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Abstract. Conditioning analysis uncovers the landscape of an optimiza-
tion objective by exploring the spectrum of its curvature matrix. This
has been well explored theoretically for linear models. We extend this
analysis to deep neural networks (DNNs) in order to investigate their
learning dynamics. To this end, we propose layer-wise conditioning analy-
sis, which explores the optimization landscape with respect to each layer
independently. Such an analysis is theoretically supported under mild
assumptions that approximately hold in practice. Based on our analysis,
we show that batch normalization (BN) can stabilize the training, but
sometimes result in the false impression of a local minimum, which has
detrimental effects on the learning. Besides, we experimentally observe
that BN can improve the layer-wise conditioning of the optimization
problem. Finally, we find that the last linear layer of a very deep residual
network displays ill-conditioned behavior. We solve this problem by only
adding one BN layer before the last linear layer, which achieves improved
performance over the original and pre-activation residual networks.
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1 Introduction

Deep neural networks (DNNs) have been extensively used in various domains
[26]. Their success depends heavily on the improvement of training techniques
[17,22,15], e.g., fine weight initialization [17,12,39,14], normalization of internal
representations [22,46], and well-designed optimization methods [49,24]. It is
believed that these techniques are well connected to the curvature of the loss
[39,38,25]. Analyzing this curvature is thus essential in determining various
learning behaviors of DNNs.

In the interest of optimization, conditioning analysis uncovers the landscape
of an optimization objective by exploring the spectrum of its curvature matrix.
This has been well explored for linear models both in terms of regression [28] and
classification [44], where the convergence condition of the optimization problem
is controlled by the maximum eigenvalue of the curvature matrix [28,27], and
the learning time of the model is lower-bounded by its condition number [28,27].
However, in the context of deep learning, the conditioning analysis suffers from
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several barriers: 1) the model is over-parameterized and whether the direction
with respect to small/zero eigenvalues contributes to the optimization progress is
unclear [37,34]; 2) the memory and computational costs are extremely high [37,11].

This paper aims to bridge the gap between the theoretical analyses developed
by the optimization community and the empirical techniques used for train-
ing DNNs, in order to better understand the learning dynamics of DNNs. We
propose a layer-wise conditioning analysis, where we analyze the optimization
landscape with respect to each layer independently by exploring the spectra
of their curvature matrices. The motivation behind our layer-wise conditioning
analysis is based on the recent success of second curvature approximation tech-
niques in DNNs [32,31,1,41,3]. We show that the maximum eigenvalue and the
condition number of the block-wise Fisher information matrix (FIM) can be
characterized based on the spectrum of the covariance matrix of the input and
output-gradient, under mild assumptions, which makes evaluating optimization
behavior practical in DNNs. Another theoretical base is the recently proposed
proximal back-propagation [7,10,50] where the original optimization problem
can be approximately decomposed into multiple independent sub-problems with
respect to each layer [50]. We provide the connection between our analysis and
the proximal back-propagation [10].

Based on our layer-wise conditioning analysis, we show that batch normal-
ization (BN) [22] can adjust the magnitude of the layer activations/gradients,
and thus stabilizes the training. However, this kind of stabilization can drive
certain layers into a particular state, referred to as weight domination, where
the gradient update is feeble. This sometimes has detrimental effects on the
learning (Section 4.1). We also experimentally observe that BN can improve the
layer-wise conditioning of the optimization problem. Furthermore, we find that
the unnormalized network has several small eigenvalues in the layer curvature
matrix, which are mainly caused by the so-called dying neurons (Section 4.2),
while this behavior is almost entirely absent in batch normalized networks.

We further analyze the ignored difficulty in training very deep residual
networks [15]. Using our layer-wise conditioning analysis, we show that the
difficulty mainly arises from the ill-conditioned behavior of the last linear layer.
We solve this problem by only adding one BN layer before the last linear layer,
which achieves improved performance over the original [15] and pre-activation
[16] residual networks (Section 5).

2 Preliminaries

Optimization Objective Consider a true data distribution p∗(x,y) = p(x)p(y|x)
and the sampled training sets D ∼ p∗(x,y) of size N . We focus on a super-
vised learning task aiming to learn the conditional distribution p(y|x) using
the model q(y|x), where q(y|x) is represented as a function fθ(x) parameter-
ized by θ. From an optimization perspective, we aim to minimize the empirical
risk, averaged over the sample loss represented as `(y, fθ(x)) in training sets D:

L(θ) = 1
N

∑N
i=1(`(y(i), fθ(x

(i)))).
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Gradient Descent In general, the gradient descent (GD) update seeks to
iteratively reduce the loss L by θt+1 = θt − η ∂L∂θ , where η is the learning rate.
For large-scale learning, stochastic gradient descent (SGD) is extensively used
to approximate the gradients ∂L

∂θ with a mini-batch gradient. In theory, the
convergence behaviors (e.g., the number of iterations required for convergence to
a stationary point) depend on the Lipschitz constant CL of the gradient function
of L, which characterizes the global smoothness of the optimization landscape.
In practice, the Lipschitz constant is either unknown for complicated functions
or too conservative to characterize the convergence behaviors [5]. Researchers

thus turn to the local smoothness, characterized by the Hessian matrix H = ∂L2

∂θ∂θ
under the condition that L is twice differentiable.

Approximate Curvature Matrices The Hessian describes the local curvature
of the optimization landscape. Such curvature information intuitively guides
the design of second-order optimization algorithms [37,5], where the update
direction is adjusted by multiplying the inverse of a pre-conditioned matrix G as:
∂L̂
∂θ = G−1 ∂L∂θ . G is a positive definite matrix that approximates the Hessian and is
expect to sustain the its positive curvature. The second moment matrix of sample

gradient: M = ED( ∂`∂θ
∂`
∂θ

T
) is usually used as the pre-conditioned matrix [36,29].

Besides, Pascanu and Bengio [35] showed that the FIM: F = Ep(x), q(y|x)( ∂`∂θ
∂`
∂θ

T
)

can be viewed as a pre-conditioned matrix when performing the natural gradient
descent algorithm [35]. Fore more analyses on the connections among H, F, M
please refer to [30,5]. In this paper, we refer to the analysis of the spectrum of
the (approximate) curvature matrices as conditioning analysis.

Conditioning Analysis for Linear Models Consider a linear regression
model with a scalar output fw(x) = wTx, and mean square error loss ` =
(y−fθ(x))2. As shown in [28,27], the learning dynamics in such a quadratic surface
are fully controlled by the spectrum of the Hessian matrix H = ED(xxT ). There
are two statistical momentums that are essential for evaluating the convergence
behaviors of the optimization problem. One is the maximum eigenvalue of the
curvature matrix λmax, and the other is the condition number of the curvature
matrix, denoted by κ = λmax

λmin
, where λmin is the minimum nonzero eigenvalue of

the curvature matrix. Specifically, λmax controls the upper bound and the optimal
learning rate (e.g., the optimal learning rate is η = 1

λmax(H) and the training will

diverge if η ≥ 2
λmax(H) ). κ controls the iterations required for convergence (e.g.,

the lower bound of the iteration is κ(H) [28]). If H is an identity matrix that
can be obtained by whitening the input, the GD can converge within only one
iteration. It is easy to extend the solution of linear regression from a scalar output
to a vectorial output fW(x) = WTx. In this case, the Hessian is represented as

H = ED(xxT )⊗ I, (1)

where ⊗ indicates the Kronecker product [13] and I denotes the identity ma-
trix. For the linear classification model with cross entropy loss, the Hessian is
approximated by [44]:

H = ED(xxT )⊗ S. (2)
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S ∈ Rc×c is defined by S = 1
c (Ic − 1

c1c), where c is the number of classes and
1c ∈ Rc×c denotes a matrix in which all entries are 1. Eqn. 2 assumes the Hessian
does not significantly change from the initial region to the optimal region [44].

3 Layer-wise Conditioning Analysis for DNNs

Considering a multilayer perceptron (MLP), fθ(x) can be represented as a layer-
wise linear and nonlinear transformation, as follows:

hk = Wkxk−1, xk = φ(hk), k = 1, ...,K, (3)

where x0 = x and the learnable parameters θ = {Wk ∈ Rdk×dk−1 , k = 1, ...,K}.
To simplify the denotation, we set xK = hK as the output of the network fθ(x).

A conditioning analysis on the full curvature matrix for DNNs is difficult due
to the high memory and computational costs [11,34]. We thus seek to analyze an
approximation of the curvature matrix. One successful example in second-order
optimization over DNNs is approximating the FIM using the Kronecker product
(K-FAC) [31,1,41,3]. In the K-FAC approach, there are two assumptions: 1)
weight-gradients in different layers are assumed to be uncorrelated; 2) the input
and output-gradient in each layer are approximated as independent, so the full
FIM can be represented as a block diagonal matrix, F = diag(F1, ..., FK), where
Fk is the sub-FIM (the FIM with respect to the parameters in a certain layer)
and computed as:

Fk = Ep(x), q(y|x)((xkxTk )⊗ (
∂`

∂hk

T ∂`

∂hk
)) ≈ Ep(x)(xkxTk )⊗ Eq(y|x)(

∂`

∂hk

T ∂`

∂hk
). (4)

xk denotes the layer input, and ∂`
∂hk

denotes the layer output-gradient. We note
that Eqn. 4 is similar to Eqn. 1 and 2, and all of them depend on the covariance
matrix of the (layer) input. The main difference is that, in Eqn. 4, the covariance
of output-gradient is considered and its value changes over different optimization
regions, while in Eqn. 1 and 2, the covariance of output-gradient is constant.

Based on this observation, we propose layer-wise conditioning analysis, i.e.,
we analyze each sub-FIM Fk’s spectrum λ(Fk) independently. We expect the
spectra of sub-FIMs: {λ(Fk)}Kk=1 to effectively reveal that of the full FIM: λ(F),
at least in terms of analyzing the learning dynamics of the DNNs. Specifically, we
analyze the maximum eigenvalue λmax(Fk) and condition number κ(Fk)1. Based
on the conclusion on the conditioning analysis of linear models shown in Section
2, there are two remarkable properties that can be used to implicitly uncover the
landscape of the optimization problem:

– Property 1 : λmax(Fk) indicates the magnitude of the weight-gradient in each
layer, which shows the steepness of the landscape w.r.t.different layers.

– Property 2 : κ(Fk) indicates how easy it is to optimize the corresponding layer.

Discussion One concern is the validity of the assumptions the K-FAC approxi-
mation is based on. Note that [30,31] have provided some empirical evidence to

1 We evaluate the general condition number with respect to the percentage: κp = λmax
λp

,

where λp is the pd-th eigenvalue (in descending order) and d is the number of
eigenvalues, e.g., κ100% is the original definition of the condition number.
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(b) sub-FIM (the 3rd layer)
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(c) sub-FIM (the 6th layer)
Fig. 1. Conditioning analysis for unnormalized (‘Plain’) and normalized networks (‘BN’).
We show the maximum eigenvalue λmax and the generalized condition number κp for
comparison between the full FIM F and sub-FIMs {Fk}. The experiments are performed
on an 8-layer MLP with 24 neurons in each layer, for MNIST classification. The input
image is center-cropped and resized to 12×12 to remove uninformative pixels. We report
the corresponding spectrum at random initialization [27]. Here, we report the results of
the 3rd and 6th layers in (b) and (c), respectively. We have similar observations for
other layers (See SM ).

support their effectiveness in approximating the full FIM with block diagonal
sub-FIMs. [23,43] also exploited similar assumptions to derive the mean&variance
of eigenvalues (and maximum eigenvalue) of the full FIM, which is calculated
using information from layer inputs and output-gradients. Here, we argue that
the assumptions required for our analysis are weaker than those of the K-FAC
approximation, since we only care about whether or not the spectra of sub-FIMs
can accurately reveal the spectrum of full FIM. We conduct experiments to ana-
lyze the training dynamics of the unnormalized (‘Plain’) and batch normalized
[22] (‘BN’) networks, by looking at the spectra of full curvature matrix and
sub-curvature matrices. Figure 1 shows the results based on an 8-layer MLP with
24 neurons in each layer. By observing the results from the full FIM (Figure 1
(a)), we find that: 1) the unnormalized network suffers from gradient vanishing
(the maximum eigenvalue is around 1e−5), while the batch normalized network
has an appropriate magnitude of gradient (the maximum eigenvalue is around 1);
2) ‘BN’ has better conditioning than ‘Plain’, which suggests batch normalization
(BN) can improve the conditioning of the network, as observed in [38,11]. We
also obtain a similar conclusion when observing the results from the sub-FIMs
(Figure 1 (b), (c)). This experiment demonstrates that our layer-wise conditioning
analysis has the potentiality to uncover the training dynamics of the networks if
the full conditioning analysis can. We also conduct experiments on MLPs with
different layers and neurons, and further analyze the spectrum of the second mo-
ment matrix of sample gradient M (please refer to the Supplementary Materials
(SM) for details). We have the same observations as in the first experiment.

Furthermore, we find that investigating {λ(Fk)}Kk=1 is more beneficial for
diagnosing the problems behind training DNNs than investigating λ(F), e.g.,
it enables the gradient vanishing/explosion to be located with respect to a
specific layer from {λmax(Fk)}Kk=1, but not λmax(F). For example, we know that
the 8-layer unnormalized MLP described in Figure 1 suffers from difficulty in
training, but we cannot accurately diagnose the problem by only investigating
the spectrum of the full FIM. However, by looking into the layer inputs and
output-gradients, we find that this MLP suffers from exponentially decreased
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Fig. 2. Validation in approximating the sub-FIMs. The experimental setups are the
same as in Figure 1. We compare maximum eigenvalue λmax and generalized condition
number κp of the sub-FIMs (solid lines) and the approximated ones (dashed lines).

magnitudes of inputs (forward) and output-gradients (backward). This can be
resolved this by using a better initialization with appropriate variance [14] or
using BN [22]. We further elaborate on how to use the layer-wise conditioning
analysis to ‘debug’ the training of DNNs in the subsequent sections.

3.1 Efficient Computation

We denote the covariance matrix of the layer input as Σx = Ep(x)(xxT ) and the

covariance matrix of the layer output-gradient as Σ∇h = Eq(y|x)( ∂`∂h
T ∂`
∂h ). The

condition number and maximum eigenvalue of the sub-FIM F can be derived
based on the spectrum of Σx and Σ∇h, as shown in the following proposition.

Proposition 1. Given Σx, Σ∇h and F = Σx⊗Σ∇h, we have: 1) λmax(F ) = λmax(Σx)·
λmax(Σ∇h); and 2) κ(F ) = κ(Σx) · κ(Σ∇h).

The proof is shown in the SM . Proposition 1 provides an efficient way to calculate
the maximum eigenvalue and condition number of sub-FIM F by computing those
of Σx and Σ∇h. In practice, we use the empirical distribution D to approximate
the expected distribution p(x) and q(y|x) when calculating Σx and Σ∇h, since
this is very efficient and can be performed with only one forward and backward
pass, as has been shown in FIM approximation [31,1].

Note that Proposition 1 depends on the second assumption of Eqn. 4. We
experimentally demonstrate the effectiveness of such an approximation in Figure 2,
finding that the maximum eigenvalue and the condition number of the sub-FIMs
match well with the approximated ones.

3.2 Connection to Proximal Back-propagation

Carreira-Perpinan and Wang [7] proposed to use auxiliary coordinates to redefine
the optimization object L(θ) with equality constraints imposed on each neuron.
They solved the constrained optimization by adding a quadratic penalty as:

L̃(θ, z) = L(y,fK(WK , zK−1)) +

K−1∑
k=1

λ

2
‖zk − fk(Wk, zk−1))‖2, (5)

where fk(·, ·) is a function with respect to each layer. As shown in [7], the solution

for minimizing L̃(θ, z) converges to the solution for minimizing L(θ) as λ→∞,
under mild conditions. Furthermore, the proximal propagation [10] and the follow-
ing back-matching propagation [50] reformulate each sub-problem independently
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with a backward order, minimizing each layer object Lk(Wk, zk−1; ẑk), given the
target signal ẑk from the upper layer, as follows:{

L(y,fK(WK , zK−1)), for k = K
1
2
‖ẑk − fk(Wk, zk−1))‖2, for k = K − 1, ..., 1.

(6)

It has been shown that the produced Wk using gradient update w.r.t. L(θ)
equals to the Wk produced by the back-matching propagation (Procedure 1
in [50]) with one-step gradient update w.r.t. Eqn. 6, given an appropriate step
size. Note that the target signal ẑk is obtained by back-propagation, which means
the loss L(θ) would be smaller if fk(Wk, zk−1) is more close to ẑk. The loss L(θ)
will be reduced more efficiently, if the sup-optimization problems in Eqn. 6 are
well-conditioned. Please refer to [10,50] for more details. If we view the auxiliary
variable as the pre-activation in a specific layer, the sub-optimization problem in
each layer is formulated as:{

L(y,WKzK−1), for k = K
1
2
‖ẑk −Wkzk−1‖2, for k = K − 1, ..., 1.

(7)

It is clear that the sub-optimization problems with respect to Wk are actually
linear classification (for k=K) or regression (for k = 1, ...,K − 1) models. Their
conditioning analysis is thoroughly characterized in Section 2.

This connection suggests: 1) the quality (conditioning) of the full optimization
problem L(θ) is well correlated to its sub-optimization problems shown in Eqn.
7, whose local curvature matrix can be well explored; 2) We can diagnose the ill
behaviors of a DNN by speculating its spectra with respect to certain layers.

4 Exploring Batch Normalized Networks

Let x denote the input for a given neuron in one layer of a DNN. Batch normal-
ization (BN) [22] standardizes the neuron within m mini-batch data by:

BN(x(i)) = γ
x(i) − µ√
σ2 + ε

+ β, (8)

where µ = 1
m

∑m
i=1 x

(i) and σ2 = 1
m

∑m
i=1(x(i) − µ)2 are the mean and variance,

respectively. The learnable parameters γ and β are used to recover the represen-
tation capacity. BN is a ubiquitously employed technique in various architectures
[22,15,48,19] due to its ability in stabilizing and accelerating training. Here,
we explore how BN stabilizes and accelerates training based on our layer-wise
conditioning analysis.

4.1 Stabilizing Training

From the perspective of a practitioner, two phenomena relate to the instability in
training a DNN: 1) the training loss first increases significantly and then diverges;
or 2) the training loss hardly changes, compared to the initial condition. The
former is mainly caused by weights with large updates (e.g., exploded gradients
or optimization with a large learning rate). The latter is caused by weights with
few updates (vanished gradients or optimization with a small learning rate). In
the following theorem, we show that the unnormalized rectifier neural network is
very likely to encounter both phenomena.
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Theorem 1. Given a rectifier neural network (Eqn. 3) with nonlinearity φ(αx) = αφ(x)

(α > 0 ), if the weight in each layer is scaled by Ŵk = αkWk (k = 1, ...,K and αk > 0),

we have the scaled layer input: x̂k = (
k∏
i=1

αi)xk. Assuming that ∂L
∂ĥK

= µ ∂L
∂hK

, we have the

output-gradient: ∂L
∂ĥk

= µ(
K∏

i=k+1

αi)
∂L
∂hk

, and weight-gradient: ∂L
∂Ŵk

= (µ
K∏

i=1,i 6=k
αi)

∂L
∂Wk

,

for all k = 1, ...,K.

The proof is shown in the SM . From Theorem 1, we observe that the scaled factor
αk of the weight in layer k will affect all other layers’ weight-gradients. Specifically,
if all αk > 1 (αk < 1), the weight-gradient will increase (decrease) exponentially
for one iteration. Moreover, such an exponentially increased weight-gradient will
be sustained and amplified in the subsequent iteration, due to the increased
magnitude of the weight caused by updating. That is why the unnormalized
neural network will diverge, once the training loss increases over a few continuous
iterations. We show that such instability can be relieved by BN, based on the
following theorem.

Theorem 2. Under the same condition as Theorem 1, for the normalized network with
hk = Wkxk−1 and sk = BN(hk), we have: x̂k = xk, ∂L

∂ĥk
= 1

αk

∂L
∂hk

, ∂L
∂Ŵk

= 1
αk

∂L
∂Wk

,

for all k = 1, ...,K.

The proof is shown in the SM . From Theorem 2, the scaled factor αk of the
weight will not affect other layers’ activations/gradients. The magnitude of the
weight-gradient is inversely proportional to the scaled factor. Such a mechanism
will stabilize the weight growth/reduction, as shown in [22,47]. Note that the
behaviors when stabilizing training (Theorem 2) also apply for other activation
normalization methods [2,45,18]. We note that the scale-invariance of BN in
stabilizing training has been analyzed in previous work [2]. Different to their
analyses on the normalization layer itself, we provide an explicit formulation of
weight-gradients and output-gradients in a network, which is more important
when characterizing the learning dynamics of DNNs.

Empirical Analysis We further conduct experiments to show how the acti-
vation/gradient is affected by initialization in unnormalized DNNs (indicated
as ‘Plain’) and batch normalized DNNs (indicated as ‘BN’). We train a 20-layer
MLP, with 256 neurons in each layer, for MNIST classification. The nonlinearity
is ReLU. We use the full gradient descent2, and report the results based on the
best training loss among learning rates in {0.05, 0.1, 0.5, 1}. In Figure 3 (a) and
(b), we observe that the magnitude of the layer input (output-gradient) of ‘Plain’
for random initialization [27] suffers from exponential decrease during forward
pass (backward pass). The main reason for this is that the weight has a small
magnitude, based on Theorem 1. This problem can be relieved by He-initialization
[14], where the magnitude of the input/output-gradient is stable across layers
(Figure 3 (c) and (d)). We observe that BN can well preserve the magnitude of
the input/output-gradient across different layers for both initialization methods.

2 We also perform SGD with a batch size of 1024, and further perform experiments on
convolutional neural networks (CNNs) for CIFAR-10 and ImageNet. The results are
shown in SM , in which we have the same observation as the full gradient descent.



Layer-wise Conditioning Analysis 9

Layer index Iter (x40)

400

10-10

10-5
6

m
ax

100

2010
020

Plain BN

(a) λmax(Σx)

Iter (x40)
Layer index

40

200

10-10

10

6
m

ax 10-5

020

100

Plain BN

(b) λmax(Σ∇h)

Iter (x40)Layer index

400

10-10
10-5

20

6
m

ax

10

100

020

Plain BN

(c) λmax(Σx)

Layer index
Iter (x40)

40

200

10-10

10

6
m

ax

0

10-5

20

100

Plain BN

(d) λmax(Σ∇h)

Fig. 3. Analysis of the magnitude of the layer input (indicated by λmax(Σx)) and
layer output-gradient (indicated by λmax(Σ∇h) ). The experiments are performed on a
20-layer MLP with 256 neurons in each layer, for MNIST classification. The results of
(a)(b) are under random initialization [27], while (c)(d) He-initialization [14].
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Fig. 4. Exploring the effectiveness of weight domination. We run the experiments on
a 5-layer MLP with BN and the number of neuron in each layer is 256. We simulate
weight domination in a given layer by blocking its weight updates. We denote ‘0’ in the
legend as the state of weight domination (the first digit represents the first layer).

Weight Domination It was shown the scale-invariant property of BN has
an implicit early stopping effect on the weight matrices [2], helping to stabilize
learning towards convergence. Here, we show that this layer-wise ‘early stop-
ping’ sometimes results in the false impression of a local minimum, which has
detrimental effects on the learning, since the network does not well learn the
representation in the corresponding layer. For illustration, we provide a rough
definition termed weight domination, with respect to a given layer.

Definition 1 Let Wk and ∂L
∂Wk

be the weight matrix and its gradient in layer k. If

λmax( ∂L
∂Wk

)� λmax(Wk), where λmax(·) indicates the maximum singular value of a
matrix, we refer to layer k has a state of weight domination.

Weight domination implies a smoother gradient with respect to the given layer.
This is a desirable property for linear models (the distribution of the input is
fixed), where the optimization objective targets to arrive the stationary points
with smooth (zero) gradient. However, weight domination is not always desirable
for a given layer of a DNN, since such a state of one layer is possibly caused
by the increased magnitude of the weight matrix or decreased magnitude of the
layer input (the non-convex optimization in Eqn. 7), not necessary driven by the
optimization objective itself. Although BN ensures a stable distribution of layer
inputs, a network with BN still has the possibility that the magnitude of the
weight in a certain layer is significantly increased. We experimentally observe
this phenomenon, as shown in the SM . A similar phenomenon is also observed
in [47], where BN results in large updates of the corresponding weights.
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Fig. 5. Analysis on the condition number of the layer input ( κp(Σx)) and layer output-
gradient ( κp(Σ∇h) ). The experimental setups are the same as in Figure 3.

Weight domination sometimes harms the learning of the network, because
this state limits its ability to learn the representation in the corresponding layer.
To investigate this, we conduct experiments on a 5-layer MLP and show the
results in Figure 4. We observe that the network with weight domination in
certain layers, can still decrease the loss, but has degenerated performance. We
also conduct experiments on CNNs for CIFAR-10 datasets, shown in the SM .

4.2 Improved Conditioning

One motivation behind BN is that whitening the input can improve the con-
ditioning of the optimization [22] (e.g., the Hessian will be an identity matrix
under the condition that ED(xxT ) = I for a linear model, based on Eqn. 1,
and thus can accelerate training [9,21]. However, such a motivation is seldom
validated by either theoretical or empirical analysis on the context of DNNs
[9,38]. Furthermore, it only holds under the condition that BN is placed before
the linear layer, while, in practice, BN is typically placed after the linear layer, as
recommended in [22]. In this section, we will empirically explore this motivation
using our layer-wise conditioning analysis for the scenario of training DNNs.

We first experimentally observe that BN not only improves the conditioning
of the layer input’s covariance matrix, but also improves the conditioning of
the output-gradient’s covariation, as shown in Figure 5. It has been shown that
centered data is more likely to be well-conditioned [28,40,33,20]. This suggests
that placing BN after the linear layer can improve the conditioning of the output-
gradient, because centering the activation, with the gradient back-propagating
through such a transformation [22], also centers the gradient.

We also observe that the unnormalized network (‘Plain’) has several small
eigenvalues. For further exploration, we monitor the output of each neuron in each
layer, and find that ‘Plain’ has some neurons that are not activated (zero output
of ReLU) for all training examples. We refer to these neurons as dying neurons.
We also observe that ‘Plain’ has some neurons that are always activated for every
training example, which we refer to as full neurons. This observation is most
obvious in the initial iterations. The number of dying/full neurons increases as the
layer number increases (Please refer to SM for details). We conjecture that the
dying neurons causes ‘Plain’ to have numerous small/zero eigenvalues. In contrast,
batch normalized networks have no dying/full neurons, because the centering
operation ensures that half the examples get activated. This further suggests
that placing BN before the nonlinear activation can improve the conditioning.
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5 Training Very Deep Residual Networks

Residual networks [15] have significantly relieved the difficulty of training deep
networks by their introduction of the residual connection, which makes training
networks with hundreds or even thousands of layers possible. However, residual
networks also suffer from degenerated performance when the model is extremely
deep (e.g., the 1202-layer residual network has worse performance than the 110-
layer one), as shown in [15]. He et al.[15] argued that this is from over-fitting,
not optimization difficulty. Here, we show that a very deep residual network may
also suffer difficulty in optimization.

We perform experiments on CIFAR-10 with residual networks, following the
same experimental setup as in [15], except that we run the experiments on one
GPU. We vary the network depth, ranging in {56, 110, 230, 1202}, and show the
training loss in Figure 6 (a). We observe the residual networks have an increased
loss in the initial iterations, which is amplified for deeper networks. Later, the
training gets stuck in a state of randomly guessing (the loss stays at ln 10).
Although the networks can escape such a state with enough iterations, they suffer
from degenerated training performance, especially if they are very deep.

Analysis of Learning Dynamics To explore why residual networks have such
a mysterious behavior, we perform the layer-wise conditioning analysis on the last
linear layer (before the cross entropy loss). We monitor the maximum eigenvalue
of the covariance matrix λΣx , the maximum eigenvalue of the second moment
matrix of the weight-gradient λΣ ∂L

∂W

, and the norm of the weight (‖W‖2).

We observe that the initial increase in loss is mainly caused by the large
magnitude of λΣx

3 (Figure 6 (b)), which results in a large magnitude for λΣ ∂L
∂W

(Figure 6 (c)), and thus a large magnitude for ‖W‖2 (Figure 6 (d)). The increased
‖W‖2 further facilities the increase of the loss. However, the learning objective is
to decrease the loss, and thus it should decrease the magnitude of W or x (based
on Eqn. 7) in this case. Apparently, W is harder to adjust, because the landscape
of its loss surface is controlled by x, and all the values of x are non-negative
with large magnitude. The network thus tries to decrease x based on the given
learning objective. We experimentally find that the learnable parameters of BN
have a large number of negative values, which causes the ReLUs (positioned
after the residual adding operation) deactivated. Such a dynamic results in a
significant reduction in the magnitude of λΣx . The small x and large W drive
the last linear layer of the network into the state of weight domination, and make
the network display a random guess behavior. Although the residual network
can escape such a state with enough iterations, the weight domination hinders
optimization and results in degenerated training performance.

5.1 Proposed Solution

Based on the above analysis, it is essential to reduce the large magnitude of λ(Σx).
We propose a simple solution and add one BN layer before the last linear layer

3 The large magnitude of λΣx is caused mainly by the addition of multiple residual
connections from the previous layers with ReLU output.
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Fig. 6. Analysis on the last linear layer in residual networks for CIFAR-10 classification.
We vary the depth ranging in {56, 110, 230, 1202} and analyze the results over the course
of training. We show (a) the training loss; (b) the maximum eigenvalue of the input’s
covariance matrix; (c) the maximum eigenvalue of the second moment matrix of the
weight-gradient; and (d) the F2-norm of the weight. Note that both the x- and y-axes
are in log scale.
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Fig. 7. Analysis of how ResNetLastBN solves the ill-conditioned problem of its last
linear layer on the 1202-layer network for CIFAR-10 classification.

to normalize its input. We refer to this residual network as ‘ResNetLastBN ’, and
the original one as ‘ResNet’. We also conduct an analysis on the last linear layer
of ResNetLastBN , providing a comparison between ResNet and ResNetLastBN
on the 1202-layer in Figure 7. We observe that ResNetLastBN can be steadily
trained. It does not reach the state of weight domination or encounter a large
magnitude of x in the last linear layer.

We try a similar solution where a constant is divided before the linear layer,
and we find it also benefits the training. However, the main disadvantage of this
solution is that the value of the constant has to be finely tuned on networks with
different depths. We also try putting one BN before the average pooling, which
has similar effects as putting it before the last linear layer. We note that Bjorck
et al.[4] proposed to train a 110-layer residual network with only one BN layer,
which is placed before the average pooling. They showed that this achieves good
results. However, we argue that this does not hold for very deep networks. We
perform an experiment on the 1202-layer residual network, and find that the
model always fails in training with various hyper-parameters.

ResNetLastBN , a simple revision of ResNet, achieves significant improvement
in performance for very deep residual networks. Figure 8 (a) and (b) show
the training loss of ResNet and ResNetLastBN , respectively, on the CIFAR-
10 dataset. We observe that ResNet, with a depth of 1202, appears to have
degenerated training performance, especially in the initial phase. Note that, as
the depth increases, ResNet obtains worse training performance in the first 80
epochs (before the learning rate is reduced), which coincides with our previous
analysis. ResNetLastBN obtains nearly the same training loss for the networks
with different depths in the first 80 epochs. Moreover, ResNetLastBN shows lower
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Fig. 8. Training loss comparison between (a) ResNet and (b) ResNetLastBN with
different depth on CIFAR-10. We evaluate the training loss with respect to the epochs.

Table 1. Comparison of test error (%) on CIFAR-10. The results are shown in the
format of ‘mean ± std’ computed over five random seeds.

method depth-56 depth-110 depth-230 depth-1202

ResNet [15] 7.52 ± 0.30 6.89 ± 0.52 7.35 ± 0.64 9.42 ± 3.10
PreResNet [16] 6.89 ± 0.09 6.25 ± 0.08 6.12 ± 0.21 6.07 ± 0.10
PreResNetv1 6.75 ± 0.26 6.37 ± 0.24 6.32 ± 0.21 7.89 ± 0.58
ResNetLastBN 6.50 ± 0.22 6.10 ± 0.09 5.94 ± 0.18 5.68 ± 0.14

training loss with increasing depth. Comparing Figure 8 (b) to (a), we observe
that ResNetLastBN has better training loss than ResNet for all depths (e.g., at a
depth of 56, the loss of ResNet is 0.081, while for ResNetLastBN it is 0.043.).

Table 1 shows the test errors. We observe that ResNetLastBN achieves better
test performance with increasing depth, while ResNet has degenerated perfor-
mance. Compared to ResNet, ResNetLastBN has consistently improved perfor-
mance over different depths. Particularly, ResNetLastBN reduces the absolute test
error of ResNet by 1.02%, 0.79%, 1.41% and 3.74% at depths of 56, 110, 230 and
1202, respectively. Due to ResNetLastBN ’s optimization efficiency, the training
performance is likely improved if we amplify the regularization of the training.
Thus, we set the weight decay to 0.0002 and double the training iterations, finding
that the 1202-layer ResNetLastBN achieves a test error of 4.79± 0.12. We also
train a 2402-layer network. We observe that ResNet cannot converge, while
ResNetLastBN achieves a test error of 5.04± 0.30.

We further perform the experiment on CIFAR-100 and use the same ex-
perimental setup as CIFAR-10. Table 2 shows the test errors. ResNetLastBN
reduces the absolute test error of ResNet by 0.78%, 1.25%, 3.45% and 4.98% at
depths of 56, 110, 230 and 1202, respectively. We also validate the effectiveness
of ResNetLastBN on the large-scale ImageNet classification, with 1000 classes
[8]. ResNetLastBN has better optimization efficiency and achieves better test
performance, compared to ResNet. Please refer to the SM for more details.

5.2 Revisiting the Pre-activation Residual Network

We note that He et al.[16] tried to improve the optimization and generalization of
the original residual network [15] by re-arranging the activation functions (using
the pre-activation). By looking into the implementation of [16], we find that it
also uses an extra BN layer before the last average pooling. It is interesting to
investigate which component in [16] (e.g., the pre-activation or the extra BN
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Table 2. Comparison of test error (%) on CIFAR-100. The results are shown in the
format of ‘mean ± std’, computed over five random seeds.

method depth-56 depth-110 depth-230 depth-1202

ResNet [15] 29.60 ± 0.41 28.3 ± 1.09 29.25 ± 0.44 30.49 ± 4.44
PreResNet [16] 29.29 ± 0.44 27.58 ± 0.12 26.72 ± 0.33 26.23 ± 0.26
PreResNetv1 29.60 ± 0.21 28.54 ± 0.26 27.92 ± 0.34 30.07 ± 2.04
ResNetLastBN 28.82 ± 0.38 27.05 ± 0.23 25.80 ± 0.10 25.51 ± 0.27

layer) benefits the optimization behaviors, using our analysis. Here, we denote
‘PreResNet’ as the pre-activation residual network [16], and denote ‘PreResNetv1’
as the PreResNet without the extra BN layer. We use the conditioning analysis
on the last linear layer of the 1202-layer network (see SM for details). We observe
that: 1) PreResNetv1 also gets stuck in the weight domination state with its last
linear layer, even though it escapes this states faster than ResNet; 2) PreResNet,
like our proposed ResNetLastBN , does not suffer the ill-conditioned problem in
its last linear layer. These observations suggest that the pre-activation can relieve
the ill-conditioned problem to some degree, but more importantly, the extra BN
layer is key to improving the optimization efficiency of PreResNet [16] for very
deep networks.

We report the test errors of PreResNet and PreResNetv1 in Table 1 and 2. We
find that ‘PreResNet’ generally has better test performance than PreResNetv1,
especially for very deep networks (e.g., the 1202-layer one). This supports our
arguments that the extra BN layer is the key component of PreResNet [16] for very
deep networks. Interestingly, we further observe that our proposed ResNetLastBN
is consistently better than PreResNet [16] over different layers and datasets. This
demonstrates the effectiveness of our proposed architecture. We believe that our
analysis method can be further used to improve residual architectures by looking
into the intermediate (inner) layers of networks.

6 Conclusion and Future Work

We proposed a layer-wise conditioning analysis to investigate the learning dynam-
ics of DNNs. Such an analysis is theoretically derived under mild assumptions that
approximately hold in practice. Based on our layer-wise conditioning analysis, we
showed how batch normalization stabilizes training and improves the conditioning
of the optimization problem. We further found that very deep residual networks
still suffer difficulty in optimization, which is caused by the ill-conditioned state
of the last linear layer. We remedied this by adding only one BN layer before the
last linear layer.

We believe there are many potential applications of our method, e.g., investi-
gating the training dynamics of other normalization methods (layer normalization
[2] and instance normalization [42]) and comparing them to BN. We also believe
it would be interesting to analyze the training dynamics of GANs [6] using
our method. We expect our method to provide new insights for analyzing and
understanding training techniques for DNNs.
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