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Abstract. We introduce Recurrent All-Pairs Field Transforms (RAFT),
a new deep network architecture for optical flow. RAFT extracts per-
pixel features, builds multi-scale 4D correlation volumes for all pairs
of pixels, and iteratively updates a flow field through a recurrent unit
that performs lookups on the correlation volumes. RAFT achieves state-
of-the-art performance. On KITTI, RAFT achieves an F1-all error of
5.10%, a 16% error reduction from the best published result (6.10%).
On Sintel (final pass), RAFT obtains an end-point-error of 2.855 pixels,
a 30% error reduction from the best published result (4.098 pixels). In
addition, RAFT has strong cross-dataset generalization as well as high
efficiency in inference time, training speed, and parameter count. Code
is available at https://github.com/princeton-vl/RAFT.

1 Introduction

Optical flow is the task of estimating per-pixel motion between video frames.
It is a long-standing vision problem that remains unsolved. The best systems
are limited by difficulties including fast-moving objects, occlusions, motion blur,
and textureless surfaces.

Optical flow has traditionally been approached as a hand-crafted optimiza-
tion problem over the space of dense displacement fields between a pair of images
[21, 50, 13]. Generally, the optimization objective defines a trade-off between a
data term which encourages the alignment of visually similar image regions and
a regularization term which imposes priors on the plausibility of motion. Such an
approach has achieved considerable success, but further progress has appeared
challenging, due to the difficulties in hand-designing an optimization objective
that is robust to a variety of corner cases.

Recently, deep learning has been shown as a promising alternative to tradi-
tional methods. Deep learning can side-step formulating an optimization prob-
lem and train a network to directly predict flow. Current deep learning meth-
ods [25, 42,22, 48, 20] have achieved performance comparable to the best tradi-
tional methods while being significantly faster at inference time. A key question
for further research is designing effective architectures that perform better, train
more easily and generalize well to novel scenes.

We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep
network architecture for optical flow. RAFT enjoys the following strengths:
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Fig. 1: RAFT consists of 3 main components: (1) A feature encoder that extracts
per-pixel features from both input images, along with a context encoder that
extracts features from only I;. (2) A correlation layer which constructs a 4D
W x H x W x H correlation volume by taking the inner product of all pairs of
feature vectors. The last 2-dimensions of the 4D volume are pooled at multiple
scales to construct a set of multi-scale volumes. (3) An update operator which
recurrently updates optical flow by using the current estimate to look up values
from the set of correlation volumes.

— State-of-the-art accuracy: On KITTI [18], RAFT achieves an F1-all error of
5.10%, a 16% error reduction from the best published result (6.10%). On
Sintel [11] (final pass), RAFT obtains an end-point-error of 2.855 pixels, a
30% error reduction from the best published result (4.098 pixels).

— Strong generalization: When trained only on synthetic data, RAFT achieves
an end-point-error of 5.04 pixels on KITTI [18], a 40% error reduction from
the best prior deep network trained on the same data (8.36 pixels).

— High efficiency: RAFT processes 1088 x 436 videos at 10 frames per second on
a 1080Ti GPU. It trains with 10X fewer iterations than other architectures.
A smaller version of RAFT with 1/5 of the parameters runs at 20 frames
per second while still outperforming all prior methods on Sintel.

RAFT consists of three main components: (1) a feature encoder that extracts
a feature vector for each pixel; (2) a correlation layer that produces a 4D corre-
lation volume for all pairs of pixels, with subsequent pooling to produce lower
resolution volumes; (3) a recurrent GRU-based update operator that retrieves
values from the correlation volumes and iteratively updates a flow field initialized
at zero. Fig. 1 illustrates the design of RAFT.

The RAFT architecture is motivated by traditional optimization-based ap-
proaches. The feature encoder extracts per-pixel features. The correlation layer
computes visual similarity between pixels. The update operator mimics the steps
of an iterative optimization algorithm. But unlike traditional approaches, fea-
tures and motion priors are not handcrafted but learned—learned by the feature
encoder and the update operator respectively.
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The design of RAFT draws inspiration from many existing works but is sub-
stantially novel. First, RAFT maintains and updates a single fixed flow field at
high resolution. This is different from the prevailing coarse-to-fine design in prior
work [42, 48,22, 23, 49], where flow is first estimated at low resolution and upsam-
pled and refined at high resolution. By operating on a single high-resolution flow
field, RAFT overcomes several limitations of a coarse-to-fine cascade: the diffi-
culty of recovering from errors at coarse resolutions, the tendency to miss small
fast-moving objects, and the many training iterations (often over 1M) typically
required for training a multi-stage cascade.

Second, the update operator of RAFT is recurrent and lightweight. Many
recent works [24, 42, 48,22, 25] have included some form of iterative refinement,
but do not tie the weights across iterations [42,48,22] and are therefore limited
to a fixed number of iterations. To our knowledge, IRR [24] is the only deep
learning approach [24] that is recurrent. It uses FlowNetS [15] or PWC-Net [42]
as its recurrent unit. When using FlowNetS, it is limited by the size of the
network (38M parameters) and is only applied up to 5 iterations. When using
PWC-Net, iterations are limited by the number of pyramid levels. In contrast,
our update operator has only 2.7M parameters and can be applied 100+ times
during inference without divergence.

Third, the update operator has a novel design, which consists of a convo-
lutional GRU that performs lookups on 4D multi-scale correlation volumes; in
contrast, refinement modules in prior work typically use only plain convolution
or correlation layers.

We conduct experiments on Sintel[11] and KITTI[18]. Results show that
RAFT achieves state-of-the-art performance on both datasets. In addition, we
validate various design choices of RAFT through extensive ablation studies.

2 Related Work

Optical Flow as Energy Minimization Optical flow has traditionally been
treated as an energy minimization problem which imposes a tradeoff between
a data term and a regularization term. Horn and Schnuck [21] formulated op-
tical flow as a continuous optimization problem using a variational framework,
and were able to estimate a dense flow field by performing gradient steps. Black
and Anandan[9] addressed problems with oversmoothing and noise sensitivity by
introducing a robust estimation framework. TV-L1 [50] replaced the quadratic
penalties with an L1 data term and total variation regularization, which al-
lowed for motion discontinuities and was better equipped to handle outliers.
Improvements have been made by defining better matching costs [45,10] and
regularization terms [38].

Such continuous formulations maintain a single estimate of optical flow which
is refined at each iteration. To ensure a smooth objective function, a first order
Taylor approximation is used to model the data term. As a result, they only work
well for small displacements. To handle large displacements, the coarse-to-fine
strategy is used, where an image pyramid is used to estimate large displacements
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at low resolution, then small displacements refined at high resolution. But this
coarse-to-fine strategy may miss small fast-moving objects and have difficulty
recovering from early mistakes. Like continuous methods, we maintain a single
estimate of optical flow which is refined with each iteration. However, since we
build correlation volumes for all pairs at both high resolution and low resolution,
each local update uses information about both small and large displacements.
In addition, instead of using a subpixel Taylor approximation of the data term,
our update operator learns to propose the descent direction.

More recently, optical flow has also been approached as a discrete optimiza-
tion problem [35, 13,47] using a global objective. One challenge of this approach
is the massive size of the search space, as each pixel can be reasonably paired
with thousands of points in the other frame. Menez et al[35] pruned the search
space using feature descriptors and approximated the global MAP estimate us-
ing message passing. Chen et al. [13] showed that by using the distance trans-
form, solving the global optimization problem over the full space of flow fields is
tractable. DCFlow [47] showed further improvements by using a neural network
as a feature descriptor, and constructed a 4D cost volume over all pairs of fea-
tures. The 4D cost volume was then processed using the Semi-Global Matching
(SGM) algorithm [19]. Like DCFlow, we also constructed 4D cost volumes over
learned features. However, instead of processing the cost volumes using SGM,
we use a neural network to estimate flow. Our approach is end-to-end differen-
tiable, meaning the feature encoder can be trained with the rest of the network
to directly minimize the error of the final flow estimate. In contrast, DCFlow
requires their network to be trained using an embedding loss between pixels; it
cannot be trained directly on optical flow because their cost volume processing
is not differentiable.

Direct Flow Prediction Neural networks have been trained to directly predict
optical flow between a pair of frames, side-stepping the optimization problem
completely. Coarse-to-fine processing has emerged as a popular ingredient in
many recent works [42, 49, 22-24,48, 20, 8, 51]. In contrast, our method maintains
and updates a single high-resolution flow field.

Iterative Refinement for Optical Flow Many recent works have used itera-
tive refinement to improve results on optical flow [25,39, 42,22, 48] and related
tasks [29,52,44,28]. Ilg et al. [25] applied iterative refinement to optical flow
by stacking multiple FlowNetS and FlowNetC modules in series. SpyNet[39],
PWC-Net[42], LiteFlowNet[22], and VCN [48] apply iterative refinement using
coarse-to-fine pyramids. The main difference of these approaches from ours is
that they do not share weights between iterations.

More closely related to our approach is IRR[24], which builds off of the
FlownetS and PWC-Net architecture but shares weights between refinement
networks. When using FlowNetS, it is limited by the size of the network (38M
parameters) and is only applied up to 5 iterations. When using PWC-Net, iter-
ations are limited by the number of pyramid levels. In contrast, we use a much
simpler refinement module (2.7M parameters) which can be applied for 100+ it-
erations during inference without divergence. Our method also shares similarites
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with Devon [31], namely the construction of the cost volume without warping
and fixed resolution updates. However, Devon does not have any recurrent unit.
It also differs from ours regarding large displacements. Devon handles large dis-
placements using a dilated cost volume while our approach pools the correlation
volume at multiple resolutions.

Our method also has ties to TrellisNet [5] and Deep Equilibrium Models
(DEQ) [6]. Trellis net uses depth tied weights over a large number of layers,
DEQ simulates an infinite number of layers by solving for the fixed point directly.
TrellisNet and DEQ were designed for sequence modeling tasks, but we adopt
the core idea of using a large number of weight-tied units. Our update operator
uses a modified GRU block[14], which is similar to the LSTM block used in
TrellisNet. We found that this structure allows our update operator to more
easily converge to a fixed flow field.

Learning to Optimize Many problems in vision can be formulated as an op-
timization problem. This has motivated several works to embed optimization
problems into network architectures [4, 3,43, 32,44]. These works typically use
a network to predict the inputs or parameters of the optimization problem, and
then train the network weights by backpropogating the gradient through the
solver, either implicitly[4, 3] or unrolling each step [32,43]. However, this tech-
nique is limited to problems with an objective that can be easily defined.

Another approach is to learn iterative updates directly from data [1, 2]. These
approaches are motivated by the fact that first order optimizers such as Primal
Dual Hybrid Gradient (PDHG)[12] can be expressed as a sequence of iterative
update steps. Instead of using an optimizer directly, Adler et al. [1] proposed
building a network which mimics the updates of a first order algorithm. This
approach has been applied to inverse problems such as image denoising [26],
tomographic reconstruction [2], and novel view synthesis[17]. TVNet [16] im-
plemented the TV-L1 algorithm as a computation graph, which enabled the
training the TV-L1 parameters. However, TVNet operates directly based on in-
tensity gradients instead of learned features, which limits the achievable accuracy
on challenging datasets such as Sintel.

Our approach can be viewed as learning to optimize: our network uses a
large number of update blocks to emulate the steps of a first-order optimization
algorithm. However, unlike prior work, we never explicitly define a gradient with
respect to some optimization objective. Instead, our network retrieves features
from correlation volumes to propose the descent direction.

3 Approach

Given a pair of consecutive RGB images, I, I>, we estimate a dense displacement
field (f', f2) which maps each pixel (u,v) in I to its corresponding coordinates
(', v") = (u+ fH(u),v + f2(v)) in Ir. An overview of our approach is given in
Figure 1. Our method can be distilled down to three stages: (1) feature extrac-
tion, (2) computing visual similarity, and (3) iterative updates, where all stages
are differentiable and composed into an end-to-end trainable architecture.
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Fig. 2: Building correlation volumes. Here we depict 2D slices of a full 4D volume.
For a feature vector in I;, we take take the inner product with all pairs in Is,
generating a 4D W x H x W x H volume (each pixel in I produces a 2D response
map). The volume is pooled using average pooling with kernel sizes {1, 2,4, 8}.

3.1 Feature Extraction

Features are extracted from the input images using a convolutional network. The
feature encoder network is applied to both I; and I; and maps the input images
to dense feature maps at a lower resolution. Our encoder, gy outputs features at
1/8 resolution gy : RTXWx3 o RH/SXW/EXD where we set D = 256. The feature
encoder consists of 6 residual blocks, 2 at 1/2 resolution, 2 at 1/4 resolution,
and 2 at 1/8 resolution (more details in the supplemental material).

We additionally use a context network. The context network extracts features
only from the first input image I;. The architecture of the context network, hg
is identical to the feature extraction network. Together, the feature network gy
and the context network hy form the first stage of our approach, which only need
to be performed once.

3.2 Computing Visual Similarity

We compute visual similarity by constructing a full correlation volume between
all pairs. Given image features gg(I1) € RT*WXD and gy(Iy) € REXWXD the
correlation volume is formed by taking the dot product between all pairs of
feature vectors. The correlation volume, C, can be efficiently computed as a
single matrix multiplication.

C(go(I1), go(I5)) € RFWHW i =3 " go(I)ign - go (T2 ) (1)
h

Correlation Pyramid: We construct a 4-layer pyramid {C!, C%, C3 C*} by
pooling the last two dimensions of the correlation volume with kernel sizes 1,
2, 4, and 8 and equivalent stride (Figure 2). Thus, volume C* has dimensions
H x W x H/2¥ x W/2F. The set of volumes gives information about both large
and small displacements; however, by maintaining the first 2 dimensions (the Iy
dimensions) we maintain high resolution information, allowing our method to
recover the motions of small fast-moving objects.

Correlation Lookup: We define a lookup operator Lc which generates a
feature map by indexing from the correlation pyramid. Given a current estimate
of optical flow (f!,f?), we map each pixel x = (u,v) in I; to its estimated
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correspondence in I: x’ = (u + f1(u),v + f2(v)). We then define a local grid
around x’

N(X), ={x' +dx | dx € 72, ||dx||; < r} (2)

as the set of integer offsets which are within a radius of r units of x’ using the L1
distance. We use the local neighborhood N (x’), to index from the correlation
volume. Since N (x'), is a grid of real numbers, we use bilinear sampling.

We perform lookups on all levels of the pyramid, such that the correlation
volume at level k, C*, is indexed using the grid N'(x’/2%),. A constant radius
across levels means larger context at lower levels: for the lowest level, k = 4 using
a radius of 4 corresponds to a range of 256 pixels at the original resolution. The
values from each level are then concatenated into a single feature map.

Efficient Computation for High Resolution Images: The all pairs cor-
relation scales O(N?) where N is the number of pixels, but only needs to be
computed once and is constant in the number of iterations M. However, there
exists an equivalent implementation of our approach which scales O(NM) ex-
ploiting the linearity of the inner product and average pooling. Consider the cost
volume at level m, CJ;;, and feature maps g = go(I), 9@ = go(I):

2m 2m 2m 2m

1 } :} :
ZJk:l 22m Z Z )J 792mk+p 2’”l+q> gzd 9 22m ggmk+p 2ml+q)>

which is the average over the correlation response in the 2™ x 2™ grid. This
means that the value at CZ—LM can be computed as the inner product between
the feature vector gg(I1);; and go(I2) pooled with kernel size 2™ x 2™.

In this alternative implementation, we do not precompute the correlations,
but instead precompute the pooled image feature maps. In each iteration, we
compute each correlation value on demand—only when it is looked up. This
gives a complexity of O(NM).

We found empirically that precomputing all pairs is easy to implement and
not a bottleneck, due to highly optimized matrix routines on GPUs—even for
1088x1920 videos it takes only 17% of total inference time. Note that we can
always switch to the alternative implementation should it become a bottleneck.

3.3 Iterative Updates

Our update operator estimates a sequence of flow estimates {fy, ..., fy} from an
initial starting point fy = 0. With each iteration, it produces an update direction
Af which is applied to the current estimate: fi11 = Af + f5,4.

The update operator takes flow, correlation, and a latent hidden state as in-
put, and outputs the update Af and an updated hidden state. The architecture
of our update operator is designed to mimic the steps of an optimization algo-
rithm. As such, we used tied weights across depth and use bounded activations
to encourage convergence to a fixed point. The update operator is trained to
perform updates such that the sequence converges to a fixed point f, — f*.
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Initialization: By default, we initialize the flow field to 0 everywhere, but our
iterative approach gives us the flexibility to experiment with alternatives. When
applied to video, we test warm-start initialization, where optical flow from the
previous pair of frames is forward projected to the next pair of frames with
occlusion gaps filled in using nearest neighbor interpolation.

Inputs: Given the current flow estimate f*, we use it to retrieve correlation
features from the correlation pyramid as described in Sec. 3.2. The correlation
features are then processed by 2 convolutional layers. Additionally, we apply 2
convolutional layers to the flow estimate itself to generate flow features. Finally,
we directly inject the input from the context network. The input feature map is
then taken as the concatenation of the correlation, flow, and context features.

Update: A core component of the update operator is a gated activation unit
based on the GRU cell, with fully connected layers replaced with convolutions:

zt = o(Convays([he—1, 2], W>)) (3)
ry = o(Conviys ([hi—1, x¢], W)) (4)
hi = tanh(Convays([re © hy_1, 2], Wh)) (5)
he=(1—2)Ohi_1+206h (6)

where x; is the concatenation of flow, correlation, and context features previously
defined. We also experiment with a separable ConvGRU unit, where we replace
the 3 x 3 convolution with two GRUs: one with a 1 x 5 convolution and one with
a b x 1 convolution to increase the receptive field without significantly increasing
the size of the model.

Flow Prediction: The hidden state outputted by the GRU is passed through
two convolutional layers to predict the flow update Af. The output flow is at
1/8 resolution of the input image. During training and evaluation, we upsample
the predicted flow fields to match the resolution of the ground truth.

Upsampling: The network outputs optical flow at 1/8 resolution. We upsample
the optical flow to full resolution by taking the full resolution flow at each pixel
to be the convex combination of a 3x3 grid of its coarse resolution neighbors. We
use two convolutional layers to predict a H/8xW/8x (8 x8x9) mask and perform
softmax over the weights of the 9 neighbors. The final high resolution flow field is
found by using the mask to take a weighted combination over the neighborhood,
then permuting and reshaping to a H x W x 2 dimensional flow field. This layer
can be directly implemented in PyTorch using the unfold function.

3.4 Supervision

We supervised our network on the [; distance between the predicted and ground
truth flow over the full sequence of predictions, {fi, ..., fx}, with exponentially
increasing weights. Given ground truth flow fy, the loss is defined as

N
ﬁZZ’YFNHfgt*fiHl (7)

=1
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Ground Truth VCN IRR-PWC Ours

Fig. 3: Flow predictions on the Sintel test set.

where we set v = 0.8 in our experiments.

4 Experiments

We evaluate RAFT on Sintel[11] and KITTI[18]. Following previous works, we
pretrain our network on FlyingChairs[15] and FlyingThings[33], followed by
dataset specific finetuning. Our method achieves state-of-the-art performance
on both Sintel (both clean and final passes) and KITTI. Additionally, we test
our method on 1080p video from the DAVIS dataset[37] to demonstrate that our
method scales to videos of very high resolutions.

Implementation Details: RAFT is implemented in PyTorch[36]. All modules
are initialized from scratch with random weights. During training, we use the
AdamW|[30] optimizer and clip gradients to the range [—1,1]. Unless otherwise
noted, we evaluate after 32 flow updates on Sintel and 24 on KITTI. For every
update, Af + fi, we only backpropgate the gradient through the Af branch, and
zero the gradient through the fj, branch as suggested by [20].

Training Schedule: We train RAFT using two 2080Ti GPUs. We pretrain on
FlyingThings for 100k iterations with a batch size of 12, then train for 100k itera-
tions on FlyingThings3D with a batch size of 6. We finetune on Sintel for another
100k by combining data from Sintel[11], KITTI-2015 [34], and HD1K][27] similar
to MaskFlowNet [51] and PWC-Net+ [41]. Finally, we finetune on KITTI-2015
for an additionally 50k iterations using the weights from the model finetuned on
Sintel. Details on training and data augmentation are provided in the supple-
mental material. For comparison with prior work, we also include results from
our model when finetuning only on Sintel and only on KITTI.

4.1 Sintel

We train our model using the FlyingChairs—FlyingThings schedule and then
evaluate on the Sintel dataset using the train split for validation. Results are
shown in Table 1 and Figure 3, and we split results based on the data used
for training. C + T means that the models are trained on FlyingChairs(C) and
FlyingThings(T), while +ft indicates the model is finetuned on Sintel data. Like
PWC-Net+[41] and MaskFlowNet [51] we include data from KITTI and HD1K
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Fig. 4: Flow predictions on the KITTI test set.

when finetuning. We train 3 times with different seeds, and report results using
the model with the median accuracy on the clean pass of Sintel (train).

When using C+T for training, our method outperforms all existing ap-
proaches, despite using a significantly shorter training schedule. Our method
achieves an average EPE (end-point-error) of 1.43 on the Sintel(train) clean
pass, which is a 29% lower error than FlowNet2. These results demonstrates
good cross dataset generalization. One of the reasons for better generalization is
the structure of our network. By constraining optical flow to be the product of a
series of identical update steps, we force the network to learn an update operator
which mimics the updates of a first-order descent algorithm. This constrains the
search space, reduces the risk of over-fitting, and leads to faster training and
better generalization.

When evaluating on the Sintel(test) set, we finetune on the combined clean
and final passes of the training set along with KITTI and HD1K data. Our
method ranks 1st on both the Sintel clean and final passes, and outperforms all
prior work by 0.9 pixels (36%) on the clean pass and 1.2 pixels (30%) on the
final pass. We evaluate two versions of our model, Ours (two-frame) uses zero
initialization, while Ours (warp-start) initializes flow by forward projecting the
flow estimate from the previous frame. Since our method operates at a single
resolution, we can initialize the flow estimate to utilize motion smoothness from
past frames, which cannot be easily done using the coarse-to-fine model.

4.2 KITTI

We also evaluate RAFT on KITTI and provide results in Table 1 and Figure
4. We first evaluate cross-dataset generalization by evaluating on the KITTI-15
(train) split after training on Chairs(C) and FlyingThings(T). Our method out-
performs prior works by a large margin, improving EPE (end-point-error) from
8.36 to 5.04, which shows that the underlying structure of our network facili-
tates generalization. Our method ranks 1st on the KITTI leaderboard among all
optical flow methods.

4.3 Ablations

We perform a set of ablation experiments to show the relative importance of
each component. All ablated versions are trained on FlyingChairs(C) + Fly-
ingThings(T). Results of the ablations are shown in Table 2. In each section of
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31 i -15 (trai Sinte! > -15 st
Training Data  Method Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)

Clean Final Fl-epe Fl-all Clean  Final Fl-all
FlowFields[7] - - - - 3.75 5.81 15.31
- FlowFields++[40] - B - - 2.94 5.49 14.82
s DCFlow[47] N B . N 354 5.12 14.86
S MRFlow|[46] - - - - 2.53 5.38 12.19
HD3[49] 3.84 8.77 13.17 24.0
LiteFlowNet[22] 2.48 4.04 10.39 28.5
PWC-Net[42] 2.55 3.93 10.35 33.7
LiteFlowNet2[23] 2.24 3.78 8.97 25.9
C+T VCN48] 2.21 3.68 8.36 25.1
MaskFlowNet[51] 2.25 3.61 - 23.1 - -
FlowNet2[25] 2.02 3.54" 10.08 30.0 3.96 6.02
Ours (small) 2.21 3.35 7.51 26.9 - -
Ours (2-view) 1.43 2.71 5.04 17.4 - - -
FlowNet2 [25] (145)  (201) (2.30)  (6.8) 416 574 11.48
HD3 [49] (1.87)  (L.17) (1.31)  (41) 479 467 6.55
C+T+S/K  IRR-PWC [24] (1.92)  (251) (1.63)  (5.3) 384 458 7.65
VCN [48] (1.66) (224) (L16)  (41) 281 440 6.30
ScopeFlow[s] - - - - 359 4.10 6.82
Ours (2-view, bilinear) (1.09) (1.53) (1.07)  (39) 277  3.61 6.30
Ours (warm-start, bilinear) ~ (1.10)  (1.61) - - 2.42 3.39 -
LiteFlowNet2? [23] (1.30)  (1.62) (1.47)  (48) 345  4.90 7.74
PWC-Net+[41] (171)  (234)  (150)  (5.3) 345  4.60 7.72
CH+T+S+K+H  MaskFlowNet[51] - - - - 252 417 6.10
Ours (2-view) (0.76)  (1.22)  (0.63) (1.5) 1.94 3.18 5.10
Ours (warm-start) 0.77)  (1.27) - - 1.61 2.86 -

Table 1: Results on Sintel and KITTT datasets. We test the generalization perfor-
mance on Sintel(train) after training on FlyingChairs(C) and FlyingThing(T),
and outperform all existing methods on both the clean and final pass. The bot-
tom two sections show the performance of our model on public leaderboards after
dataset specific finetuning. S/K includes methods which use only Sintel data for
finetuning on Sintel and only KITTI data when finetuning on KITTI. +S+K+H
includes methods which combine KITTI, HD1K, and Sintel data when finetun-
ing on Sintel. Ours (warm-start) ranks 1st on both the Sintel clean and final
passes, and 1st among all flow approaches on KITTI. (!FlowNet2 originally re-
ported results on the disparity split of Sintel, 3.54 is the EPE when their model
is evaluated on the standard data [22]. 2 [23] finds that HD1K data does not
help significantly during Sintel finetuning and reports results without it. )

the table, we test a specific component of our approach in isolation, the settings
which are used in our final model is underlined. Below we describe each of the
experiments in more detail.

Architecture of Update Operator: We use a gated activation unit based on
the GRU cell. We experiment with replacing the convolutional GRU with a set
of 3 convolutional layers with ReLLU activation. We achieve better performance
by using the GRU block, likely because the gated activation makes it easier for
the sequence of flow estimates to converge.

Weight Tying: By default, we tied the weights across all instances of the
update operator. Here, we test a version of our approach where each update
operator learns a separate set of weights. Accuracy is better when weights are
tied and the parameter count is significantly lower.
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Sintel (train) KITTI-15 (train)

Experiment Method - = Parameters
Clean Final Fl-epe Fl-all
Reference Model (bilinear upsampling), Training: 100k(C) — 60k(T)
Update O ConvGRU 1.63 2.83 5.54 19.8 4.8M
pdate Lp- Conv 204 321 766 26.1 41M
Tyin, Tied Weights 1.63 2.83 5.54 19.8 4.8M
yiog Untied Weights 1.96 3.20 7.64 24.1 32.5M
Context Context 1.63 2.83 5.54 19.8 4.8M
wontex No Context 1.93  3.06 6.25 23.1 3.3M
Feature Scale Single-Scale 1.63 2.83 5.54 19.8 4.8M
) o Multi-Scale 2.08 3.12 6.91 23.2 6.6M
0 3.41 4.53 23.6 44.8 4.T™
. 1 1.80 2.99 6.27 21.5 4.7M
Lookup Radius 2 178 282 584 211 4.8M
4 1.63 2.83 5.54 19.8 4.8M
Correlation Pooli No 1.95 3.02 6.07 23.2 4.7T™M
orrelation FOOUNE g 163 283 554 19.8 4.8M
32px 2.91 4.48 104 28.8 4.8M
Tt o 64px 2.06 3.16 6.24 20.9 4.8M
Correlation Range 128px 1.64 281 6.00 19.9 4.8M
All-Pairs 1.63 2.83 5.54 19.8 4.8M
Feat for Refi " Correlation 1.63 2.83 5.54 19.8 4.8M
catures for REANEMENt 3y ping 227 373 1183 32.1 2.8M
Reference Model (convex upsampling), Training: 100k(C) — 100k(T)

U i Convex 1.43 2.71 5.04 17.4 5.3M
psampiing Bilinear 160 279 517 19.2 4.8M
1 4.04 5.45 15.30 44.5 5.3M
3 2.14 3.52 8.98 29.9 5.3M
Inference Updates 8 1.61 2.88 5.99 19.6 5.3M
32 1.43 2.71 5.00 17.4 5.3M
100 1.41 2.72 4.95 17.4 5.3M
200 1.40 2.73 4.94 17.4 5.3M

Table 2: Ablation experiments. Settings used in our final model are underlined.
See Sec. 4.3 for details.

Context: We test the importance of context by training a model with the
context network removed. Without context, we still achieve good results, out-
performing all existing works on both Sintel and KITTI. But context is helpful.
Directly injecting image features into the update operator likely allows spatial
information to be better aggregated within motion boundaries.

Feature Scale: By default, we extract features at a single resolution. We
also try extracting features at multiple resolutions by building a correlation
volume at each scale separately. Single resolution features simplifies the network
architecture and allows fine-grained matching even at large displacements.

Lookup Radius: The lookup radius specifies the dimensions of the grid used
in the lookup operation. When a radius of 0 is used, the correlation volume is
retrieved at a single point. Surprisingly, we can still get a rough estimate of flow
when the radius is 0, which means the network is learning to use 0’th order
information. However, we see better results as the radius is increased.

Correlation Pooling: We output features at a single resolution and then
perform pooling to generate multiscale volumes. Here we test the impact when
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this pooling is removed. Results are better with pooling, because large and small
displacements are both captured.

Correlation Range: Instead of all-pairs correlation, we also try constructing
the correlation volume only for a local neighborhood around each pixel. We try
a range of 32 pixels, 64 pixels, and 128 pixels. Overall we get the best results
when the all-pairs are used, although a 128px range is sufficient to perform well
on Sintel because most displacements fall within this range. That said, all-pairs
is still preferable because it eliminates the need to specify a range. It is also
more convenient to implement: it can be computed using matrix multiplication
allowing our approach to be implemented entirely in PyTorch.

Features for Refinement: We compute visual similarity by building a cor-
relation volume between all pairs of pixels. In this experiment, we try replacing
the correlation volume with a warping layer, which uses the current estimate
of optical flow to warp features from Iy onto I; and then estimates the resid-
ual displacement. While warping is still competitive with prior work on Sintel,
correlation performs significantly better, especially on KITTI.

Features for Refinement: We compute visual similarity by building a cor-
relation volume between all pairs of pixels. In this experiment, we try replacing
the correlation volume with a warping layer, which uses the current estimate
of optical flow to warp features from I onto I; and then estimates the resid-
ual displacement. While warping is still competitive with prior work on Sintel,
correlation performs significantly better, especially on KITTI.

Upsampling: RAFT outputs flow fields at 1/8 resolution. We compare bi-
linear upsampling to our learned upsampling module. The upsampling module
produces better results, particularly near motion boundaries.

Inference Updates: Although we unroll 12 updates during training, we can
apply an arbitrary number of updates during inference. In Table 2 we provide
numerical results for selected number of updates, and test an extreme case of 200
to show that our method doesn’t diverge. Our method quickly converges, sur-
passing PWC-Net after 3 updates and FlowNet2 after 6 updates, but continues
to improve with more updates.

4.4 Timing and Parameter Counts

Inference time and parameter counts are shown in Figure 5. Accuracy is de-
termined by performance on the Sintel(train) final pass after training on Fly-
ingChairs and FlyingThings (C+T). In these plots, we report accuracy and tim-
ing after 10 iterations, and we time our method using a GTX 1080Ti GPU.
Parameters counts for other methods are taken as reported in their papers, and
we report times when run on our hardware. RAFT is more efficient in terms
of parameter count, inference time, and training iterations. Ours-S uses only
1M parameters, but outperforms PWC-Net and VCN which are more than 6x
larger. We provide an additional table with numerical values for parameters,
timing, and training iterations in the supplemental material.
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[ &EeFTowNeEx(0.9M] “TTeFTowNer TTeFTowNeE
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Fig. 5: Plots comparing parameter counts, inference time, and training iterations
vs. accuracy. Accuracy is measured by the EPE on the Sintel(train) final pass
after training on C+T. Left: Parameter count vs. accuracy compared to other
methods. RAFT is more parameter efficient while achieving lower EPE. Middle:
Inference time vs. accuracy timed using our hardware Right: Training iterations
vs. accuracy (taken as product of iterations and GPUs used).

Fig. 6: Results on 1080p (1088x1920) video from DAVIS (550 ms per frame).

4.5 Video of Very High Resolution

To demonstrate that our method scales well to videos of very high resolution
we apply our network to HD video from the DAVIS[37] dataset. We use 1080p
(1088x1920) resolution video and apply 12 iterations of our approach. Inference
takes 550ms for 12 iterations on 1080p video, with all-pairs correlation taking
95ms. Fig. 6 visualizes example results on DAVIS.

5 Conclusions

We have proposed RAFT—Recurrent All-Pairs Field Transforms—a new end-
to-end trainable model for optical flow. RAFT is unique in that it operates at a
single resolution using a large number of lightweight, recurrent update operators.
Our method achieves state-of-the-art accuracy across a diverse range of datasets,
strong cross dataset generalization, and is efficient in terms of inference time,
parameter count, and training iterations.

Acknowledgments: This work was partially funded by the National Science
Foundation under Grant No. 1617767.
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