
1

Appendix to Increasing the robustness of DNNs against image
corruptions by playing the Game of Noise

A Architectures of the noise generators

The architectures of the noise generators are displayed in Tables 1 and 2. The number of color
channels is indicated by C. The noise generator displayed in Table 1 only uses kernels with a size
of 1 and thus produces spatially uncorrelated noise. With the stride being 1 and no padding, the
spatial dimensions are preserved in each layer. The noise generator displayed in Table 2 has one
layer with 3x3 convolutions and thus produces noise samples with a correlation length of 3x3 pixels.

Layer Shape

Conv + ReLU 20 × 1 × 1
Conv + ReLU 20 × 1 × 1
Conv + ReLU 20 × 1 × 1
Conv C ×1 × 1

Table 1: Architecture of the noise gen-
erator producing uncorrelated noise.

Layer Shape

Conv + ReLU 20 × 1 × 1
Conv + ReLU 20 × 3 × 3
Conv + ReLU 20 × 1 × 1
Conv C ×1 × 1

Table 2: Architecture of the noise gener-
ator producing locally correlated noise.

B Implementation details and hyper-parameters

We use PyTorch [7] for all of our experiments.

Preprocessing MNIST images are preprocessed such that their pixel values lie in the range [0, 1].
Preprocessing for ImageNet is performed in the standard way for PyTorch ImageNet models from
the model zoo by subtracting the mean [0.485, 0.456, 0.406] and dividing by the standard deviation
[0.229, 0.224, 0.225]. We add Gaussian, adversarial and Speckle noise before the preprocessing step,
so the noisy images are first clipped to the range [0, 1] of the raw images and then preprocessed
before being fed into the model.

ImageNet experiments For all ImageNet experiments, we used a pretrained ResNet50 archi-
tecture from https://pytorch.org/docs/stable/torchvision/models.html. We fine-tuned the
model with SGD-M using an initial learning rate of 0.001, which corresponds to the last learning
rate of the PyTorch model training, and a momentum of 0.9. After convergence, we decayed the
learning rate once by a factor of 10 and continued the training. Decaying the learning rate was
highly beneficial for the model performance. We tried decaying the learning rate a second time,
but this did not bring any benefits in any of our experiments. For GNT, we also tried training
from scratch, i.e. starting with a large learning rate of 0.1 and random weights, and trained for 120
epochs, but we got worse results compared to merely fine-tuning the model provided by torchvision.
We used a batch size of 70 for all our experiments. We have also tried to use the batch sizes 50 and
100, but did not observe any difference.

https://pytorch.org/docs/stable/torchvision/models.html


2

Gaussian noise We trained the models until convergence. The total number of training epochs
varied between 30 and 90 epochs.

Speckle noise We used the Speckle noise implementation from https://github.com/hendrycks/

robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py, line 270. The model trained
with Speckle noise converged faster than with Gaussian data augmentation and therefore, we only
trained the model for 10 epochs.

Adversarial Noise Training The adversarial noise generator was trained with the Adam optimizer
with a learning rate of 0.0001. We have replaced the noise generator every 0.33 epochs. For ANT1x1,
we set the ε-sphere to control the size of the perturbation to 135.0 which on average corresponds
to the `2-size of a perturbation caused by additive Gaussian noise sampled from N (0, 0.52 � 1). We
have trained the classifier until convergence for 80 epochs. For ANT3x3, we set the ε-sphere to 70.0
and trained the classifier for 80 epochs. We decreased the ε-sphere for ANT3x3 to counteract giving
the noise generator more degrees of freedom to fool the classifier to maintain a similar training
losses and accuracies for ANT1x1 and ANT3x3.

MNIST experiments For the MNIST experiments, we used the same model architecture as [6]
for our ANT1x1 and GNT. For ANT1x1, our learning rate for the generator was between 10�4 and
10�5, and equal to 10�3 for the classifier. We used a batch size of 300. As an optimizer, we used
SGD-M with a momentum of 0.9 for the classifier and Adam [5] for the generator. The splitting
of batches in clean, noisy and history was equivalent to the ImageNet experiments. The optimal ε
hyper-parameter was determined with a line search similar to the optimal σ of the Gaussian noise;
we found ε = 10 to be optimal. The parameters for the Gaussian noise experiments were equivalent.
Both models were trained until convergence (around 500-600 epochs). GNT and ANT1x1 were
performed on a pretrained network.

C Detailed results on the evaluation of corruption robustness due to regular
adversarial training

We find that standard adversarial training against minimal adversarial perturbations in general does
not increase robustness against common corruptions. While some early results on CIFAR-10 by [1]
and Tiny ImageNet-C by [3] suggest that standard adversarial training might increase robustness to
common corruptions, we here observe the opposite: Adversarially trained models have lower robust-
ness against common corruptions. An adversarially trained ResNet152 with an additional denoising
layer1 from [12] has lower accuracy across almost all corruptions except Snow and Pixelations. On
some corruptions, the accuracy of the adversarially trained model decreases drastically, e.g. from
49.1% to 4.6% on Fog or 42.8% to 9.3% on Contrast. Similarly, the adversarially trained ResNet502

from [Shafahi et al., 2019] shows a substantial decrease in performance on common corruptions
compared with a vanilla trained model.

An evaluation of a robustified version of AlexNet2 [10] that was trained with the Universal
Adversarial Training scheme on ImageNet-C shows that achieving robustness against universal
adversarial perturbations does not noticeably increase robustness towards common corruptions
(22.2%) compared with a vanilla trained model (21.1%).

1 Model weights from https://github.com/facebookresearch/ImageNet-Adversarial-Training
2 Model weights were kindly provided by the authors.

https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py
https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py
https://github.com/facebookresearch/ImageNet-Adversarial-Training


3

Noise (Compressed) Blur (Compressed)
Model All Gaussian Shot Impulse Defocus Glass Motion Zoom

Vanilla RN50 39.2 29.3 27.0 23.8 38.7 26.8 38.7 36.2
AT [9] 29.1 20.5 19.1 12.4 21.4 30.8 30.4 31.4

Vanilla RN152 45.0 35.7 34.3 29.6 45.1 32.8 48.4 40.5
AT [12] 35.0 35.2 34.4 24.8 22.1 31.7 30.9 32.0

Vanilla AlexNet 21.1 11.4 10.6 7.7 18.0 17.4 21.4 20.2
UAT [10] 22.2 20.1 19.1 16.2 13.1 21.6 19.7 19.2

Weather (Compressed) Digital (Compressed)
Model Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG

Vanilla RN50 32.5 38.1 45.8 68.0 39.1 45.2 44.8 53.4
AT [9] 24.4 25.6 5.8 51.1 7.8 45.4 53.4 56.3

Vanilla RN152 38.7 43.9 49.1 71.2 42.8 51.1 50.5 60.5
AT [12] 42.0 40.4 4.6 58.8 9.3 47.2 54.1 58.0

Vanilla AlexNet 13.3 17.3 18.1 43.5 14.7 35.4 28.2 39.4
UAT [10] 13.8 18.3 4.3 36.5 4.8 36.8 42.3 47.1

Table 3: Average Top-1 accuracy over 5 severities of common corruptions on ImageNet-C in percent.
A high accuracy on a certain corruption type indicates high robustness of a classifier on this corrup-
tion type, so higher accuracy is better. Adversarial training (AT) decreases the accuracy on common
corruptions, especially on the corruptions Fog and Contrast. Universal Adversarial Training (UAT)
slightly increases the overall performance.



4

D Detailed ImageNet-C results

We show detailed results on individual corruptions in Table 4 in accuracy and in Table 5 in mCE
for differently trained models. In Fig. 1, we show the degradation of accuracy for different severity
levels. To avoid clutter, we only show results for a vanilla trained model, for the previous state of the
art SIN+IN [2], for several Gaussian trained models and for the overall best model ANT3x3+SIN.

The Corruption Error [3] is defined as

CEf
c =

(
5∑

s=1

Ef
s;c

)/(
5∑

s=1

EAlexNet
s;c

)
, (1)

where Ef
s;c is the Top-1 error of a classifier f for a corruption c with severity s. The mean Corruption

error (mCE) is taken by averaging over all corruptions.

Noise Blur Weather Digital
model mean GaussShotImpulse DefocusGlassMotionZoom SnowFrostFogBright ContrastElasticPixelJpeg

Vanilla RN50 39 29 27 24 39 27 39 36 33 38 46 68 39 45 45 53
Shift Inv 42 36 34 30 40 29 38 39 33 40 48 68 42 45 49 57
Patch GN 44 45 43 42 38 26 39 38 30 39 54 67 39 52 47 56
SIN+IN 45 41 40 37 43 32 45 36 41 42 47 67 43 50 56 58
AugMix 48 41 41 38 48 35 54 49 40 44 47 69 51 52 57 60

Speckle 46 55 58 49 43 32 40 36 34 41 46 68 41 47 49 58
GNTmult 49 67 65 64 43 33 41 37 34 42 45 68 41 48 50 60
GNT�0:5 49 58 59 57 47 38 43 42 35 44 44 68 39 50 55 62

ANT1x1 51 65 66 64 47 37 43 40 36 46 44 70 43 49 55 62
ANT1x1+SIN 52 64 65 63 46 38 46 39 42 47 49 69 47 50 57 60
ANT1x1 w/o EP 49 59 59 57 46 37 43 40 34 43 43 68 39 49 55 61

ANT3x3 50 65 64 64 44 36 42 38 39 46 44 69 41 49 55 61
ANT3x3+SIN 53 62 61 60 41 39 46 37 48 52 55 68 49 53 59 59

Table 4: Average Top-1 accuracy over 5 severities of common corruptions on ImageNet-C in percent
obtained by different models; higher is better.

E MNIST-C results

Similar to the ImageNet-C experiments, we are interested how vanilla, adversarially and noise
trained models perform on MNIST-C.

The adversarially robust MNIST model by [11] was trained with a robust loss function and is
among the state of the art in certified adversarial robustness. The other baseline models were trained
with Adversarial Training in `2 (DDN) by [8] and `1 (PGD) by [6]. Our GNT and ANT1x1 trained
versions are trained as described in the main paper and Appendix B.2. The results are shown in
Table 6. Similar to ImageNet-C, the models trained with GNT and ANT1x1 are significantly better
than our vanilla trained baseline. Also, regular adversarial training has severe drops and does not
lead to significant robustness improvements.

As for ImageNet and GNT, we have treated σ as a hyper-parameter. The accuracy on MNIST-C
for different values of σ is displayed in Fig. 2 and has a maximum around σ = 0.5 like for ImageNet.



5

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

T
op

-1
ac

cu
ra

cy

Gaussian Noise

Vanilla

SIN
GNTσ0.18

GNTσ0.7

GNTσ0.5

ANT3x3+SIN

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
Shot Noise

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
Impulse Noise

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

T
op

-1
ac

cu
ra

cy

Defocus Blur

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
Glass Blur

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
Motion Blur

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

T
op

-1
ac

cu
ra

cy

Zoom Blur

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
Snow

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
Frost

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

T
op

-1
ac

cu
ra

cy

Fog

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
Brightness

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
Contrast

0 1 2 3 4 5
Corruption Severity

0.0

0.2

0.4

0.6

0.8

T
op

-1
ac

cu
ra

cy

Elastic Transform

0 1 2 3 4 5
Corruption Severity

0.0

0.2

0.4

0.6

0.8
Pixelate

0 1 2 3 4 5
Corruption Severity

0.0

0.2

0.4

0.6

0.8
JPEG Compression

Fig. 1: Top-1 accuracy for each corruption type and severity on ImageNet-C.



6

Noise Blur Weather Digital
model mCE GaussShotImpulse DefocusGlassMotionZoom SnowFrostFogBright ContrastElasticPixelJpeg

Vanilla 77 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77
SIN 69 66 67 68 70 82 69 80 68 71 65 58 66 78 62 70
Patch GN 71 62 63 62 75 90 78 78 81 74 57 59 71 74 74 72
Shift Inv. 73 73 74 76 74 86 78 77 77 72 63 56 68 86 71 71
AugMix 65 67 66 68 64 79 59 64 69 68 65 54 57 74 60 65

Speckle 68 51 47 55 70 83 77 80 76 71 66 57 70 82 71 69
GNTmult 65 37 39 39 69 81 76 79 76 70 67 56 69 81 69 66
GNT�0:5 64 46 46 47 65 75 72 74 75 68 69 57 71 78 63 63

ANT1x1 62 39 38 39 65 77 72 75 74 66 68 53 67 78 62 62
ANT1x1+SIN 61 40 39 40 65 76 69 76 67 64 62 55 63 77 59 66
ANT1x1 w/o EP 65 46 46 47 66 76 73 75 76 69 70 57 72 79 63 64

ANT3x3 63 39 40 39 68 78 73 77 71 66 68 55 69 79 63 64
ANT3x3+SIN 61 43 44 43 71 74 69 79 60 58 55 56 59 73 57 67

Table 5: Average mean Corruption Error (mCE) obtained by different models on common corrup-
tions from ImageNet-C; lower is better.

model cl
ea

n
ac

c

m
ea

n

Sh
ot

Im
pu

lse

G
la
ss

B
lu

r

M
ot

io
n

B
lu

r

Sh
ea

r

Sc
al
e

R
ot

at
e

B
rig

ht
ne

ss

Tra
ns

la
te

St
rip

e

Fo
g

Sp
la
tt
er

D
ot

te
d

Lin
e

Zig
Zag

C
an

ny
Edg

es

Vanilla 99.1 86.9 98 96 96 94 98 95 92 88 57 88 50 97 96 86 72
[6] 98.5 75.6 98 55 94 94 97 88 92 27 53 40 63 96 78 74 84

Vanilla 98.8 74.3 98 91 96 88 95 80 89 34 45 41 23 96 96 80 63
[11] 98.2 68.6 97 65 93 93 94 87 89 11 40 20 25 96 89 61 68

Vanilla 99.5 89.8 98 96 95 97 98 96 94 95 61 89 79 98 98 90 63
DDN Tr [8] 99.0 87.0 99 97 96 94 98 91 93 72 55 92 64 99 98 91 66

Vanilla 99.1 86.9 98 96 96 94 98 95 92 88 57 88 50 97 96 86 72
GNT�0:5 99.3 92.4 99 99 98 97 98 95 93 98 56 91 91 99 99 96 78
ANT1x1 99.4 92.4 99 99 98 97 98 95 93 98 55 89 91 99 99 96 80

Table 6: Accuracy in percent for the MNIST-C dataset for adversarially robust ([11], [6], DDN
[8]) and our noise trained models (GNT and ANT1x1). Vanilla always denotes the same network
architecture as its adversarially or noise trained counterpart but with standard training. Note that
we used the same network architecture as [6].



7

Fig. 2: Average accuracy on MNIST-C over all severties and corruptions for di�erent values of sigma
� of the Gaussian noise training (GNT) during training. Each point corresponds to one converged
training.



8

F Evaluation of adversarial robustness of models trained via GNT and ANT 1x1

ImageNet To evaluate adversarial robustness on ImageNet, we used PGD [6] and DDN [8]. For the
`1 PGD attack, we allowed for 200 iterations with a step size of 0:0001 and a maximum sphere
size of 0.001. For the DDN`2 attack, we also allowed for 200 iterations, set the sphere adjustment
parameter 
 to 0.02 and the maximum epsilon to 0.125. We note that for both attacks increasing
the number of iterations from 100 to 200 did not make a signi�cant di�erence in robustness of our
tested models. The results on adversarial robustness on ImageNet can be found in the main paper
in Table 4.

MNIST To evaluate adversarial robustness on MNIST, we also used PGD [6] and DDN [8]. For
the `1 PGD attack, we allowed for 100 iterations with a step size of 0:01 and a maximum sphere
size of 0.1. For the DDN `2 attack, we also allowed for 100 iterations, set the sphere adjustment
parameter 
 to 0.05 and the maximum epsilon to 1.5. All models have the same architecture as [6].
The results on adversarial robustness on MNIST can be found in Table 7.

model clean acc. [%]`2 acc. [%] `1 acc. [%]
Vanilla 99.1 73.2 55.8
GNT � 0:5 99.3 89.2 73.6
ANT 1x1 99.4 90.4 76.3

Table 7: Adversarial robustness on MNIST on`2 (� = 1 :5) and `1 (� = 0 :1) compared to a Vanilla
CNN.



9

G Example images for additive Gaussian noise

Example images with additive Gaussian noise of varying standard deviation� are displayed in
Fig. 3. The considered� -levels correspond to those studied in section 4.2. in the main paper.

Fig. 3: Example images with di�erent � -levels of additive Gaussian noise on ImageNet.


