons in each layer, for MNIST classification. We show the
results corresponding to the He-initialization [2].
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Fig.XIV. Comparison of top-1 training errors (solid lines) and test errors (dashed
lines) of ResNet and ResNetLastBN on ImageNet.

D More Results for Deep Residual Network

D.1 Results on ImageNet classification

As mentioned in Section 5.1 of the paper, we validate the effectiveness of
ResNetLastBN on the large-scale ImageNet classification, with 1000 classes [1].
Here, we provide the details.

We use the official 1.28M training images as the training set, and evaluate the
top-1 classification errors on the validation set with 50k images. We perform the
experiments using the 18-layer and 50-layer networks. We follow the same setup
as described in [3], except that 1) we train over 100 epochs with an extra lowered
learning rate at the 90th epoch; 2) we use one GPU for the 18-layer network and
four GPUs for 50-layer network.

Figures XIV (a) and (b) show the training results for the 18-layer and
50-layer residual networks, respectively. We find ResNetLastBN has a better
optimization efficiency than ResNet, at both depths. Table A shows the validation
errors. ResNetLastBN has a slightly improved performance, under the standard
hyper-parameters configuration. Due to the improved optimization efficiency of
ResNetLastBN , the advantage can be further amplified if we add the magnitude
of the regularization, e.g., when we use a weight decay (WD) of 0.0002 or add a
dropout (DR) of 0.3, ResNetLastBN achieves better performance.
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Fig.XV. Conditioning analysis on the last linear layer of 1202-layer ‘ResNet’, ‘PreRes-
Net’ and ‘PreResNetv1’ for CIFAR-10 classification.

Table A. Comparison of top-1 validation errors (%, single model and single-crop) on
the 18- and 50-layer residual networks for ImageNet classification.

depth-18 depth-50
Method standard WD=0.0002 DR=0.3 standard WD=0.0002 DR=0.3

ResNet 29.78 30.07 30.62 23.97 24.37 23.81
ResNetLastBN 29.38 28.96 29.32 23.76 23.49 23.47

D.2 Conditioning Analysis on PreResNet

As mentioned in Section 5.2 of the paper, we investigate which component
in PreResNet [4] (e.g., the pre-activation or the extra BN layer) benefits the
optimization behaviors, using our conditioning analysis. Here, we provide the
details. We use the exact same setups as the previous experiments on ResNet.
Figure XV shows the results of conditioning analysis on the last linear layer of
the 1202-layer network.

D.3 More Results of Putting a BN Layer before the Last Linear
Layer

We also observe that the method of putting a BN layer before the last linear
layer is useful in other architectures, in which the last linear layer’s input x has
significantly varying magnitude (indicated by λΣx ) during training (e.g., the
ResNets case). We conduct experiments on the VGG-style networks (without
BN) and ResNets (without BN) for CIFAR-10 classification. The setup is the
same as in Section C.1. We vary the depth ranging in 20, 44, 56, 110. We observe
that for all depths, putting a BN layer before the last linear layer improves the
performance .
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Table B. Experiments of putting a BN layer before the last linear layer on the VGG-
style networks (without BN) and ResNets (without BN) for CIFAR-10 classification.
We report the test error (%).

method depth-20 depth-44 depth-56 depth-110

VGG 14.88 ± 0.47 33.90 ± 7.1 89.93 ± 0.12 90 ± 0
VGGLastBN 12.89 ± 0.20 18.40 ± 0.90 23.40 ± 1.74 73.99 ± 16

ResNet 11.21 ± 0.14 9.90 ± 0.31 9.48 ± 0.07 8.93 ± 0.22
ResNetLastBN 10.31 ± 0.25 8.99 ± 0.25 8.61 ± 0.05 8.37 ± 0.07



SM: Layer-wise Conditioning Analysis 15

References

1. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale
Hierarchical Image Database. In: CVPR (2009) 7, 12

2. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: ICCV (2015) 8, 12

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
CVPR (2016) 8, 9, 10, 12

4. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
ECCV (2016) 13

5. Horn, R.A., Johnson, C.A.: Topics in Matrix Analysis. Cambridge University Press
(1991) 1

6. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML (2015) 7, 10

7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014) 8, 9

8. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Effiicient backprop. In: Neural
Networks: Tricks of the Trade. pp. 9–50 (1998) 4, 5, 6, 8

9. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape
of neural nets. In: NeurIPS (2018) 7


