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Fig. 1: SIZER dataset of people with clothing size variation. (Left): 3D Scans of
people captured in different clothing styles and sizes. (Right): T-shirt and short
pants for sizes small and large, which are registered to a common template.

Abstract. While models of 3D clothing learned from real data exist, no
method can predict clothing deformation as a function of garment size.
In this paper, we introduce SizerNet to predict 3D clothing conditioned
on human body shape and garment size parameters, and ParserNet to
infer garment meshes and shape under clothing with personal details in a
single pass from an input mesh. SizerNet allows to estimate and visualize
the dressing effect of a garment in various sizes, and ParserNet allows
to edit clothing of an input mesh directly, removing the need for scan
segmentation, which is a challenging problem in itself. To learn these
models, we introduce the SIZER dataset of clothing size variation which
includes 100 different subjects wearing casual clothing items in various
sizes, totaling to approximately 2000 scans. This dataset includes the
scans, registrations to the SMPL model, scans segmented in clothing
parts, garment category and size labels. Our experiments show better
parsing accuracy and size prediction than baseline methods trained on
SIZER. The code, model and dataset will be released for research pur-
poses at: https://virtualhumans.mpi-inf.mpg.de/sizer/.

https://virtualhumans.mpi-inf.mpg.de/sizer/
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1 Introduction

Modeling how 3D clothing fits on the human body as a function of size has
numerous applications in 3D content generation (e.g., AR/VR, movie, video
games, sport), clothing size recommendation (e.g., e-commerce), computer vision
for fashion, and virtual try-on. It is estimated that retailers lose up to $600 billion
each year due to sales returns as it is currently difficult to purchase clothing
online without knowing how it will fit [3,2].

Predicting how clothing fits as a function of body shape and garment size
is an extremely challenging task. Clothing interacts with the body in complex
ways, and fit is a non-linear function of size and body shape. Furthermore,
clothing fit differences with size are subtle, but they can make a difference when
purchasing clothing online. Physics based simulation is still the most commonly
used technique because it generalizes well, but unfortunately, it is difficult to
adjust its parameters to achieve a realistic result, and it can be computationally
expensive.

While there exist several works that learn how clothing deforms as a function
of pose [30], or pose and shape [30,43,22,37,34], there are few works modeling how
garments drape as a function of size. Recent works learn a space of styles [50,37]
from physics simulations, but their aim is plausibility, and therefore they can
not predict how a real garment will deform on a real body.

What is lacking is (1) a 3D dataset of people wearing the same garments in
different sizes and (2) a data-driven model learned from real scans which varies
with sizing and body shape. In this paper, we introduce the SIZER dataset, the
first dataset of scans of people in different garment sizes featuring approximately
2000 scans, 100 subjects and 10 garments worn by subjects in four different sizes.
Using the SIZER dataset we learned a Neural Network model, which we refer
to as SizerNet, which given a body shape and a garment, can predict how the
garment drapes on the body as a function of size. Learning SizerNet requires
to map scans to a registered multi-layer meshes – separate meshes for body
shape, and top and bottom garments. This requires segmenting the 3D scans,
and estimating their body shape under clothing, and registering the garments
across the dataset, which we obtain using the method explained in [14,38]. From
the multi-layer meshes, we learn an encoder to map the input mesh to a latent
code, and a decoder which additionally takes the body shape parameters of
SMPL [33], the size label (S, M, L, XL) of the input garment, and the desired
size of the output, to predict the output garment as a displacement field to a
template.

Although visualizing how an existing garment fits on a body as a function of
size is already useful for virtual try-on applications, we would also like to change
the size of garments in existing 3D scans. Scans however, are just pointclouds,
and parsing them into a multi-layer representation at test time using [14,38]
requires segmentation, which sometimes requires manual intervention. There-
fore, we propose ParserNet, which automatically maps a single mesh registration
(SMPL deformed to the scan) to multi-layer meshes with a single feed-forward
pass. ParserNet, not only segments the single mesh registration, but it reparam-
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eterizes the surface so that it is coherent with common garment templates. The
output multi-layer representation of ParserNet is powerful as it allows simula-
tion and editing meshes separately. Additionally, the tandem of SizerNet and
ParserNet allows us to edit the size of clothing directly on the mesh, allowing
shape manipulation applications never explored before.

In summary, our contributions are:

• SIZER dataset: A dataset of clothing size variation of approximately 2000
scans including 100 subjects wearing 10 garment classes in different sizes,
where we make available, scans, clothing segmentation, SMPL+G registra-
tions, body shape under clothing, garment class and size labels.

• SizerNet: The first model learned from real scans to predict how clothing
drapes on the body as a function of size.

• ParserNet: A data-driven model to map a single mesh registration into a
multi-layered representation of clothing without the need for segmentation
or non-linear optimization.

Fig. 2: We propose a model to estimate and visualize the dressing effect of a gar-
ment conditioned on body shape and garment size parameters. For this we intro-
duce ParserNet (fUw , f

L
w , f

B
w ), which takes a SMPL registered mesh M(θ,β,D)

as input and predicts the SMPL parameters (θ,β), parsed 3D garments using
predefined templates T g(β,θ,0) and predicts body shape under clothing while
preserving the personal details of the subject. We also propose SizerNet, an
encoder-decoder (f encw , fdecw ) based network, that resizes the garment given as
input with the desired size label (δin, δout) and drapes it on the body shape
under clothing.

2 Related Work

Clothing modeling. Accurate reconstruction of 3D cloth with fine structures
(e.g., wrinkles) is essential for realism while being notoriously challenging. Meth-
ods based on multi-view stereo can recover global shape robustly but struggle
with high frequency details in non-textured regions [51,44,16,6,47,32]. The pio-
neering work of [9,8] demonstrated for the first time detailed body and clothing
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reconstruction from monocular video using a displacement from SMPL, which
spearheaded recent developments [23,7,10,42,24,25]. These approaches do not
separate body from clothing. In [38,30,14,26], the authors propose to recon-
struct clothing as a layer separated from the body. These models are trained
on 3D scans of real clothed people data and produce realistic models. On the
other hand, physics based simulation methods have also been used to model
clothing [48,49,35,21,45,46,37,43,22]. Despite the potential gap with real-world
data, they are a great alternative to obtain clean data, free of acquisition noise
and holes. However, they still require manual parameter tuning (e.g., time step
for better convergence, sheer and stretch for better deformation effects, etc.),
and can be slow or unstable. In [43,22,21] a pose and shape dependent clothing
model is introduced, and [37,50] also model garment style dependent clothing
using a lower-dimensional representation for style and size like PCA and garment
sewing parameters, however there is no direct control on the size of clothing gen-
erated for given body shape. In [53], authors model the garment fit on different
body shapes from images. Our model SizerNet automatically outputs realistic
3D cloth models conditioned on desired features (e.g., shape, size).

Shape under clothing. In [11,60,57], the authors propose to estimate body
shape under clothing by fitting a 3D body model to 3D reconstructions of people.
An objective function typically forces the body to be inside clothing while be-
ing close to the skin region. These methods cannot generalize well to complex or
loose clothing without additional prior or supervision [17]. In [27,36,54,29,28,52],
the authors propose learned models to estimate body shape from 2D images of
clothed people, but shape accuracy is limited due to depth ambiguity. Our model
ParserNet takes as input a 3D mesh and outputs 3D bodies under clothing with
high fidelity while preserving subject identity (e.g., face details).

Cloth parsing. The literature has proposed several methods for clothed hu-
man understanding. In particular, efficient cloth parsing in 2D has been achieved
using supervised learning and generative networks [55,56,58,18,19,20]. 3D cloth-
ing parsing of 3D scans has also been investigated [38,14]. The authors propose
techniques based on MRF-GrabCut [41] to segment 3D clothing from 3D scans
and transfer them to different subjects. However the approach requires several
steps, which is not optimal for scalability. We extend previous work with SIZER,
a fully automatic data-driven pipeline. In [13], the authors jointly predict cloth-
ing and inner body surface, with semantic correspondences to SMPL. However,
it does not have semantic clothing information.

3D datasets. To date, only a few datasets consist of 3D models of subjects
with segmented clothes. 3DPeople [40], Cloth3D [12] consists of a large dataset
of synthetic 3D humans with clothing. None of the synthetic datasets contains
realistic cloth deformations like the SIZER dataset. THUman [61] consists of
sequences of clothed 3D humans in motion, captured with a consumer RGBD
sensor (Kinectv2), and are reconstructed using volumetric SDF fusion [59]. How-



SIZER 5

ever, 3D models are rather smooth compared to our 3D scans and no ground
truth segmentation of clothing is provided. Dyna and D-FAUST [39,15] consist of
high-res 3D scans of 10 humans in motion with different shape but the subjects
are only wearing minimal clothing. BUFF [60] contains high-quality 3D scans of
6 subjects with and without clothing. The dataset is primarily designed to train
models to estimate body shape under clothing and doesn’t contain garments seg-
mentation. In [14], the authors create a digital wardrobe with 3D templates of
garments to dress 3D bodies. In [26], authors propose a mixture of synthetic and
real data, which contains garment, body shape and pose variations. However,
the fraction of real dataset (∼300 scans) is fairly small. DeepFahsion3D [62] is a
dataset of real scans of clothing containing various garment styles. None of these
datasets contain garment sizing variation. Unlike our proposed SIZER dataset,
no dataset contains a large amount of pre-segmented clothing from 3D scans at
different sizes, with corresponding body shapes under clothing.

3 Dataset

In this paper, we address a very challenging problem of modeling garment fitting
as a function of body shape and garment size. As explained in Sec. 2, one of the
key bottlenecks that hinder progress in this direction is the lack of real-world
datasets that contain calibrated and well-annotated garments in different sizes
draped on real humans. To this end, we present SIZER dataset, a dataset of over
2000 scans containing people in diverse body shapes in various garments styles
and sizes. We describe our dataset in Sec. 3.1 and 3.2.

3.1 SIZER dataset: Scans

We introduce the SIZER dataset that contains 100 subjects, wearing the same
garment in 2 or 3 garment sizes (S, M, L, XL). We include 10 garment classes,
namely shirt, dress-shirt, jeans, hoodie, polo t-shirt, t-shirt, shorts, vest, skirt,
and coat, which amounts to roughly 200 scans per garment class. We capture
the subjects in a relaxed A-pose to avoid stretching or tension due to pose in
the garments. Figure 1 shows some examples of people wearing a fixed set of
garments in different sizes. We use a Treedy’s static scanner [5] which has 130+
cameras, and reconstruct the scans using Agisoft’s Metashape software [1]. Our
scans are high resolution and are represented by meshes, which have different
underlying graph connectivity across the dataset, and hence it is challenging to
use this dataset directly in any learning framework. We preprocess our dataset,
by registering them to SMPL [33]. We explain the structure of processed data
in the following section.

3.2 SIZER dataset: SMPL and Garment registrations

To improve general usability of the SIZER dataset, we provide SMPL+G reg-
istrations [31,14] registrations. Registering our scans to SMPL, brings all our
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scans to correspondence, and provides more control over the data via pose and
shape parameters from the underlying SMPL. We briefly describe the SMPL
and SMPL+G formulations below.

SMPL represents the human body as a parametric function M(·), of pose (θ)
and shape (β). We add per-vertex displacements (D) on top of SMPL to model
deformations corresponding to hair, garments, etc. thus resulting in the SMPL
model. SMPL applies standard skinning W (·) to a base template T in T-pose.
Here, W denotes the blend weights and Bp(·) and Bs(·) models pose and shape
dependent deformations respectively.

M(β,θ,D) = W (T (β,θ,D), J(β),θ,W) (1)

T (β,θ,D) = T +Bs(β) +Bp(θ) + D (2)

SMPL+G is a parametric formulation to represent the human body and
garments as separate meshes.To register the garments we first segment scans into
garments and skin parts [14]. We refine the scan segmentation step used in [14] by
fine-tuning the Human Parsing network [20] with a multi-view consistency loss.
We then use the multi-mesh registration approach from [14] to register garments
to the SMPL+G model. For each garment class, we obtain a template mesh which
is defined as a subset of the SMPL template, given by T g(β,θ,0) = IgT (β,θ,0),

where Ig ∈ Zmg×n
2 is an indicator matrix, with Igi,j = 1 if garment g vertex

i ∈ {1 . . .mg} is associated with body shape vertex j ∈ {1 . . . n}. mg and n
denote the number of vertices in the garment template and the SMPL mesh
respectively. Similarly, we define a garment function G(β,θ,Dg) using Eq. (3),
where Dg are the per-vertex offsets from the template

G(β,θ,Dg) = W (T g(β,θ,Dg), J(β),θ,W). (3)

For every scan in the SIZER dataset, we will release the scan, segmented
scan, and SMPL+G registrations, garment category and garment size label.

This dataset can be used in several applications like virtual try-on, character
animation, learning generative models, data-driven body shape under clothing,
size and(or) shape sensitive clothing model, etc. To stimulate further research
in this direction, we will release the dataset,code and baseline models, which
can be used as a benchmark in 3D clothing parsing and 3D garment resizing.
We use this dataset to build a model for the task of garment extraction from
single mesh (ParserNet) and garment resizing (SizerNet), which we describe in
the next section.

4 Method

We introduce ParserNet (Sec. 4.2), the first method for extracting garments
directly from SMPL registered meshes. For parsing garments, we first predict the
underlying body SMPL parameters using a pose and shape prediction network
(Sec. 4.1) and use ParserNet to extract garment layers and personal features
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like hair, facial features to create body shape under clothing. Next, we present
SizerNet (Sec. 4.3), an encoder-decoder based deep network for garment resizing.
An overview of the method is shown in Fig. 2.

4.1 Pose and shape prediction network

To estimate body shape under clothing, we first create the undressed SMPL
body for a given clothed input single layer mesh M(β,θ,D), by predicting θ,β
using fθw and fβw respectively. We train fθw and fβw with L2 loss over parameters
and per-vertex loss between predicted SMPL body and clothed input mesh, as
shown in Eq. (4) and (5). Since the reference body under clothing parameters
θ,β obtained via instance specific optimization (Sec. 3.2) can be inaccurate, we
add an additional per-vertex loss between our predicted SMPL body vertices
M(θ̂, β̂,0) and the input clothed mesh M(β,θ,D). This brings the predicted
undressed body closer to the input clothed mesh. We observe more stable results
training fθw and fβw separately initially, using the reference β and θ respectively.
Since the β components in SMPL are normalized to have σ = 1, we un-normalize
them by scaling by their respective standard deviations [σ1, σ2, . . . , σ10] as given
in Eq. (5).

Lθ = wpose||θ̂ − θ||22 + wv||M(β, θ̂,0)−M(β,θ,D)|| (4)

Lβ = wshape

10∑
i=1

σi(β̂i − βi)
2 + wv||M(β̂,θ,0)−M(β,θ,D)|| (5)

Here, wpose, wshape and wv are weights for the loss on pose, shape and pre-

dicted SMPL surface. (θ̂, β̂) denote predicted parameters. The output is a smooth
(SMPL model) body shape under clothing.

4.2 ParserNet

Parsing garments. Parsing garments from a single mesh (M) can be done by
segmenting it into separate garments for each class (Gg,k

seg), which leads to differ-

ent underlying graph connectivity (Gg,kseg = (Gg,k
seg,E

g,k
seg)) across all the instances

(k) of a garment class g, shown in Fig. 3 (right). Hence, we propose to parse
garments by deforming vertices of a template T g(β,θ,0) with fixed connectivity
Eg, obtaining vertices Gg,k ∈ Gg,k, where Gg,k = (Gg,k,Eg), shown in Fig. 3
(middle).

Our key idea is to predict the deformed vertices Gg directly as a convex
combination of vertices of the input mesh M = M(β,θ,D) with a learned
sparse regressor matrix Wg, such that Gg = WgM. Specifically, ParserNet
predicts the sparse matrix (Wg) as a function of input mesh features (vertices
and normals) and a predefined per-vertex neighborhood (Ni) for every vertex i
of garment class g. We will henceforth drop (.)g,k unless required. In this way,
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Fig. 3: Left to right: Input single mesh (Mk), garment template (T g(β,θ,0) =
IgT (β,θ,0)), garment mesh extracted using Gg,k = IgMk, multi-layer meshes
(Gg,k) registered to SMPL+G, all with garment class specific edge connectivity
Eg, and segmented scan Gg,k

seg with instance specific edge connectivity Eg,k
seg.

the output vertices Gi ∈ R3, where i ∈ {1, . . . ,mg}, are obtained as a convex
combination of input mesh vertices Mj ∈ R3 in a predefined neighborhood (Ni).

Gi =
∑
j∈Ni

WijMj . (6)

Parsing detailed body shape under clothing. For generating detailed body
shape under clothing, we first create a smooth body mesh, using SMPL param-
eters θ and β predicted from fθw, f

β
w (Sec. 4.1). Using the same aforementioned

convex combination formulation, Body ParserNet transfers the visible skin ver-
tices from the input mesh to the smooth body mesh, obtaining hair and fa-
cial features. We parse the input mesh into upper, lower garments and detailed
shape under clothing using 3 sub-networks (fUw , f

L
w , f

B
w ) of ParserNet, as shown

in Fig. 2.

4.3 SizerNet

We aim to edit the garment mesh based on garment size labels such as S, M,
L, etc, to see the dressing effect of the garment for a new size. For this task,
we propose an encoder-decoder based network, which is shown in Fig. 2 (right).
The network f encw , encodes the garment mesh Gin to a lower-dimensional latent
code xgar ∈ Rd, shown in Eq. (7). We append (β, δin, δout) to the latent space,
where δin, δout are one-hot encodings of input and desired output sizing and β
is the SMPL β parameter for underlying body shape.

xgar = f encw (Gin), f encw (.) : Rmg×3 → Rd (7)

The decoder network, fdecw (.) : R|β| × Rd × R2|δ| → Rmg×3 predicts the dis-
placement field Dg = fdecw (β,xgar, δin, δout) on top on template. We obtain the
output garment Gout in the new desired size δout using Eq. (3).
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4.4 Loss functions

We train the networks, ParserNet and SizerNet with training losses given by
Eq. (8) and (9) respectively, where w3D, wnorm, wlap, winterp and ww are weights
for the loss on vertices, normal, Laplacian, interpenetration and weight regular-
izer term respectively. We explain each of the loss terms in this section.

Lparser = w3DL3D + wnormLnorm + wlapLlap + winterpLinterp + wwLw (8)

Lsizer = w3DL3D + wnormLnorm + wlapLlap + winterpLinterp (9)

• 3D vertex loss for garments. We define L3D as L1 loss between predicted
and ground truth vertices

L3D = ||GP −GGT||1. (10)

• 3D vertex loss for shape under clothing. For training fBw (ParserNet
for the body), we use the input mesh skin as supervision for predicting per-
sonal details of subject. We define a garment class specific geodesic distance
weighted loss term, as shown in Eq. (11), where Is is the indicator matrix
for skin region and wgeo is a vector containing the sigmoid of the geodesic
distances from vertices to the boundary between skin and non-skin regions.
The loss term is high when the prediction is far from the input mesh M for
the visible skin region, and lower for the cloth region, with a smooth tran-
sition regulated by the geodesic term. Let absij(·) denote an element-wise
absolute value operator. Then the loss is computed as

Lbody
3D = ‖wT

geo · absij(G
s
P − IsM)‖1. (11)

• Normal Loss. We define Lnorm as the difference in angle between ground
truth face normal (Ni

GT) and predicted face normal (Ni
P ).

Lnorm =
1

Nfaces

Nfaces∑
i

(1− (NGT,i)
TNP,i). (12)

• Laplacian smoothness term. This enforces the Laplacian of predicted
garment mesh to be close to the Laplacian of ground truth mesh. Let Lg ∈
Rmg×mg be the graph Laplacian of the garment mesh GGT, and ∆init =
LgGGT ∈ Rmg×3 be the differential coordinates of the GGT, then we com-
pute the Laplacian smoothness term for a predicted mesh GP as

Llap = ||∆init − LgGP||2. (13)

• Interpenetration loss. Since minimizing per-vertex loss does not guar-
antee that the predicted garment lies outside the body surface, we use the
interpenetration loss term in Eq. (14) proposed in GarNet [22]. For every
vertex GP,j , we find the nearest vertex in the predicted body shape under
clothing (Bi) and define the body-garment correspondences as C(B,GP).



10 Tiwari et al.

Let Ni be the normal of the ith body vertex Bi. If the predicted garment
vertex GP,j penetrates the body, it is penalized with the following loss

Linterp =
∑

(i,j)∈C(B,GP)

1d(GP,j ,GGT,j)<dtol
ReLU(−Ni(GP,j −Bi))/mg, (14)

where notice that 1d(GP,j ,GGT,j)<dtol
activates the loss when the distance

between predicted garment mesh vertices and ground truth mesh vertices is
small i.e. < dtol.

• Weight regularizer. To preserve the fine details when parsing the input
mesh, we want the weights predicted by the network to be sparse and con-
fined in a local neighborhood. Hence, we add a regularizer which penalizes
large values for Wij if the distance between of Mj and the vertex Mk with
largest weight k = arg maxj Wij is large. Let d(·, ·) dennote Euclidean dis-
tance between vertices, then the regularizer equals

Lw =

mg∑
i=1

∑
j∈Ni

Wijd(Mk,Mj), k = arg maxj Wij . (15)

4.5 Implementation Details

We implement fθw and fβw networks with 2 fully connected and a linear output
layer. We implement ParserNet fUw , f

L
w , f

B
w with 3 fully connected layers. We

use neighborhood (Ni) size of |Ni| = 50, for our experiments. We first train
the network for garment classes which share the same garment template and
then fine-tune separately for each garment class g. To speed up training for
ParserNet, we train the network to predict Wg = Ig, where Ig is the indicator
matrix for garment class g, explained in Sec. 3.2. This initializes the network to
parse the garment by cutting out a part of the input mesh based on the constant
per-garment indicator matrix, shown in Fig. 3.

For SizerNet we use d = 30 and we implement fencw , fdecw with fully connected
layers and skip connections between encoder and decoder network. We held out
40 scans for testing in each garment class, which includes some cases with unseen
subjects and some with unseen garment size for seen subjects. For pose-shape
prediction network, ParserNet and SizerNet we use batch-size of 8 and learning
rate of 0.0001.

5 Experiments and Results

5.1 Results of 3D garment parsing and shape under clothing

To validate the choice of parsing the garments using a sparse regressor matrix
(W), we compare the results of ParserNet with two baseline approaches: 1) A
linearized version of ParserNet implemented with LASSO, and 2) A naive FC
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Fig. 4: Comparison of ParserNet with a FC network from front and lateral view.

network, which has the same architecture as ParserNet. However, instead of pre-
dicting the weight matrix (W), the FC network directly predicts the deformation
(Dg) from the garment template (T g(β,θ,0)) for a given input (M).

We compare the per-vertex error of ParserNet with the aforementioned base-
lines in Tab. 1. Figure 4 shows that ParserNet can produce details, fine wrinkles,
and large garment deformations, which is not possible with a naive FC network.
This is attainable because ParserNet reconstructs the output garment mesh as
a localized sparse weighted sum of input vertex locations, and hence preserves
the geometry details present in the input mesh. However, in the case of naive FC
network, the predicted displacement field (Dg) is smooth and does not explain
large deformations. Hence, naive FC network is not able to predict loose gar-
ments and does not preserve fine details. We show results of ParserNet for more
garment classes in Fig. 5 and add more results in the supplementary material.

5.2 Results of garment resizing

Editing garment meshes based on garment size label is an unexplored problem
and, hence there are no well defined quantitative metrics. We introduce two
quantitative metrics, namely change in mesh surface area (Aerr) and per-vertex
error (Verr) for evaluating the resizing task. Surface area accounts for the scale
of a garment, which only changes with the garment size, and per-vertex error
accounts for details and folds created due to the underlying body shape and
looseness/tightness of the garment. Moreover, subtle changes in garment shape
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Garment Linear
Model

FC ParserNet Garment Linear
Model

FC ParserNet

Polo 32.21 17.25 14.33 Shorts 29.78 20.12 16.07
Shirt 27.63 19.35 14.56 Pants 34.82 18.2 17.24
Vest 28.17 18.56 15.89 Coat 41.27 22.19 15.34
Hoodies 37.34 23.69 15.76 Shorts2 31.38 23.45 16.23
T-Shirt 26.94 15.98 13.77

Table 1: Average per-vertex error Verr of proposed method for parsing garment
meshes for different garment class (in mm).

Fig. 5: Input single mesh and ParserNet results for more garments.

with respect to size are difficult to evaluate. Hence, we use heat map visualiza-
tions for qualitative analysis of the results.

Since there is no other existing work for garment resizing task to compare
with, we evaluate our method against the following three baselines.

1. Error margin in data: We define error margin as the change in per-vertex
location (Verr) and surface area (Aerr ) between garments of two consecutive
size for a subject in the dataset. Our model should ideally produce a smaller
error than this margin.

2. Average prediction: For every subject in the dataset, we create the average
garment (Gavg), by averaging over all the available sizes for a subject.

3. Linear scaling + Alignment : We linearly scale the garment mesh, according
to desired size label, and then align the garment to the underlying body.

Table 2 shows the errors for each experiment. SizerNet results in lower errors,
as compared to the linear scaling method, which reflects the need for modelling
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Fig. 6: (a) Input single mesh. (b) Parsed multi-layer mesh from ParserNet. (c),(d)
Resized garment in two subsequent smaller sizes. (e), (f) Heatmap of change in
per vertex error on original parsed garment for two new sizes.

the non-linear relationship between garment shape, underlying body shape and
garment size. We also see that network predictions yield lower error as compared
to average garment prediction, which suggests that the model is learning the size
variation, even though the differences in the ground truth itself are subtle. We
present the results of SizerNet for common garment classes in Tab. 2, Fig. 6, 7
and add more results in the supplementary material.

Garment Error-margin Average-pred Linear Scaling Ours

Verr Aerr Verr Aerr Verr Aerr Verr Aerr

Polo t-shirt 33.25 24.56 23.86 3.63 35.05 8.45 16.42 1.79
Shirt 36.52 19.57 21.95 2.76 34.53 7.01 15.54 1.41
Shorts 43.21 27.21 24.79 5.41 35.77 4.99 16.71 2.38
Pants 30.83 15.15 21.54 4.73 38.16 7.13 19.26 2.43

Table 2: Average per vertex error (Verr in mm) and surface area error(Aerr in
%) of predicted of proposed method for garment resizing.
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(a) Small(input, parsed), Medium, Large (b) Medium(input, parsed), Small, Large

(c) Large(input, parsed), Medium, XLarge (d) XLarge(input,parse), Large, Medium

Fig. 7: Results of ParserNet + SizerNet, where we parse the garments from input
single mesh and change the size of garment to visualise dressing effect.

6 Conclusion

We introduce SIZER, a clothing size variation dataset and model, which is the
first real dataset to capture clothing size variation on different subjects. We
also introduce ParserNet : a 3D garment parsing network and SizerNet : a size
sensitive clothing model. With this method, one can change the single mesh
registration to multi-layer meshes of garments and body shape under clothing,
without the need for scan segmentation and can use the result for animation,
virtual try-on, etc. SizerNet can drape a person with garments in different sizes.
Since our dataset only consists of roughly aligned A-poses, we are limited to
A-pose. We only exploit geometry information (vertices and normals) for 3D
clothing parsing. In future work, we plan to use the color information in Parser-
Net via texture augmentation, to improve the accuracy and generalization of
the proposed method. We will release the model, dataset, and code to stimu-
late research in the direction of 3D garment parsing, segmentation, resizing and
predicting body shape under clothing.
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