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Abstract. The human visual system is remarkably robust against a
wide range of naturally occurring variations and corruptions like rain or
snow. In contrast, the performance of modern image recognition models
strongly degrades when evaluated on previously unseen corruptions. Here,
we demonstrate that a simple but properly tuned training with additive
Gaussian and Speckle noise generalizes surprisingly well to unseen corrup-
tions, easily reaching the state of the art on the corruption benchmark
ImageNet-C (with ResNet50) and on MNIST-C. We build on top of
these strong baseline results and show that an adversarial training of
the recognition model against locally correlated worst-case noise distribu-
tions leads to an additional increase in performance. This regularization
can be combined with previously proposed defense methods for further
improvement.

Keywords: Image corruptions, robustness, generalization, adversarial
training

1 Introduction

While Deep Neural Networks (DNNs) have surpassed the functional performance
of humans in a range of complex cognitive tasks [12], [44], [38], [2], [30], they still
lag behind humans in numerous other aspects. One fundamental shortcoming of
machines is their lack of robustness against input perturbations. Even minimal
perturbations that are hardly noticeable for humans can derail the predictions of
high-performance neural networks.

For the purpose of this paper, we distinguish between two types of input
perturbations. One type are minimal image-dependent perturbations specifically
designed to fool a neural network with the smallest possible change to the input.
These so-called adversarial perturbations have been the subject of hundreds
of papers in the past five years, see e.g. [39], [21], [35], [11]. Another, much
less studied type are common corruptions. These perturbations occur naturally
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in many applications and include simple Gaussian or Salt and Pepper noise;
natural variations like rain, snow or fog; and compression artifacts such as those
caused by JPEG encoding. All of these corruptions do not change the semantic
content of the input, and thus, machine learning models should not change their
decision-making behavior in their presence. Nonetheless, high-performance neural
networks like ResNet50 [12] are easily confused by small deformations [1]. The
juxtaposition of adversarial examples and common corruptions was explored
in [8] where the authors discuss the relationship between both and encourage
researchers working in the field of adversarial robustness to cross-evaluate the
robustness of their models towards common corruptions.

We argue that in many practical applications, robustness to common corrup-
tions is often more relevant than robustness to artificially designed adversarial
perturbations. Autonomous cars should not change their behavior in the face of
unusual weather conditions such as hail or sand storms or small pixel defects in
their sensors. Not-Safe-For-Work filters should not fail on images with unusual
compression artifacts. Likewise, speech recognition algorithms should perform
well regardless of the background music or sounds.

Besides its practical relevance, robustness to common corruptions is also an
excellent target in its own right for researchers in the field of adversarial robustness
and domain adaptation. Common corruptions can be seen as distributional shifts
or as a weak form of adversarial examples that live in a smaller, constrained
subspace.

Despite their importance, common corruptions have received relatively little
attention so far. Only recently, a modification of the ImageNet dataset [34] to
benchmark model robustness against common corruptions and perturbations
has been published [13] and is referred to as ImageNet-C. Now, this scheme has
also been applied to other common datasets resulting in Pascal-C, Coco-C and
Cityscapes-C [25] and MNIST-C [29].

Our contributions are as follows:

– We demonstrate that data augmentation with Gaussian or Speckle noise
serves as a simple yet very strong baseline that is sufficient to surpass almost
all previously proposed defenses against common corruptions on ImageNet-C
for ResNet50. We further show that the magnitude of the additive noise is a
crucial hyper-parameter to reach optimal robustness.

– Motivated by our strong results with baseline noise augmentations, we in-
troduce a neural network-based adversarial noise generator that can learn
arbitrary uncorrelated noise distributions that maximally fool a given recog-
nition network when added to their inputs. We denote the resulting noise
patterns as adversarial noise.

– We design and validate a constrained Adversarial Noise Training (ANT)
scheme through which the recognition network learns to become robust against
adversarial i.i.d. noise. We demonstrate that our ANT reaches state-of-the-art
robustness on the corruption benchmark ImageNet-C for the commonly used
ResNet50 architecture and on MNIST-C, even surpassing the already strong
baseline noise augmentations. This result is not due to overfitting on the
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Fig. 1. Outline of our approach. A: First, we train a generative network
against a vanilla trained classifier to find the adversarial noise. B: To achieve
robustness against adversarial noise, we train the classifier and the noise
generator jointly. C: We measure the robustness against common corruptions
for a vanilla, adversarially trained (Adv. Tr.), trained on Stylized ImageNet
(SIN), trained via Gaussian data augmentation (GNT) and trained with the
means of Adversarial Noise Training (ANT). With our methods, we achieve
the highest accuracy on common corruptions, both on all and non-noise
categories.

noise categories of the respective benchmarks since we find equivalent results
on the non-noise corruptions as well.

– We extend the adversarial noise generator towards locally correlated noise
thereby enabling it to learn more diverse noise distributions. Performing ANT
with the modified noise generator, we observe an increase in robustness for
the ‘snow’ corruption which is visually similar to our learned noise.

– We demonstrate a further increase in robustness when combining ANT with
previous defense methods.

– We substantiate the claim that increased robustness against regular or uni-
versal adversarial perturbations does not imply increased robustness against
common corruptions. This is not necessarily true vice-versa: Our noise trained
recognition network has high accuracy on ImageNet-C and also slightly im-
proved accuracy on adversarial attacks on clean ImageNet compared to a
vanilla trained ResNet50.

We released our model weights along with the full training code on GitHub. 1

1 github.com/bethgelab/game-of-noise

https://github.com/bethgelab/game-of-noise
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2 Related work

Robustness against common corruptions Several recent publications study
the vulnerability of DNNs to common corruptions.

Two recent studies compare humans and DNNs on recognizing corrupted
images, showing that DNN performance drops much faster than human per-
formance for increased perturbation sizes [5], [10]. Hendrycks et al. introduce
corrupted versions of standard datasets denoted as ImageNet-C, Tiny ImageNet-
C and CIFAR10-C as standardized benchmarks for machine learning models [13].
Similarly, common corruptions have been applied to and evaluated on COCO-C,
Pascal-C, Cityscapes-C [25] and MNIST-C [29].

There have been attempts to increase robustness against common corruptions.
Zhang et al. integrate an anti-aliasing module from the signal processing domain
in the ResNet50 architecture to restore the shift-equivariance which can get lost
in deep CNNs and report an increased accuracy on clean data and better gener-
alization to corrupted image samples [45]. Concurrent work to ours demonstrates
that having more training data [43], [22] or using stronger backbones [43], [25],
[18] can significantly improve model performance on common corruptions.

A popular method to decrease overfitting and help the network generalize
better to unseen data is to augment the training dataset by applying a set
of (randomized) manipulations to the images [26]. Furthermore, augmentation
methods have also been applied to make the models more robust against image
corruptions [9]. Augmentation with Gaussian [8], [19] or uniform noise [10] has
been tried to increase model robustness. Conceptually, Ford et al. is the closest
study to our work, since they also apply Gaussian noise to images to increase
corruption robustness [8]. They use a different architecture (InceptionV3 versus
our ResNet50). Also, they train a new model from scratch solely on images
perturbed by Gaussian noise whereas we fine-tune a pretrained model on a
mixture of clean and noisy images. They observe a low relative improvement in
accuracy on corrupted images whereas we were able to outperform all previous
baselines on the commonly used ResNet50 architecture.2 Lopes et al. restrict
the Gaussian noise to small image patches, which improves accuracy but does
not yield state-of-the-art performance on the ResNet50 architecture [19]. Geirhos
et al. train ImageNet classifiers against a fixed set of corruptions but find no
generalized robustness against unseen corruptions [10]. However, they considered
vastly higher noise levels than us. Considering the efficacy of Gaussian or uniform
data augmentation to increase model robustness, the main difference to our work
is that other works have used either munch larger [10] or smaller [8], [19] values
for the standard deviation σ. A too large σ leads to an overfitting to the used
noise distribution whereas a too small σ leads to noise levels that are not different
enough from the clean images. We show that taking σ from the intermediate
regime works best for generalization both to other noise types and non-noise
corruptions.

2 To compare with Ford et al., we evaluate our approach for an InceptionV3 architecture,
see our results in Appendix H.
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Link between adversarial robustness and common corruptions There
is currently no agreement on whether adversarial training increases robustness
against common corruptions in the literature. Hendrycks et al. report a robust-
ness increase on common corruptions due to adversarial logit pairing on Tiny
ImageNet-C [13]. Ford et al. suggest a link between adversarial robustness and
robustness against common corruptions, claim that increasing one robustness type
should simultaneously increase the other, but report mixed results on MNIST
and CIFAR10-C [8]. Additionally, they also observe large drops in accuracy
for adversarially trained networks and networks trained with Gaussian data
augmentation compared to a vanilla classifier on certain corruptions. On the
other hand, Engstrom et al. report that increasing robustness against adversarial
`∞ attacks does not increase robustness against translations and rotations, but
they do not present results on noise [7]. Kang et al. study robustness transfer
between models trained against `1, `2, `∞ adversaries / elastic deformations and
JPEG artifacts [17]. They observe that adversarial training increases robustness
against elastic and JPEG corruptions on a 100-class subset of ImageNet. This
result contradicts our findings on full ImageNet as we see a slight decline in
accuracy on those two classes for the adversarially trained model from [42] and
severe drops in accuracy on other corruptions. Jordan et al. show that adversarial
robustness does not transfer easily between attack classes [16]. Tramèr et al. [40]
also argue in favor of a trade-off between different robustness types. For a simple
and natural classification task, they prove that adversarial robustness towards l∞
perturbations does neither transfer to l1 nor to input rotations and translations,
and vice versa and support their formal analysis with experiments on MNIST
and CIFAR10.

3 Methods

3.1 Training with Gaussian noise

As discussed in section 2, several researchers have tried using Gaussian noise
as a method to increase robustness towards common corruptions with mixed
results. In this work, we revisit the approach of Gaussian data augmentation and
increase its efficacy. We treat the standard deviation σ of the distribution as a
hyper-parameter of the training and measure its influence on robustness.

To formally introduce the objective, let D be the data distribution over input
pairs (x, y) with x ∈ RN and y ∈ {1, ..., k}. We train a differentiable classifier
fθ(x) by minimizing the risk on a dataset with additive Gaussian noise

E
x,y∼D

E
δ∼N (0,σ21)

[LCE (fθ(clip(x+ δ)), y)] , (1)

where σ is the standard deviation of the Gaussian noise and x+ δ is clipped to
the input range [0, 1]N . The standard deviation is either kept fixed or is chosen
uniformly from a fixed set of standard deviations. In both cases, the possible
standard deviations are chosen from a small set of nine values inspired by the
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noise variance in the ImageNet-C dataset (cf. section 3.3). To maintain high
accuracy on clean data, we only perturb 50% of the training data with Gaussian
noise within each batch.

3.2 Adversarial noise

Learning Adversarial Noise Our goal is to find a noise distribution pφ(δ), δ ∈
RN such that noise samples added to x maximally confuse the classifier fθ. More
concisely, we optimize

max
φ

E
x,y∼D

E
δ∼pφ(δ)

[LCE (fθ(clip(x+ δ)), y)] , (2)

where clip is an operator that clips all values to the valid interval (i.e. clip(x+δ) ∈
[0, 1]N ) and restricts their norm ||δ||2 = ε. 3

We follow the literature of implicit generative models [28], [4] as we do not
have to explicitly model the probability density function pφ(δ) since optimizing
Eq. (2) only involves samples drawn from pφ(δ). We model the samples from
pφ(δ) as the output of a neural network gφ : RN → RN which gets its input from
a normal distribution δ = gφ(z) where z ∼ N (0,1). We enforce the independence
property of pφ(δ) =

∏
n pφ(δn) by constraining the network architecture of the

noise generator gφ to only consist of convolutions with 1x1 kernels. Lastly, the
projection onto a sphere ||δ||2 = ε is achieved by scaling the generator output with
a scalar while clipping x+ δ to the valid range [0, 1]N . This fixed size projection
(hyper-parameter) is motivated by the fact that Gaussian noise training with a
single, fixed σ achieved the highest accuracy. 4

The noise generator gφ has four 1x1 convolutional layers with ReLU activations
and one residual connection from input to output. The weights of the layers are
initialized to small numbers; for this initialization, the input is passed through
the residual connection to the output. Since we use Gaussian noise as input, the
noise generator outputs Gaussian noise at initialization. During training, the
weights change and the generator learns to produce more diverse distributions.

Adversarial Noise Training To increase robustness, we now train the classifier
fθ to minimize the risk under adversarial noise distributions jointly with the
noise generator

min
θ

max
φ

E
x,y∼D

E
δ∼pφ(δ)

[LCE (fθ(clip(x+ δ)), y)] , (3)

where again x+ δ ∈ [0, 1]N and ||δ||2 = ε. For a joint adversarial training, we
alternate between an outer loop of classifier update steps and an inner loop of
3 We apply the method derived in [32] and rescale the perturbation by a factor γ to
obtain the desired `2 norm; despite the clipping, the squared `2 norm is a piece-wise
linear function of γ2 that can be inverted to find the correct scaling factor γ.

4 We also experimented with an adaptive sphere radius ε which grows with the classifier’s
accuracy. However, we did not see any improvements and followed Occam’s razor.
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generator update steps. Note that in regular adversarial training, e.g. [21], δ is
optimized directly whereas we optimize a constrained distribution over δ.

To maintain high classification accuracy on clean samples, we sample every
mini-batch so that they contain 50% clean data and perturb the rest. The current
state of the noise generator is used to perturb 30% of this data and the remaining
20% are augmented with samples chosen randomly from previous distributions.
For this, the noise generator states are saved at regular intervals. The latter
method is inspired by experience replay from reinforcement learning [27] and is
used to keep the classifier from forgetting previous adversarial noise patterns.
To prevent the noise generator from being stuck in a local minimum, we halt
the Adversarial Noise Training (ANT) at regular intervals and train a new noise
generator from scratch. This noise generator is trained against the current state
of the classifier to find a current optimum. The new noise generator replaces the
former noise generator in the ANT. This technique has been crucial to train a
robust classifier.

Learning locally correlated adversarial noise We modify the architecture
of the noise generator defined in Eq. 2 to allow for local spatial correlations and
thereby enable the generator to learn more diverse distributions. Since we seek to
increase model robustness towards image corruptions such as rain or snow that
produce locally correlated patterns, it is natural to include local patterns in the
manifold of learnable distributions. We replace the 1x1 kernels in one network
layer with 3x3 kernels limiting the maximum correlation length of the output
noise sample to 3x3 pixels. We indicate the correlation length of noise generator
used for the constrained adversarial noise training as ANT1x1 or ANT3x3.

Combining Adversarial Noise Training with stylization As demonstrated
by [9], using random stylization as data augmentation increases the accuracy on
ImageNet-C due to a higher shape bias of the model. We combine our ANT and
the stylization approach to achieve robustness gains from both in the following
way: we split the samples in each batch into clean data (25%), stylized data
(30%) and clean data perturbed by the noise generator (45%).

3.3 Evaluation on corrupted images

Evaluation of noise robustness We evaluate the robustness of a model by
sampling a Gaussian noise vector δ (covariance 1). We then do a line search
along the direction δ starting from the original image x until it is misclassified.
We denote the resulting minimal perturbation as δmin. The robustness of a model
is then denoted by the median5 over the test set

ε∗ = median
x,y∼D

||δmin||2, (4)

5 Samples for which no `2-distance allows us to manipulate the classifier’s decision
contribute a value of ∞ to the median.
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with fθ(x + δmin) 6= y and x + δmin ∈ [0, 1]N . Note that a higher ε∗ denotes
a more robust classifier. To test the robustness against adversarial noise, we
train a new noise generator at the end of the Adversarial Noise Training until
convergence and evaluate it according to Eq. (4).

ImageNet-C The ImageNet-C benchmark6 [13] is a conglomerate of 15 diverse
corruption types that were applied to the validation set of ImageNet. The
corruptions are organized into four main categories: noise, blur, weather, and
digital. The MNIST-C benchmark is created similarly to ImageNet-C with
a slightly different set of corruptions [29]. We report the Top-1 and Top-5
accuracies as well as the ‘mean Corruption Error’ (mCE) on both benchmarks.
We evaluate all proposed methods for ImageNet-C on the ResNet50 architecture
for better comparability to previous methods, e.g. [9], [19], [45]. The clean
ImageNet accuracy of the used architecture highly influences the results and
could be seen as an upper bound for the accuracy on ImageNet-C. Note that our
approach is independent of the used architecture and could be applied to any
differentiable network.

4 Results

For our experiments on ImageNet, we use a classifier that was pretrained on
ImageNet. For the experiments on MNIST, we use the architecture from [21]
for comparability. All technical details, hyper-parameters and the architectures
of the noise generators can be found in Appendix A-B. We use various open
source software packages for our experiments, most notably Docker [24], scipy
and numpy [41], PyTorch [31] and torchvision [23].

(In-)Effectiveness of regular adversarial training to increase robust-
ness towards common corruptions In our first experiment, we evaluate
whether robustness against regular adversarial examples generalizes to robust-
ness against common corruptions. We display the Top-1 accuracy of vanilla and
adversarially trained models in Table 1; detailed results on individual corruptions
can be found in Appendix C. For all tested models, we find that regular `∞
adversarial training can strongly decrease the robustness towards common corrup-
tions, especially for the corruption types Fog and Contrast. Universal adversarial
training [37], on the other hand, leads to severe drops on some corruptions but
the overall accuracy on ImageNet-C is slightly increased relative to the vanilla
baseline model (AlexNet). Nonetheless, the absolute ImageNet-C accuracy of
22.2% is still very low. These results disagree with two previous studies which
6 For the evaluation, we use the JPEG compressed images from
github.com/hendrycks/robustness as is advised by the authors to ensure re-
producibility. We note that Ford et al. report a decrease in performance when the
compressed JPEG files are used as opposed to applying the corruptions directly in
memory without compression artifacts [8].

https://github.com/hendrycks/robustness
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Table 1: Top-1 accuracy on ImageNet-C and ImageNet-C without the noise
category (higher is better). Regular adversarial training decreases robustness
towards common corruptions; universal adversarial training seems to slightly
increase it.

Model IN-C IN-C w/o noises

Vanilla RN50 39.2% 42.3%
Adv. Training [36] 29.1% 32.0%

Vanilla RN152 45.0% 47.9%
Adv. Training [42] 35.0% 35.9%

Vanilla AlexNet 21.1% 23.9%
Universal Adv. Training [37] 22.2% 23.1%

reported that (1) adversarial logit pairing7 (ALP) increases robustness against
common corruptions on Tiny ImageNet-C [13], and that (2) adversarial training
can increase robustness on CIFAR10-C [8].

We evaluate adversarially trained models on MNIST-C and present the results
and their discussion in Appendix E. The results on MNIST-C show the same
tendency as on ImageNet-C: adversarially trained models have lower accuracy
on MNIST-C and thus indicate that adversarial robustness does not transfer to
robustness against common corruptions. This corroborates the results of Ford
et al. [8] on MNIST who also found that an adversarially robust model had
decreased robustness towards a set of common corruptions.

Effectiveness of Gaussian data augmentation to increase robustness
towards common corruptions We fine-tune ResNet50 classifier pretrained
on ImageNet with Gaussian data augmentation from the distribution N (0, σ21)
and vary σ. We try two different settings: in one, we choose a single noise level σ
while in the second, we sample σ uniformly from a set of multiple possible values.
The Top-1 accuracy of the fine-tuned models on ImageNet-C in comparison to a
vanilla trained model is shown in Fig. 2. Each black point shows the performance
of one model fine-tuned with one specific σ; the vanilla trained model is marked
by the point at σ = 0. The horizontal lines indicate that the model is fine-tuned
with Gaussian noise where σ is sampled from a set for each image. For example,
for the dark green line, as indicated by the stars, we sample σ from the set
{0.08, 0.12, 0.18, 0.26, 0.38} which corresponds to the Gaussian corruption of
ImageNet-C. Since Gaussian noise is part of the test set, we show both the results
on the full ImageNet-C evaluation set and the results on ImageNet-C without
noises (namely blur, weather and digital). To show how the different σ-levels
manifest themselves in an image, we include example images in Appendix G.

There are three important results evident from Fig. 2:
7 Note that ALP was later found to not increase adversarial robustness [6].
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Fig. 2. Top-1 accuracy on ImageNet-C (left) and ImageNet-C without the
noise corruptions (right) of a ResNet50 architecture fine-tuned with Gaussian
data augmentation of varying σ. Each dot or green line represents one model.
We train on Gaussian noise sampled from a distribution with a single σ
(black dots) and on distributions where σ is sampled from different sets
(green lines with stars). We also compare to a vanilla trained model at σ = 0.

1. Gaussian noise generalizes well to the non-noise corruptions of the ImageNet-
C dataset and is a powerful baseline. This is surprising as it was shown in
several recent works that training on Gaussian or uniform noise does not
generalize to other corruption types [10], [19] or that the effect is weak [8].

2. The standard deviation σ is a crucial hyper-parameter and has an optimal
value of about σ = 0.5 for ResNet50.

3. If σ is chosen well, using a single σ is enough and sampling from a set of σ
values is detrimental for robustness against non-noise corruptions.

In the following Results sections, we will compare Gaussian data augmentation
to our Adversarial Noise Training approach and baselines from the literature. For
this, we will use the models with the overall best-performance: The model GN0.5

that was trained with Gaussian data augmentation with a single σ = 0.5 and the
model GNmult where σ was sampled from the set {0.08, 0.12, 0.18, 0.26, 0.38}.

Evaluation of the severity of adversarial noise as an attack In this section,
we focus on the question: Can we learn the most severe uncorrelated additive
noise distribution for a classifier? Following the success of simple uncorrelated
Gaussian noise data augmentation (section 4) and the ineffectiveness of regular
adversarial training (section 4) which allows for highly correlated patterns, we
restrict our learned noise distribution to be sampled independently for each pixel.

To measure the effectiveness of our adversarial noise, we report the median
perturbation size ε∗ that is necessary for a misclassification for each image in
the test set as defined in section 3.3. We find ε∗GN = 39.0 for Gaussian noise,
ε∗UN = 39.1 for uniform noise and ε∗AN = 15.7 for adversarial noise (see Fig. 1 for
samples of each noise type). Thus, we see that our AN is much more effective at
fooling the classifier compared to Gaussian and uniform noise.
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Table 2: Accuracy on clean data and robustness of differently trained models as
measured by the median perturbation size ε∗. A higher ε∗ indicates a more robust
model. We compute standard deviations for ε∗AN for differently initialized generator
networks. To provide an intuition for the perturbation sizes indicated by ε∗, we
show example images for Gaussian noise below and a larger Figure for different
noise types in Appendix I.

model clean acc. ε∗GN ε∗UN ε∗AN1x1

Vanilla RN50 76.1% 39.0 39.1 15.7 ± 0.6
GNTσ0.5 75.9% 74.8 74.9 31.8 ± 3.9
GNTmult 76.1% 130.1 130.7 24.0 ± 2.2
ANT1x1 76.0% 136.7 137.0 95.4 ± 5.7

ε∗=15.0 ε∗=30.0 ε∗=60.0 ε∗=120.0

Evaluation of Adversarial Noise Training as a defense In the previous
section, we established a method for learning the most adversarial noise distri-
bution for a classifier. Now, we utilize it for a joint Adversarial Noise Training
(ANT1x1) where we simultaneously train the noise generator and classifier (see
section 3.2). This leads to substantially increased robustness against Gaussian,
uniform and adversarial noise, see Table 2. The robustness of models that were
trained via Gaussian data augmentation also increases, but on average much
less compared to the model trained with ANT1x1. To evaluate the robustness
against adversarial noise, we train four noise generators with different random
seeds and measure ε∗AN1x1. We report the mean value and the standard deviation
over the four runs. To visualize this effect, we visualize the temporal evolution of
the probability density function pφ(δn) of uncorrelated noise during ANT1x1 in
Fig. 3A. This shows that the generator converges to different distributions and
therefore, the classifier has been trained against a rich variety of distributions.

Comparison of different methods to increase robustness towards com-
mon corruptions We now revisit common corruptions on ImageNet-C and
compare the robustness of differently trained models. Since Gaussian noise is
part of ImageNet-C, we train another baseline model with data augmentation
using the Speckle noise corruption from the ImageNet-C holdout set. We later
denote the cases where the corruptions present during training are part of the
test set by putting corresponding accuracy values in brackets. Additionally, we
compare our results with several baseline models from the literature:
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Fig. 3. A: Examples of learned probability densities over the grayscale
version of the noise δn during ANT1x1 where each density corresponds to one
local minimum; B: Example images with sampled uncorrelated adversarial
noise; C: Example patches of locally correlated noise with a size of 28x28
pixels learned during ANT3x3; D: Example images with sampled correlated
adversarial noise.

1. Shift Inv: The model is modified to enhance shift-equivariance using anti-
aliasing [45].8

2. Patch GN: The model was trained on Gaussian patches [19].9
3. SIN+IN: The model was trained on a stylized version of ImageNet [9].10
4. AugMix: [14] trained their model using diverse augmentations.11 They use

image augmentations from AutoAugment [3] and exclude contrast, color,
brightness, sharpness, and Cutout operations to make sure that the test set
of ImageNet-C is disjoint from the training set. We would like to highlight
the difficulty in clearly distinguishing between the augmentations used during
training and testing as there might be a certain overlap. This can be seen
by the visual similarity between the Posterize operation and the JPEG
corruption (see Appendix J).

The Top-1 accuracies on the full ImageNet-C dataset and ImageNet-C without
the noise corruptions are displayed in Table 3; detailed results on individual cor-
ruptions in terms of accuracy and mCE are shown in Tables 3 and 4, Appendix D.
We also calculate the accuracy on corruptions without the noise category since we
observe that the generated noise can sometimes be close to the i.i.d. corruptions
of ImageNet-C raising concerns about overfitting. Additionally, the expressiveness
of the generated i.i.d. noise is quite limited compared to natural corruptions like
‘snow’. We hence extend the ANT1x1 procedure to include spatially correlated
noise over 3x3 pixels. Samples are shown in Fig. 3C and Fig. 3D.

The results on full ImageNet-C are striking (see Table 3): a very simple
baseline, namely a model trained with Speckle noise data augmentation, beats
8 Weights were taken from github.com/adobe/antialiased-cnns.
9 Since no model weights are released, we include the values reported in their paper.

10 Weights were taken from github.com/rgeirhos/texture-vs-shape.
11 Weights were taken from github.com/google-research/augmix.

https://github.com/adobe/antialiased-cnns
https://github.com/rgeirhos/texture-vs-shape/tree/master/models
https://github.com/google-research/augmix
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Table 3: Average accuracy on clean data, average Top-1 and Top-5 accuracies
on ImageNet-C and ImageNet-C without the noise category (higher is better);
all values in percent. We compare the results obtained by the means of Gaussian
(GNT) and Speckle noise data augmentation and with Adversarial Noise Training
(ANT) to several baselines. Gray numbers in brackets indicate scenarios where a
corruption from the test set was used during training.

IN IN-C IN-C w/o noises
model clean acc. Top-1 Top-5 Top-1 Top-5
Vanilla RN50 76.1 39.2 59.3 42.3 63.2
Shift Inv [45] 77.0 41.4 61.8 44.2 65.1
Patch GN [19] 76.0 (43.6) (n.a.) 43.7 n.a.
SIN+IN [9] 74.6 45.2 66.6 46.6 68.2
AugMix [14] 77.5 48.3 69.2 50.4 71.8

Speckle 75.8 46.4 67.6 44.5 65.5
GNTmult 76.1 (49.2) (70.2) 45.2 66.2
GNTσ0.5 75.9 (49.4) (70.6) 47.1 68.3

ANT1x1 76.0 (51.1) (72.2) 47.7 68.8
ANT1x1+SIN 74.9 (52.2) (73.6) 49.2 70.6
ANT1x1 w/o EP 75.7 (48.9) (70.2) 46.5 67.7
ANT3x3 76.1 50.4 71.5 47.0 68.1
ANT3x3+SIN 74.1 52.6 74.4 50.6 72.5

almost all previous baselines reaching an accuracy of 46.4% which is larger than
the accuracy of SIN+IN (45.2%) and close to AugMix (48.3%). The GNσ0.5
surpasses SIN+IN not only on the noise category but also on almost all other
corruptions, see a more detailed breakdown in Table 3, Appendix D.

The ANT3x3+SIN model produces the best results on ImageNet-C both with
and without noises. Thus, it is slightly superior to Gaussian data augmentation
and pure ANT3x3. Comparing ANT1x1 and ANT3x3, we observe that ANT3x3

performs better than ANT1x1 on the ‘snow’ corruption. We attribute this to
the successful modeling capabilities of locally correlated patterns resembling
snow of the 3x3 noise generator. We perform an ablation study to investigate
the necessity of experience replay and note that we lose roughly 2% without
it (ANT1x1 w/o EP vs ANT1x1). We also test how the classifier’s performance
changes if it is trained against adversarial noise sampled randomly from pφ(δn).
The accuracy on ImageNet-C decreases slightly compared to regular ANT1x1:
51.1%/ 71.9% (Top-1/ Top-5) on full ImageNet-C and 47.3%/ 68.3% (Top-1/
Top-5) on ImageNet-C without the noise category. We include additional results
for ANT1x1 with a DenseNet121 architecture [15] and for varying parameter
counts of the noise generator in Appendix K.

For MNIST, we train a model with Gaussian data augmentation and via
ANT1x1. We achieve similar results with both approaches and report a new
state-of-the-art accuracy on MNIST-C: 92.4%, see Appendix E for details.
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Table 4: Adversarial robustness on `2 (ε = 0.12) and `∞ (ε = 0.001) compared to
a Vanilla ResNet50 on ImageNet.

clean acc. `2 acc. `∞ acc.
model [%] [%] [%]
Vanilla RN50 76.1 41.1 18.1
GNTσ0.5 75.9 49.0 28.1
ANT1x1 76.0 50.1 28.6
Adv. Training [36] 60.5 58.1 58.5

Robustness towards adversarial perturbations As regular adversarial
training can decrease the accuracy on common corruptions, it is also inter-
esting to check what happens vice-versa: How does a model which is robust on
common corruptions behave under adversarial attacks?

Both our ANT1x1 and GNT models have slightly increased `2 and `∞ robust-
ness scores compared to a vanilla trained model, see Table 4. We tested this
using the white-box attacks PGD [20] and DDN [33]. Expectedly, an adversarially
trained model has higher adversarial robustness compared to ANT1x1 or GNT. In
this experiment, we only verify that we do not unintentionally reduce adversarial
robustness compared to a vanilla ResNet50. For details, see Appendix E for
MNIST and Appendix F for ImageNet.

5 Conclusions

So far, attempts to use simple noise augmentations for general robustness against
common corruptions have produced mixed results, ranging from no generalization
from one noise to other noise types [10] to only marginal robustness increases [8],
[19]. In this work, we demonstrate that carefully tuned additive noise patterns
in conjunction with training on clean samples can surpass almost all current
state-of-the-art defense methods against common corruptions. By drawing in-
spiration from adversarial training and experience replay, we additionally show
that training against simple uncorrelated or locally correlated worst-case noise
patterns outperforms our already strong baseline defense, with additional gains
to be made in combination with previous defense methods like stylization [9].

There are still a few corruption types (e.g. Motion or Zoom blurs) on which our
method is not state of the art, suggesting that additional gains are possible. Future
extensions of this work may combine noise generators with varying correlation
lengths, add additional interactions between noise and image (e.g. multiplicative
interactions or local deformations) or take into account local image information
in the noise generation process to further boost robustness across many types of
image corruptions.
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