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In this supplementary document, we provide additional details regarding our
choice of 3D morphable model, implementation details and additional experi-
mental results.

A Morphable model details

We employ the Basel Face Model 2017 [6] as a representation of a face, which
has Ny = 199, N, = 100, and N, = 199 dimensions for facial identity shape,
facial expression shape, and skin albedo respectively. We scale basis sé. and aé»
so that the standard deviation of «; and ; is 1.

Since our differentiable linear least squares layer samples the 3DMM mean
and basis for each pixel based on predicted correspondence, we flatten the SDMM
to a 2D parameterisation beforehand. Specifically, we generate a Tutte embed-
ding [4] for each component of the 3DMM. We force the boundary of the em-
bedding to be square. We refer to the flattened 3SDMM as UV-3DMM and its
domain of definition as UV-space. To fill a hole inside the mouth of the Basel
Face Model 2017, we introduce an auxiliary vertex inside the hole and connect
it with the boundary vertices of the mouth. We set the mean value of mouth
boundary vertices for each component of the auxiliary vertex. The resolution of
precomputed UV-3DMM is 320x 320 pixels. In our linear least squares layer, we
process 3DMM and input data as described in Fig. 10.

B Linear least square layer details

Fig. 10 shows a schematic overview of how the linear least squares solutions for
geometric and photometric parameters are combined within our network. The
differentiable closed form solution is given in Sec. R.

C Stochastic Sampling

Solving a linear system over all pixels for all images in a minibatch within the net-
work during training is prohibitively computationally expensive. For this reason,
we introduce a stochastic sampling of pixels for the linear least square process
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Fig. 10: Overview of linear least square layer (outputs in red). Inputs to this
process are the outputs from the image-to-image network.

Regular SH . .
.

Inverse SH
Max error 0.049 0.109 0.123 0.272
RMS error  0.019 0.043 0.029 0.058

Fig. 11: Empirical validation of inverse spherical harmonic lighting model.

to reduce memory consumption. We randomly select 10,000 pixels which have
confidence value larger than 0.001x the maximum confidence value. If the num-
ber of pixels which fulfil the above criteria is less than 10,000, we select the rest
of the pixels randomly.

D Empirical validation of inverse lighting model

We empirically validate inverse spherical harmonic(SH) lighting model in Fig. 11.
The upper row shows randomly generated images based on conventional SH
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lighting. We generate random SH coefficients by ¢ = 0.2 and add the random
lighting to constant lighting with intensity 0.9. We use the same SH coefficients
for all RGB channels. The lower row shows images of the same faces rendered
based on inverse SH lighting. Inverse SH coefficients are calculated as a least
squares solution that minimises the difference between estimated inverse lighting
and inverted original lighting at random 100,000 sample points on the sphere.
We also show mean and max errors of lighting intensity between conventional
and inverse SH lighting model among sample points.

E Stability of photometric least squares

We assume the pixel value in both images and 3DMM is scaled to [0, 1]. Dark
pixels, with value close to zero, cause numerical unstability so we clamp low
pixel values of an input image. Specifically, we apply softplus function to input
image as preprocessing: i, = log(1 + e5%v) /¢ where € is a parameter to adjust
the scale of softplus function. We also apply inverse function of softplus function
to visualise output images. We use & = 4.

F Network pretraining

We pretrain our network using a small number of roughly aligned images by
applying data augmentation by 2D similarity transformation. In pretraining, we
directly supervise the pixel-wise prediction network using constant value depth
map, synthetic confidence map, and synthetic correspondence map. We aligned
mean shape of 3DMM to pretraining images using average 5 landmark position,
and generate synthetic confidence map, in which face region is set to 1 and the
other to 0, and synthetic correspondence map. The same supervision data is used
for all the pretraining images. An example of an input image and supervision
data is shown in Fig. 12. We apply random similarity transformation to both
input images and supervision data. Though we use roughly aligned image for
pretraining, we never use landmarks of each image and 3D ground truth. Thus,
our network can be regarded as unsupervised training in the conventional con-
text. We initially pretrain our network using 1k images from pre-aligned CelebA
dataset. Here, batch size is 5, number of iterations is 14k.

During early iterations of the main training, we additionally regularise the
camera translation parameters in the linear least squares system as the cal-
culation of full perspective camera parameters from planar depth tends to be
unstable. Camera translation parameters are regularised by applying L2 distance
regularisation between camera viewpoint and a fixed point placed in front of the
face.

G Adaptive Loss Adjustment

During training, weights of each 3DMM coeflicient in statistical reguralisation
Ftat 1s adaptively adjusted so that the exponential average of the squared value
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Fig. 12: Example of training data for pretraining.

of each coefficient is kept to be 1, which is equivalent to the variance defined in
the 3DMM. The weight of ith coeflicient in the jth iteration w; ; is set by:

w; ; = max(min(k; ; E[w;]j, Wmax}), Wmin) (18)
where Elw;]; = (1= 0)wi ;-1 + 0E[w;]; 1, ki j = max(min(E[a?];, 0f,0), 05yin)
and E[of]; = (1 —0)ai;_ + 0F[a]];j—1. Here k; j represents the rate of change

in the jth iteration, and a; ; represents the ith coefficient obtained from out-
puts in the jth iteration. We clamp both the rate of change and the weight. We
set the update ratio as § = 0.05, and the clamp threshold wyae = 104, Whin =
107402, . =1.01,a2,, = 0.99. We initialise the exponential average as E[aZ]o =

0.1 and E[w;]o = 0.1 before starting training.

H Intermediate output

Fig. 13 shows outputs of the pixel-wise prediction network. Even without the
least square 3DMM fitting, the quality of output is also convincing.

I Additional comparison

We also compare our method with the state-of-the-art Deng et al. [3] (Fig. 14).
Due to richer supervision based on landmarks and ID, Deng et al. [3] shows
better quality. However, our method still has comparable quality despite it is
unsupervised method and has robustness against 2D similarity transformation.
Fig. 15 shows comparison with Tran et al. [17], MoFA [15], and Genova et al. [5]
in 3D visualisation. This indicates our method has comparable quality to other
deep learning based 3D face reconstruction methods.

We also evaluate based on the identity of reconstructed faces (Fig. 16,Tab. 1).
As Genova et al. [5] optimises facial identity of reconstructed image, it outper-
forms ours. However, our method is slightly better than Tran et al. [17] and
MoFA [15]. This could be a contribution of least squares in colour, which im-
proves fidelity of an output face.

J Additional quantitative results

In this supplementary material, additional quantitative evaluation is provided.
We follow the evaluation in Jakab et al. [7] and Thewils et al. [16]. Tab. 2
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Fig. 13: Intermediate output of pixel-wise prediction network. Left to right: Cor-
respondence map, image mapped to UV-space, depth map, depth map as point
cloud and confidence map.
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Fig. 14: Comparison to Deng et al. [3].

shows quantitative evaluation in terms of a ratio of standard MSE to the inter-
ocular distance expressed as a percentage. In this experiment, the position of
five landmarks is evaluated on MAFL test-set [23] and AFLW [11] test-set.
Despite our approach is unsupervised, the result is comparable to supervised
methods except RCPR [1] and MTCNN [22]. Previous works in unsupervised
and self-supervised detection have generally better performance. This might be
because those unsupervised /self-supervised methods can exploit indirect super-
vision from multiple images of a same object as well as a fine-tuned regressor,
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Fig. 15: Reconstructed 3D face from images on MoFA-test dataset. Note that
Tran [17] and Genova [5] only reconstruct a neutral face without expression.
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Fig. 16: Distributions of cosine similarity for VGG-Face descriptors between ren-
dering/photo for MoFA-test. Means below.

which converts unorganized landmarks to pre-defined one. In addition, our ap-
proach is not as robust as unsupervised/self-supervised methods because our
approach is constrained by the linear model and cannot handle outliers such as
occlusion and self-shadow properly.
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Method Supervision |Same|Different
MoFA [15] |None/Landmarks| 0.30 | 0.11
Tran et al. [17] | Fully supervised | 0.27 | 0.14
Genova et al. [5] Identity 0.09| 0.32
Ours None 0.26 | 0.16
Table 1: Earth mover’s distance between distributions in Fig. 16 and
same/different identities on LFW (see [5]). Low distance for “Same” and high
distance for “Different” means rendering/photo pair distances are similar to real
photo pairs of the same person.

Method MAFL AFLW
Supervised
RCPR [1] - 11.60
CFAN [20] 15.84 10.94
Cascaded CNN [14] 9.73  8.97
TCDCN [23] 7.95 7.65
RAR [19] - 7.23
MTCNN [22] 539 6.90
Unsupervised /Self-supervised
Thewils [16] 6.67 10.53
Shu [12] 545 -
Zhang [21] 3.16 6.58
Wiles [18] 3.44 -
Jakab [7] 254  6.33
Ours
Direct 8.10 9.82
Fitted 7.86  9.74

Table 2: Quantitative evaluation on MAFL [23] and AFLW [11] Database.

K Additional qualitative results

In this supplemental document, additional results of reconstruction are pro-
vided (Fig. 17). We train our network using images from CelebA dataset [9)].
For both training and test, we apply random 2D similarity transformation to
original cropped CelebA images, and fill the background region with random
images from ImageNet [8]. This evaluation shows our network can reconstruct
images, which have diverse ethnicity, expression, gender, and pose. Fig. 18 shows
reconstruction from rotated and cropped face images in ImageNet. This result
indicates the blended boundary of an augmented image have no significant effect
for reconstruction.

L Performance versus training iteration

Fig. 19 shows the convergence of reconstructed images during the training. The
initial estimate is based on the pretrained network, which only requires small
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Fig. 17: Reconstruction result from images in CelebA dataset. Random 2D sim-
ilarity transformation is applied to an original cropped CelebA image, and the
background region is filled with a random ImageNet image. Images for this eval-
uation is not used for the training.
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Fig. 18: Reconstruction result from images in ImageNet dataset. Images contain-
ing a face are selected and cropped.

amount of roughly aligned images for supervision. Reconstructed face region
expands gradually as training proceeds (odd rows in Fig. 19). The number of
inlier pixels, which has a larger robust residual error than the threshold, also
increases during the training (dark pixels in even row images in Fig. 19).

M Limitations of our method

Our approach is unsupervised and only relies on photometric consistency be-
tween the input image and the model, hence it is prone to fail in extreme cases
(Fig. 20). The robust residual loss has an effect to expand face region so that the
model can explain as many pixels as possible. Thus, skin-colour like hair causes
over-expansion of a face (top-left), and skin-colour like background (top-right)
causes misalignment of a face. In addition, we model the appearance only based
on diffuse reflection formulated with the inverse spherical harmonic lighting.
Thus, the quality of reconstruction is degraded if the input image has strong
occlusion (middle-left) or strong shadow (middle-right). As our approach can
reconstruct only a face, which a 3DMM can explain, extreme expressions cannot
be reconstructed (bottom-left). Extreme pose is also difficult to reconstruct due
to strong self-occlusion.

N Comparison between different network architectures

Fig. 18 shows comparison of outputs from different size of networks. In the
main paper, we employ regular U-Net, which contains of four down-sampling
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Fig. 19: Convergence of reconstructed images during training. Odd rows show
the overlay of the reconstructed image. Even rows show the visualisation of the
robust residual loss on each pixel. .

layers and four up-sampling layers. Each scale contains two convolution layers
followed by batch normalisation and ReLLU. The number of channels of an input
tensor in each scale is 3, 64 128, 256, 512 for down-scaling, and 1024, 512,
256, 128, 64 for up-scaling. The number of channels of an output tensor in
each scale is 64, 128, 256, 512, 512 for down-scaling, and 256, 128, 64, 64, 5
for up-scaling. We define narrow U-Net by halving the number of each channel
except input and output, and we define wide U-Net by doubling the number of
each channel except input and output. Additionally, we define deep U-Net by
replacing double convolution in each scale by quad convolution. We qualitatively
compare the quality of reconstructed images and geometry. Generally, increase of
the number of channels improves the quality of reconstruction, whereas increase
of the number of layer does not. In addition, we train FCN [10] with ResNet101
and DeepLab v3 [2] with ResNet101 instead of U-Net based on our approach. In
our experiment, no successful training condition was found for FCN and DeepLab
v3.

O Results from video sequences

We apply our approach to video sequence frame by frame. Fig. 22 shows recon-
structed images and geometry for five selected frames from each sequence. These
results exhibit the stability of our approach against face movement, perturba-
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Fig.20: Example of images which our approach fails to reconstruct a reason-
able shape. Top to bottom: Skin-colour like hair, skin-colour like background,
strong occlusion, strong shadow, extreme expression, and extreme pose lead to
inaccurate reconstruction.

tion, and facial expression. Additionally, we provide these results in a form of
video file as supplementary material. In the video material, input images, recon-
structed images, reconstructed geometry, estimated correspondence, estimated
confidence, and estimated depth are shown in top-left, top-middle, top-right,
bottom-left, bottom-middle, and bottom-right, respectively.

P Limitations of MoFA

One contribution of our approach is to enable 3D face reconstruction from an
arbitrary in-plane pose face image, which can be simulated by 2D similarity
transformation of the input image. To validate our contribution, we tested MoFA
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with 2D similarity data augmentation based on our MoFA [15] reimplementa-
tion (2D-augmented MoFA). Since our approach employs pretraining based on
roughly aligned images, we also applied pretraining to 2D-augmented MoFA. For
pretraining, we use the same images as our network. To make the training sta-
ble, we train only camera rotation and xy-translation estimation in first 10,000
iterations. After that, we train camera rotation and full translation estimation
for 38,000 iterations. During pretraining, we fix 3DMM and lighting parameters,
and only use landmark loss. In our experiment, we employ L1-norm instead of
L2-norm as landmark loss for stability. Fig. 23 shows examples of reconstruction
by the pretrained network.

Based on pretrained 2D-augmented MoFA, we investigated parameters which
enable unsupervised training without landmarks. We employ statistical regulari-
sation of 3SDMM parameters and photometric loss between a reconstructed image
and an input image for training. However, no successful parameter was found. We
also tested training with landmark loss. Fig. 24 and Fig. 25 compare the training
loss of 3 types of augmentation (no augmentation, 2D shift transformation, and
2D similarity transformation). This experiment indicates that reconstruction of
a face with arbitrary in-plane pose is much more difficult than reconstruction of
an aligned face for conventional CNN such as VGG19 [13] even if landmarks are
provided. Therefore, it is not surprising that fragile unsupervised training fails.

Q Derivation of camera matrix

In the differentiable linear least square layer, we compute an inverse perspective
camera matrix P and q such that:

=P ' =yKR (19)

o o D
QO DD o+ = o+

G=-P'q=¢Kt (20)

where K[R t] represents a classical projective camera matrix. To obtain a camera
matrix, we decompose P, q into K, R, t as:
2

s = |las|3 (21)
q3

= — 22
ry = (22)
ks = pirs (23)
ks = P2 — ksrs|l3 (24)
ry = D2 — ksr3 (25)

ka
ks = pirs (26)
ko = Pirs (27)
ki = |P1 — kory — kars|3 (28)
- D1 — kory — kars (29)

k1
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R Derivation of the solution of the linear least squares

In our network, we solve the linear least square problem for geometry and colour.
N, pixels are sampled for the least squares. Assuming, on jth sampled pixel,
x; = (25,95, 1)T is pixel coordinates, d; is depth value, w; is confidence value,
B, is 3DMM shape basis matrix, and a; is 3DMM shape mean, each element of
inverse camera matrix P, q and 3DMM shape coefficients m are derived as:

dix] 1 03x3  Ozx3
‘I’j = O3><3 de;F 1 O3><3 (33)
0353 O3x3 djx) 1

vy -B;
v, -B,
o= : : (34)
\1le _BNp
Ei2x12 012 (N, +N.)
O+ x12 BV, 4N x (V. +N.)
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w1
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w1
w2
w2
w2

Q = diag WNp

aNp
O11x1
20

[ O+ Ny %1 ]

= (0Tqe)'e’ar

(35)

where «; represents the weight for regularisation. 0 represents zero matrix and

E represents identity matrix.
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Assuming, on jth sampled pixel, i; is pixel value, F} is inverse lighting spheri-
cal harmonic basis, w; is confidence value, D; is 3DMM albedo basis matrix, and
c; is 3DMM albedo mean, spherical harmonic coeflicients 1 and 3DMM colour
coefficients h are derived as:

[ i1F1 *Dl
bF, —D;

in,Fn, —Du,
Ea7x27 O27xn,

| On, x27 En, xn, |

wNp
UJN,,

IT = diag | wy

(39)

[
|
™
2

CNp
O27x1
_ONT><1_

[}11] = (ATTIA) 'ATTIE (41)

where ~; and & represent the weight for regularisation.
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Dee

Fig. 21: Comparison of reconstruction results using different size of network. Odd
rows shows reconstructed images, and even rows shows reconstructed geometry.
The first column shows input images, the second column shows results of half
breadth U-Net, the third column shows results of regular U-Net, the forth column
shows results of double breadth U-Net, and the fifth column shows double depth
U-Net.
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Fig. 22: Reconstruction results from video sequences. Every first rows show input
images, every second row shows reconstructed images, and every third rows show
reconstructed geometry.
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Fig. 23: Reconstructed images by 2D-augmented MoFA [15] after pretraining.
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Fig. 24: Photometric loss of 2D-augmented MoFA [15] with landmark loss during
training. The error is calculated as median value of training loss for each 100
iteration.
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Fig.25: Landmark loss of 2D-augmented MoFA [15] with landmark loss during
training. The error is calculated as median value of training loss for each 100
iteration.



