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Abstract. We propose a motion forecasting model that exploits a novel
structured map representation as well as actor-map interactions. Instead
of encoding vectorized maps as raster images, we construct a lane graph
from raw map data to explicitly preserve the map structure. To capture
the complex topology and long range dependencies of the lane graph, we
propose LaneGCN which extends graph convolutions with multiple adja-
cency matrices and along-lane dilation. To capture the complex interac-
tions between actors and maps, we exploit a fusion network consisting of
four types of interactions, actor-to-lane, lane-to-lane, lane-to-actor and
actor-to-actor. Powered by LaneGCN and actor-map interactions, our
model is able to predict accurate and realistic multi-modal trajectories.
Our approach significantly outperforms the state-of-the-art on the large
scale Argoverse motion forecasting benchmark.
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1 Introduction

Autonomous driving has the potential to revolutionize transportation. Self-driving
vehicles (SDVs) have to accurately predict the future motions of other traffic par-
ticipants in order to safely operate. High Definition maps (HD-maps) provide
extremely useful geometric and semantic information for motion forecasting, as
the behaviors of actors largely depend on the map topology. For example, a ve-
hicle is unlikely to take a left turn when there is not a left turn lane nearby.
Effectively exploiting HD maps is essential for motion forecasting models to
produce plausible and accurate trajectories.

First attempts exploit HD maps as heuristics [42]. Actors are first associated
with lanes and all candidate motion paths are then generated based on map
topology. In this way, the prediction results are constrained by the map. However,
this approach can not capture rare and non-compliant behaviours, which while
not very likely, might be safety critical.

Recent works [38, 14, 29, 3, 23, 7, 5, 6] use machine learning to learn semantic
representations from maps. To enable HD maps to be processed by neural net-
works the map data is rasterized to create image-like raster inputs. Map topology
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Fig. 1. Our approach: We construct a lane graph from raw map data and use
LaneGCN to extract map features. In parallel, ActorNet extracts actor features from
observed past trajectories. We then use FusionNet to model the Interactions between
actors themselves and the map, and predict the future trajectories.

is implicitly encoded as lines, masks or colours, which are then processed by a 2D
Convolutional Neural Network (CNN). These learned map features were shown
to provide useful context information for motion forecasting. However, these ap-
proach has two disadvantages. First, the rasterization process inevitably results
in information loss. Second, maps have a graph structure with complex topol-
ogy which 2D convolution may be very inefficient to capture. For example, a
lane of interest may extend for a long range in the lane direction. To capture
this information, the receptive field has to be very large, covering not only the
intended area, but also large areas outside the lane. Furthermore, lane pairs in
the same or opposite directions have completely different semantic meanings and
dependencies, although the lanes in both pairs are spatially close to each other.

In this paper we made three main contributions: (1) Instead of using rasteriza-
tion, we construct a lane graph from vectorized map data, thus avoiding informa-
tion loss. We then propose the Lane Graph Convolutional Network (LaneGCN),
which effectively captures the complex topology and long range dependencies of
the lane graph. (2) Based on LaneGCN, our motion forecasting model captures
all possible actor-map interactions. In particular, we represent both actors and
lanes as nodes in the graph and use a 1D CNN and LaneGCN to extract the
features for the actor and lane nodes respectively, and then exploit spatial atten-
tion and another LaneGCN to model four types of interactions: actor-to-lane,
lane-to-lane, lane-to-actor and actor-to-actor. We refer the reader to Fig. 1 for
an illustration of our approach. (3) We conduct experiments on the large-scale
Argoverse motion forecasting benchmark [9], and show significant improvements
over the state-of-the-art.

2 Related Work

In this section, we review work on map representations, learning map represen-
tations for autonomy tasks, and graph convolutional networks.
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Map Representations: HD maps capture both the lane geometry as well as
their connectivity. [21] proposes to parameterize the lane boundaries as a set of
polylines, and exploit a Recurrent Neural Network (RNN) to extract them from
sensor data. [28] further extends the polyline representation to a more structured
parameterization. Instead of modelling the geometry of each lane, [22] proposes
to parameterize the unknown lane graph as a Directed Acyclic Graphical model
(DAG), which is more robust and able to handle more complex topology like
branching. In addition to modelling the geometry, [33, 32] encode different lane
types in a graphical model to better exploit their appearance features. [11] pa-
rameterizes the road layout using an undirected graph, showcasing outstanding
performance in large-scale city scale road topology.

Learning Map Representations for Autonomy: Rasterization based map
representations have been extensively used. [14, 12, 10] rasterize map elements
(roads, crosswalks) as layers and encode the lane direction with different colors.
[3, 8] encode roadmap, traffic lights and speed limits in rasterized bird’s eye view
images. [23] encodes the history of static entities, dynamic entities and semantic
map information in a top-down spatial grid. HDNet [38] exploits the road mask
as input feature to improve object detection performance. Rasterized maps have
been fused with LiDAR point clouds to perform joint perception and prediction
[29, 4, 27] as well as end-to-end motion planning [40, 35, 41]. While raster map
representations are popular, an alternative is to use vectorized map features.
[9] uses the distance along the centerlines and offset from the centerlines as in-
put to their nearest neighbours regression and LSTM [20] models. [34, 1] use 1D
CNN and LSTM to encode lane features. In contrast, our model constructs a lane
graph from vectorized map data, and extracts multi-scale topology features using
the proposed LaneGCN. In concurrent work VectorNet[16], two graph networks
are used to extract actor/lane features and model global interactions, respec-
tively. There are two major differences between VectorNet and LaneGCN. First,
VectorNet uses vanilla graph networks with undirected full connections, while we
build a sparsely connected lane graph following the map topology and propose
task specific multi-type and dilated graph operators. Second, VectorNet uses
polyline-level nodes for interaction, while our LaneGCN uses polyline segments
as map nodes to capture higher resolution. Note that in our approach nodes in
different polylines can interact with each other through dilated connections.

Graph Convolutional Networks: Graph Convolutional Networks (GCNs)
[36, 19, 15, 26, 13, 30] have been shown to be effective for graph representation
learning. They generalize the 2D convolution on grids to arbitrary graphs via
the so called graph convolution. Different from 2D convolution, which operates
on neighbors in a local grid, graph convolution operates on the neighboring nodes
defined by the graph structure, typically described in the form of an adjacency
matrix. We draw inspiration from GCNs and propose LaneGCN, which is a
specialized version designed for lane graphs. In our model, we introduce multiple
adjacency matrices and multi-scale dilated convolutions, which are effective in
capturing the complex topology and long-range dependencies of the lane graph.
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Fig. 2. Overall architecture: Our model is composed of four modules. (1) Actor-
Net receives the past actor trajectories as input, and uses 1D convolution to extract
actor node features. (2) MapNet constructs a lane graph from HD maps, and uses a
LaneGCN to exact lane node features. (3) FusionNet is a stack of 4 interaction blocks.
The actor to lane block fuses real-time traffic information from actor nodes to lane
nodes. The lane to lane block propagates information over the lane graph and up-
dates lane features. The lane to actor block fuses updated map information from lane
nodes to actor nodes. The actor to actor block performs interactions among actors.
We use another LaneGCN for the lane to lane block, and spatial attention layers for
the other blocks. (4) The prediction header uses after-fusion actor features to produce
multi-modal trajectories.

3 Lane Graph Representations for Motion Forecasting

In this section, we propose a novel motion forecasting model that learns struc-
tured map representations and fuses the information of traffic actors and HD
maps taking into account their interactions. In the following, we explain the
four modules that compose our model, i.e., how to compute actor features with
ActorNet, how to represent the map via MapNet, how to fuse the information
from both actors and the map with FusionNet, and finally how to predict the
final motion forecasting trajectories through the Prediction Header. We refer
the reader to Fig. 2 for an illustration of the overall architecture.

3.1 ActorNet: Extracting Traffic Participant Representations

We assume actor data is composed of the observed past trajectories of all ac-
tors in the scene. Each trajectory is represented as a sequence of displacements
{∆p−(T−1), . . . ,∆p−1, ∆p0}, where ∆pt is the 2D displacement from time step
t− 1 to t, and T is the trajectory size. All coordinates are defined in the Bird’s
Eye View (BEV), as this is the space of interest for traffic agents. For trajectories
with sizes smaller than T , we pad them with zeros. We add a binary 1×T mask
to indicate if the element at each step is padded or not and concatenate it with
the trajectory tensor, resulting in an input tensor of size 3× T .
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Fig. 3. Lane graph construction from vectorized map data. Left: The lane
centerline of interest, its predecessor, successor, left and right neighbor are denoted
with red, orange, blue, purple, and green lines, respectively. Each centerline is given as
a sequence of BEV points (hollow circles). Right: Derived lane graph with an example
lane node. The lane node of interest, its predecessor, successor, left and right neighbor
are denoted with red, orange, blue, purple and green circles respectively. See Section
3.2 for more information.

While both CNNs and RNNs can be used for temporal data, here we use an
1D CNN to process the trajectory input for its effectiveness in extracting multi-
scale features and efficiency in parallel computing. The output of ActorNet is
a temporal feature map, whose element at t = 0 is used as the actor feature.
The network has 3 groups/scales of 1D convolutions. Each group consists of 2
residual blocks [18], with the stride of the first block as 2. We then use a Feature
Pyramid Network (FPN) [31] to fuse the multi-scale features, and apply another
residual block to obtain the output tensor. For all layers, the convolution kernel
size is 3 and the number of output channels is 128. Layer normalization [2] and
the Rectified Linear Unit (ReLU) [17] are used after each convolution.

3.2 MapNet: Extracting Structured Map Representation

We use a novel deep model, called MapNet, to learn structured map represen-
tations from vectorized map data. This contrasts previous approaches, which
encode the map as a raster image and apply 2D convolutions to extract features.
MapNet consists of two steps: (1) building a lane graph from vectorized map
data; (2) applying our novel LaneGCN to the lane graph to output the map
features.

Map Data: In this paper, we adopt a simple form of vectorized map data as
our representation of HD maps. Specifically, the map data is represented as a set
of lanes and their connectivity. Each lane contains a centerline, i.e., a sequence
of 2D BEV points, which are arranged following the lane direction (see Fig. 3,
top). For any two lanes which are directly reachable, 4 types of connections are
given: predecessor, successor, left neighbour and right neighbour. Given a lane A,
its predecessor and successor are the lanes which can directly travel to A and
from A respectively. Left and right neighbours refer to the lanes which can be
directly reached without violating traffic rules. This simple map format provides
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essential geometric and semantic information for motion forecasting, as vehicles
generally plan their routes by reference to lane centerlines and their connectivity.

Lane Graph Construction: Instead of encoding maps as raster images, we
derive a lane graph from the map data as the input. In designing the lane graph,
we expect its nodes to have a fine resolution. Given any actor location, we query
the lane graph and find its nearest nodes to retrieve accurate map information.
From this point of view, it is not an optimal choice to directly use the lane
centerlines as the nodes.

We refer the reader to Fig. 3 for an example of the lane graph construction.
We first define a lane node as the straight line segment formed by any two
consecutive points (grey circles in Fig. 3) of the centerline. The location of a lane
node is the averaged coordinates of its two end points. Following the connections
between lane centerlines, we also derive 4 connectivity types for the lane nodes,
i.e., predecessor, successor, left neighbour and right neighbour. For any lane node
A, its predecessor and successor are defined as the neighbouring lane nodes that
can travel to A or from A respectively. Note that one can reach the first lane
node of a lane lA from the last lane node of lane lB if lB is the predecessor of lA.
Left and right neighbours are defined as the spatially closest lane node measured
by `2 distance on the left and on the right neighbouring lane respectively. We
denote the lane nodes with V ∈ RN×2, where N is the number of lane nodes
and the i-th row of V is the BEV coordinates of the i-th node. We represent the
connectivity with 4 adjacency matrices {Ai}i∈{pre,suc,left,right}, with Ai ∈ RN×N .
We denote Ai,jk, as the element in the j-th row and k-th column of Ai. Then
Ai,jk = 1 if node k is an i-type neighbor of node j.

LaneConv Operator: A natural operator to handle lane graphs is the graph
convolution [36]. The most widely used graph convolution operator [26] is defined
as Y = LXW , where X ∈ RN×F is the node feature, W ∈ RF×O is the weight
matrix, and Y ∈ RN×O is the output. The graph Laplacian matrix L ∈ RN×N

takes the form L = D−1/2(I + A)D−1/2, where I, A and D are the identity,
adjacency and degree matrices respectively. I and A account for self connection
and connections between different nodes. All connections share the same weight
W , and the degree matrix D is used to normalize the output. However, this
vanilla graph convolution is inefficient in our case due to the following reasons.
First, it is not clear what kind of node feature will preserve the information in the
lane graphs. Second, a single graph Laplacian can not capture the connection
type, i.e., losing the directional information carried by the connection type.
Third, it is not straightforward to handle long range dependencies, e.g ., akin
dilated convolution, within this form of graph convolution. Motivated by these
challenges, we introduce our novel specially designed operator for lane graphs,
called LaneConv.

Node Feature: We first define the input feature of the lane nodes. Each lane
node corresponds to a straight line segment of a centerline. To encode all the
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lane node information, we need to take into account both the shape (size and
orientation) and the location (the coordinates of the center) of the corresponding
line segment. We parameterize the node feature as follows,

xi = MLPshape

(
vend
i − vstart

i

)
+ MLPloc (vi) , (1)

where MLP indicates a multi-layer perceptron and the two subscripts refer to
shape and location, respectively. vi is the location of the i-th lane node, i.e., the
center between two end points, vstart

i and vend
i are the BEV coordinates of the

node i’s starting and ending points, and xi is the i-th row of the node feature
matrix X, denoting the input feature of the i-th lane node.

LaneConv: The node feature above only captures the local information of a line
segment. To aggregate the topology information of the lane graph at a larger
scale, we design the following LaneConv operator

Y = XW0 +
∑

i∈{pre,suc,left,right}

AiXWi, (2)

where Ai and Wi are the adjacency and the weight matrices corresponding to
the i-th connection type respectively. Since we order the lane nodes from the
start to the end of the lane, Asuc and Apre are matrices obtained by shifting the
identity matrix one step towards upper right (non-zero superdiagonal) and lower
left (non-zero subdiagonal). Asuc and Apre can propagate information from the
forward and backward neighbours whereas Aleft and Aright allow information to
flow from the cross-lane neighbours. It is not hard to see that our LaneConv
builds on top of the general graph convolution and encodes more geometric
(e.g ., connection type/direction) information. As shown in our experiments this
improves over the vanilla graph convolution.

Dilated LaneConv: Since motion forecasting models usually predict the future
trajectories of actors with a time horizon of several seconds, actors with high
speed could have moved a long distance. Therefore, the model needs to capture
the long range dependency along the lane direction for accurate prediction. In
regular grid graphs, a dilated convolution operator [39] can effectively capture
the long range dependency by enlarging the receptive field. Inspired by this
operator, we propose the dilated LaneConv operator to achieve a similar goal for
irregular graphs.

In particular, the k-dilation LaneConv operator is defined as follows,

Y = XW0 +Ak
preXWpre,k +Ak

sucXWsuc,k, (3)

where Ak
pre is the k-th matrix power of Apre. This allows us to directly propagate

information along the lane for k steps, with k a hyperparameter. Since Ak
pre is

highly sparse, one can efficiently compute it using sparse matrix multiplication.
Note that the dilated LaneConv is only used for predecessor and successor, as
the long range dependency is mostly along the lane direction.
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Fig. 4. LaneGCN architecture. Our LaneGCN is a stack of 4 multi-scale LaneConv
residual blocks, each of which consists of a LaneConv(1,2,4,8,16,32) and a linear layer
with a residual connection [18]. All layers have 128 feature channels.

LaneGCN: Based on the dilated LaneConv, we further propose a multi-scale
LaneConv operator and use it to build our LaneGCN. Combining Eq. (2) and (3)
with multiple dilations, we get a multi-scale LaneConv operator with C dilation
sizes as follows

Y = XW0 +
∑

i∈{left,right}

AiXWi +

C∑
c=1

(
Akc

preXWpre,kc
+Akc

sucXWsuc,kc

)
, (4)

where kc is the c-th dilation size. We denote LaneConv(k1, · · · , kC) this multi-
scale layer. The architecture of LaneGCN is shown in Fig. 4. The network is com-
posed of 4 LaneConv residual [18] blocks, which are the stack of a LaneConv(1,
2, 4, 8, 16, 32) and a linear layer, as well as a shortcut. All layers have 128 feature
channels. Layer normalization [2] and ReLU [17] are used after each LaneConv
and linear layer.

3.3 FusionNet

In this section we propose a network to fuse the information of the actor and lane
nodes given by ActorNet and MapNet, respectively. The behaviour of an actor
strongly depends on its context, i.e., other actors and the map. Although the
interactions between actors has been explored by previous work, the interactions
between the actors and the map, and map conditioned interactions between
actors have received much less attention. In our model, we use spatial attention
and LaneGCN to capture a complete set of actor-map interactions (see Fig. 2).

We build a stack of four fusion modules to capture all information flows
between actors and lane nodes, i.e., actors to lanes (A2L), lanes to lanes (L2L),
lanes to actors (L2A) and actors to actors (A2A). Intuitively, A2L introduces
real-time traffic information to lane nodes, such as blockage or usage of the lanes.
L2L updates lane node features by propagating the traffic information over the
lane graph. L2A fuses updated map features with real-time traffic information
back to the actors. A2A handles the interactions between actors and produces
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the output actor features, which are then used by the prediction header for
motion forecasting.

We implement L2L using another LaneGCN, which has the same architecture
as the one used in our MapNet (see Section 3.2). In the following we describe
the other three modules in detail. We exploit a spatial attention layer [37] for
A2L, L2A and A2A. The attention layer applies to each of the three modules in
the same way. Taking A2L as an example, given an actor node i, we aggregate
the features from its context lane nodes j as follows

yi = xiW0 +
∑
j

φ(concat(xi, ∆i,j ,xj)W1)W2, (5)

with xi the feature of the i-th node, W a weight matrix, φ the composition
of layer normalization and ReLU, and ∆ij = MLP(vj − vi), where v denotes
the node location. The context nodes are defined to be the lane nodes whose `2
distance from the actor node i is smaller than a threshold. The thresholds for
A2L, L2A and A2A are set to 7, 6, and 100 meters respectively. Each of A2L,
L2A and A2A has two residual blocks, which consist of a stack of the proposed
attention layer and a linear layer, as well as a residual connection. All layers
have 128 output feature channels.

3.4 Prediction Header

Taking the after-fusion actor features as input, a multi-modal prediction header
outputs the final motion forecasting. For each actor, it predicts K possible future
trajectories and their confidence scores. The header has two branches, a regres-
sion branch to predict the trajectory of each mode and a classification branch to
predict the confidence score of each mode. For the m-th actor, we apply a resid-
ual block and a linear layer in the regression branch to regress the K sequences
of BEV coordinates:

Om,reg = {(pk
m,1,p

k
m,2, ...,p

k
m,T )}k∈[0,K−1] (6)

where pk
m,i is the predicted m-th actor’s BEV coordinates of the k-th mode at

the i-th time step. For the classification branch, we apply an MLP to pk
m,T−pm,0

to get K distance embeddings. We then concatenate each distance embedding
with the actor feature, apply a residual block and a linear layer to output K
confidence scores, Om,cls = (cm,0, cm,1, ..., cm,K−1).

3.5 Learning

As all the modules are differentiable, we can train the model in an end-to-end
way. We use the sum of classification and regression losses to train the model

L = Lcls + αLreg, (7)
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where α = 1.0. Given K predicted trajectories of an actor, we find a positive
trajectory k̂ that has the minimum final displacement error, i.e., the Euclidean
distance between the predicted and ground truth locations at the final time step.

For classification, we use the max-margin loss:

Lcls =
1

M(K − 1)

M∑
m=1

∑
k 6=k̂

max(0, cm,k + ε− cm,k̂) (8)

where ε is the margin and M is the total number of actors. For regression, we
apply the smooth `1 loss on all predicted time steps:

Lreg =
1

MT

M∑
m=1

T∑
t=1

reg(pk̂
m,t − p∗m,t) (9)

where p∗t is the ground truth BEV coordinates at time step t, reg(x) =
∑

i d(xi),
xi is the i-th element of x, and d(xi) is the smooth `1 loss defined as

d(xi) =

{
0.5x2i if ‖xi‖ < 1

‖xi‖ − 0.5 otherwise,
(10)

where ‖xi‖ denotes the `1 norm of xi.

4 Experimental Evaluation

We evaluate our model on the large scale Argoverse [9] motion forecasting bench-
mark, which is publicly available and provides vectorized map data. We first com-
pare our model with the state-of-the-art and show significant improvements in
all metrics. We then conduct ablation studies on the architecture and LaneConv
operators, and show the advantage of our model design choices. Finally, we show
qualitative results and discuss future directions.

4.1 Experimental Settings

Dataset: Argoverse [9] is a motion forecasting benchmark with over 30K sce-
narios collected in Pittsburgh and Miami. Each scenario is a sequence of frames
sampled at 10 HZ. Each sequence has an interesting object called “agent”, and
the task is to predict the future locations of agents in a 3 seconds future horizon.
The sequences are split into training, validation and test sets, which have 205942,
39472 and 78143 sequences respectively. These splits have no geographical over-
lap. For the training and validation sets, each sequence lasts for 5 seconds. The
first two seconds are used as input data and the other 3 seconds are used as
ground truth for models to predict. For the test set, only the first 2 seconds are
provided. Each frame is given as the centroid coordinates of all objects in the
scene. The actor data is a trajectory of 20 time steps. The map data is a set of
lane centerlines and their connectivity. We use both actor and map data in the
way described in Sections 3.1 and 3.2, without any other preprocessing step. We
did not use the other map data such as the rasterized drivable area map and
ground height map provided with the benchmark.
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Table 1. Results on Argoverse motion forecasting benchmark (test set)

Model
K=1 K=6

minADE minFDE MR minADE minFDE MR

Argoverse Baseline [9] 2.96 6.81 0.81 2.34 5.44 0.69
Argoverse Baseline (NN) [9] 3.45 7.88 0.87 1.71 3.29 0.54

Holmes (7th) [24] 2.91 6.54 0.82 1.38 2.66 0.42
cxx (3rd) [1] 1.91 4.31 0.66 0.99 1.71 0.19
uulm-mrm (2nd) [12, 14] 1.90 4.19 0.63 0.94 1.55 0.22
Jean (1st) [1, 34] 1.86 4.18 0.63 0.93 1.49 0.19

Our Model 1.71 3.78 0.59 0.87 1.36 0.16

Metrics: We employ two extensively used motion forecasting metrics, Average
Displacement Error (ADE) is defined as the `2 distance between the predicted
and ground truth locations, averaged over all steps. Final Displacement Error
(FDE) is defined as the `2 distance between the predicted and ground truth
locations at the last step in the predicted horizon. As motion forecasting is by
nature multi-modal, Argoverse uses the minimum ADE (minADE) and minimum
FDE (minFDE) of the top K predictions as the metrics. When K=1, minADE
and minFDE are equal to the deterministic ADE and FDE. Argoverse benchmark
allows up to 6 predictions, and the online server ranks the entries with minFDE
with K=6. We use minADE and minFDE for K=1 and K=6 as the main metrics.
When comparing our model with top entries on the leaderboard, we also show
Miss Rate (MR), which is the ratio of predictions (the best mode) whose final
location is more than 2.0 meters away from the ground truth.

Implementation Details: We use all actors and lanes whose distance from
the agent is smaller than 100 meters as the input. The coordinate system in our
model is the BEV centered at the agent location at t = 0. We use the orientation
from the agent location at t = −1 to the agent location at t = 0 as the positive x
axis. We train the model on 4 TITAN-X GPUs using a batch size of 128 with the
Adam [25] optimizer with an initial learning rate of 1×10−3, which is decayed to
1×10−4 at 32 epochs. The training process finishes at 36 epochs and takes about
11.5 hours. All our results are based on the same model, whose architecture and
hyper-parameters are described in Section 3.

4.2 Results

Comparison with the state-of-the-art: We compare our model with four
top entries and two official baselines on the Argoverse motion forecasting leader-
board. We submit our result at the time of ECCV submission (2020/03/15). The
metrics are minADE, minFDE and MR for K=1 and K=6, and the leaderboard is
ranked by minFDE for K=6. As shown in Table 1, our model significantly outper-
forms all other models in all metrics. Among the compared methods, uulm-mrm
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Table 2. Ablation study results of modules

Backbone FusionNet K=1 K=6
ActorNet MapNet L2A A2L L2L A2A minADE minFDE minADE minFDE

X 1.90 4.38 0.91 1.66
X X 1.58 3.61 0.79 1.29

X X X 1.55 3.52 0.76 1.23
X X X X X 1.39 3.05 0.72 1.10
X X X X X X 1.35 2.97 0.71 1.08

encodes the input data using a rasterization approach [12, 14]. They represent
actor states, lanes and the drivable area with a synthesized image, which is then
processed by a 2D CNN. In this approach, map topology and actor-map inter-
actions are both implicitly learned by 2D convolution. In contrast, our model
explicitly learns structured map features and performs actor-map fusion. Jean
and cxx encode actors and lanes with 1D CNN and/or LSTM, and use attention
[37] to fuse the features. In their models, lanes are encoded independently so
the global map topology is not captured. Moreover, there is no actor to lane
and lane to lane fusion. In contrast, our model learns the lane features using the
LaneConv, which captures the multi-scale topology of the lane graph.

Importance of each module: In Table 2, we show the results of using Actor-
Net as the baseline and progressively adding more modules. Three observations
can be drawn from the results. First, all modules improve the performance of
the model, demonstrating the effectiveness of both LaneGCN and our overall
architecture. Second, the information flow from actors to maps brings useful
traffic information which benefits the motion forecasting performance, as the
incorporation of A2L and L2L significantly outperforms L2A only. Third, A2L,
L2L and L2A also facilitates the interaction between actors, which can be seen
from the smaller gain of adding A2A to this combination (from 4th row to 5th
row) compared to adding A2A to ActorNet alone (from 1st row to 2nd row).
Intuitively, the information of different actors is propagated over the lane graph
and leads to effective map conditioned interactions.

Lane Graph Operators: In Table 3, we show the results of the ablation
study on lane graph operators. The baseline model uses the combination of
A2L, L2L and L2A. We start from the vanilla graph convolution (GraphConv),
and evaluate the effect of adding each component of the LaneConv block (see
Figure 4), including the residual block, multi-type connections and dilation. The
last row is the LaneConv used in our model (fourth row of Table 2). All these
components significantly improve the performance. The residual block only adds
about 7% parameters, but effectively facilitates the training. Both multi-type
connections and dilation significantly boost the performance, demonstrating the
clear advantage of LaneConv over vanilla graph convolution.
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Table 3. Ablation study results of lane graph operators

Component K=1 K=6
GraphConv Residual Multi-Type Dilate minADE minFDE minADE minFDE

X 1.72 3.93 0.82 1.41
X X 1.59 3.59 0.77 1.24
X X 1.46 3.29 0.74 1.16

X X 1.53 3.48 0.79 1.33
X X X 1.48 3.33 0.74 1.19
X X X 1.41 3.12 0.73 1.14

X X X X 1.39 3.05 0.72 1.10

Qualitative Results: In Fig. 5, we compare qualitatively our model to other
methods on 4 hard cases. The results of other models are adapted from the slides
of Argoverse motion forecasting competition [1]. As the examples are from the
test set and we have no access to the labels, in our results we did not show the
ground truth trajectory. The first row shows a case where the baselines miss
the mode. While the other methods fail to capture the right turn prediction,
our model produces a mode which nicely follows the right turn centerline. The
second row shows a case where the agent is waiting to perform an unprotected
left turn for the first 2 seconds. Due to the lack of actor motion history, maps are
important for the model to produce reasonable trajectories. The other models
produce divergent trajectories, some of which are non-traffic-rule compliant. In
contrast, our model produces reasonable trajectories following the lane topol-
ogy. The third row shows a case of a car decelerating and coming to a stop at
the intersection. Our model produces a mode with more deceleration then the
baselines and all the modes reasonably follow the lane. The fourth row shows a
case of extreme acceleration. None of the models captures this case well, possibly
because there is not enough information to make this prediction.

Overall, these results suggest that LaneGCN effectively learns structured
map representations, which are used by the model to predict realistic trajec-
tories. One potential way to improve our model is to incorporate more map
information into the lane graph. Currently our model uses the centerlines and
their connectivity. Other map information, such as traffic lights and traffic signs,
provides useful information for motion forecasting, which is well illustrated by
the second and third cases in Fig. 5. To account for new map data, our model can
be easily extended by introducing new nodes and connections. We will explore
this direction in future work.

5 Conclusion

In this paper, we propose a novel motion forecasting model to learn lane graph
representations and perform a complete set of actor-map interactions. Instead of
using a rasterized map as input, we construct a lane graph from vectorized map
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uulm-mrm jean cxx Ours

 Ground truth  Predicted trajectory  Past trajectoryTrajectories end with a circle.

Fig. 5. Qualitative results on hard cases. From top to bottom, these hard cases
involve missing the right turn mode, lacking history information, extreme deceleration
and acceleration, respectively. See the text for more information.

data and propose the LaneGCN to extract map topology features. We use spatial
attention and the LaneGCN to fuse the information of both actors and lanes. We
conduct experiments on the large scale Argoverse motion forecasting benchmark.
Our model significantly outperforms the state-of-the-art. In the future we plan
to explore the incorporation of other map data.
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